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On the space of entire functions
over certain non-archimedean fields and its dual

by

T. T. RAGHUNATHAN (Poonsa, India) -

1. Introduction. In [5],' Theorem 3.1, we gave a characterization
of the dual K(x) of the class K<) of all entire Functions over a non-
archimedean field K, with certain restrictions on the valuation of K,
topologized by a suitable metric. The main object of the present paper
is to give another characterization (Theorem 3.2) of K<{«). As an appli-
cation of this characterization we prove in Section 4 the Hahn-Banach
Theorem for K (x). We also give an alternative approach (in Theorem 3.1)
to the topology of K <{(z).

2. Definitions and notations. A valuation of rank 1 of a field K is
a mapping | | from K into the reals such that for all a, be K

la) =0 and = 0 if and only if ¢ =0,
lab] = [aj[b], |a+Db] < la]+[b].
If the valuation satisfies, in addition, the condition
la+b] < max(lal, 13]),

then it will be called a non-archimedean field (Bruhat [1], p. 4, calls such
a valuation a real valuation.) In the sequel, K denotes a complete non-
archimedean non-trivial valued field. We recall that

(2.1) a = a(x) = Z 3", aneK,

n=0
is an entire function (see [1], p. 114) over K if >’ a,2™ converges for all
n=0
weK, or equivalently, if |a,/'" -0 as n — co. K (x> denotes the class
of all entire functions topologized by the metric |a— f| (a, fe K <{(a>),
‘where

(2.2) la] = max[|ay, [a."", n=>1].
n
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In what follows the symbol | | is used to denote the functional defined
in (2.2) and also the valuation of K. With this topology, K <«> is a non-
normable linear metric space over K (see [5]). We use K (z) for denoting
the algebraic space of entire functions or this space with the metric
topology defined earlier or the topology of the metric itself, as needed
in the context. K{x) denotes the dual of K{w). Every element fe¢K (x)
is of the form (see [5], Theorem 3.1) s

: :
2.3) flo) =D ontn, o= D aa",
n=0 n=0
where
(2.4) {|ex/M"} is bounded as g — co.

3. The main theorem. Given an entire function
. . . o .
a=a(@) = ) aa”
over K, we define, for each r =0 and reNg = {|al; acK}, |a:r| as
follows: .

(3.1) lazr] = sup [|a,|7", n > 0].
n

It is easily seen that, for » # 0 in Nk, (3.15 defines a non-archimedean
norm on the class K{(z)>. We denote K{x) (or the topology on K (x))
with this non-archimedean norm by K,(z> and the corresponding dual
of K{z)> by K, {x). If r; >r,, then |a:r;| > |a:r,| and therefore K, (=)
is weaker (in the sense of Vaidyanathaswamy [6], p. 71) than K, (x>
(we actually mean by K, (s> and K,<{w) the topologies induced on

2
K (x> by the respective norms; for convenience we shall prefer to make

such statements in the sequel also), and hence K, (x) = K,,{z>. Further,
if (ag) is & sequence in K (#) such that |a,| — 0 as g — oo, then for each
r#0 in NK}

lag:r] -0 as g - oo,

Hence K, («) is stronger than K (x). Thus {K,<x)} forms a decreasing
family, as 7 inereases, of normed topologies on K (), each of which is
stronger than K (x).

If 8 is any subset of K(x) and T any topology on K <), we denote
by (C18)r the closure of § in the topology 7. Theorem 3.1 characterizes
H{(a) in terms of the family {K,(z)}:

THEOREM 3.1. Let 8 be a subset of K{x). Then

(3.2) (OL®) gy = Q (C18)k,ay -

0#reNg

iom®

Space of entire functions 253

Proof. Since each K,(z) is stronger than K {x), we have
(O8)gw, < (CL8)z ¢z -
Therefore
Oz, € B = () (C18)xzy-

0£TeNg
Thus to prove (3.2) we have only to prove that if « is at a positive
distance from § in XK (), then it is so in K, {x) for some + # 0 (and there-
fore also for all sufficiently large 7). But this follows immediately from
Lemma 3.1. If lal>d >0, then |a:r|>d for all reNg such that
7 > A(1[d), where, for t >0, A(t)= max(1,1).

(=]
Proof. Let a = 3 a,4" and |a| = d> 0. If, for some r > 0, |a:r| < d,
n=0

then it follows that
lag) <@, e r < < A(d)  (n>1).

This means that if 4(d)jr < d, then |a| < d which contradicts the
hypothesis. Hence A(d)jfr>d, ie. r< A(d))d =A(1/d). Thus, if
r > A(1/d), then |a:r|>d.

The following is a parallel for K,{(z) of the result for K (x> quoted
at the end of Section 2:

Lemva 3.2. Bvery functional in K,.{(z) is of the form

(3.3) fla) =D tntn, a= Y ana”,
n=0 n=0
where
(3.4) {|O—Z|} is bounded as n — oo,
7

and conversely. .

Proof. Suppose f(a) is a continuous linear functional on K,.<{z).
Then, by known results ([3], p. 1134-1135, Theorems 9 and 10), there
exists an M such that

(fla)] < M azr].
Let
bp=a" and f(6) =¢, (n>=0).
Then
fla) = lim(egag+... 4 Cn )
N—c0

o0
=T Cp @
S
n=0
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since, in K,{(®), ay0y+ ...+ a0, - a a8 n — co. Also
lenl < M |8n27| = My™.

Therefore (3.4) is true. Conversely, if (3.4) is true, the functional
defined by (3.3) exists for all ¢ and |f(e)| < M|a:r| for some M > 0.
Hence, by a result of Monna ([3], Theorem 10) f(a), which is obviously
linear, is continuous on X,{z).

We now prove the main result:

THEOREM 3.2. f@_) = U K. {z).
07N g
Proof. Since a functional continuous in any topology will also be
continuous in a weaker topology, we infer that K,.(x) is contained in
K{z) for every r 0 in Ng. Thus

3.5) U K.{z> < K{z).

We have to prove the reverse inclusion. For this, let feK (w) be

given by f(a) :n;o CnGn, Where a = ) a,2". Then, by (2.4), there exists

n=0
& real number M > 0 such that |e,["" < M, n > 1. Since K is non-trivial
valued, we can find 7 0 in Nx such that 0 < M < r. Thus |e,[*" < r,
7> 1,reNg. Hence {|c,|[*"} is bounded and, by Lemma 3.2, feK,{(z).
Therefore '

(3.6) Ky < U E 4o
r5£0
(3.5) and (3.6) together yield the result.
In view of Lemma 3.2, Theorem 3.2 is, in fact, equivalent to Theorem
3.1 of [5] quoted at the end of Section 2. For, if feK{z), then feK,.(x)

for some (6 3 )reNg. Then, by Lemma 3.2, for aeK (@), a =D a,a",
fla) =n§;cnan and e /r" < %k for all ». Hence [cn|1’"<7c""rn=a.°nd is
bounded.

4. Application. We need the following concepts defined by In-
gleton [2].

Definition 4.1. A nest of (closed) spheres in K is a set of (closed)
spheres totally ordered by inclusion.

Defi.nition 4.2. A non-archimedean field is said to be spherically
complete if every nest of spheres in the field has a common point.

e ©
lm Space of entire functions 255

Definition 4.3. K is said to have Hahn-Banach property if, for
any normed space F over K, every linear functional defined on a subspace
of F has an extension of the same norm defined on the whole of F.

We also need the following theorem of Ingleton [2]:

THEOREM 4.1. A non-archimedean wvalued field has the Hahn-Banach
property if and only if it is spherically complete.

In the rest of this section we assume, that K is spherically complete.
Then the Hahn-Banach theorem for A {(z) can be stated as

THEOREM 4.2. Let S be a linear subspace of K {x). Let f(a) be a linear
Sfunctional defined and continuous (in the topology of K<{x>) on 8. Then
there is a functional F e K {x) such that F(a) = f(a) for ael.

Theorem 4.2 is a special case of a more general result of Monna
([4], p. 400)(1). The proof given below differs in details considerably from
that of the general result and is of independent interest as an application
of Theorem 3.2.

Proof. By Theorems 4.1 and 3.2 it is enough to prove that if f(a)
satisfies the conditions of the theorem, then it is continuous on § in the
topology of K,{x) for some r # 0 in Nx. This we prove as

LeMMA 4.1. Let 8 be a linear subspace of K{x). Let f(a) be a linear
fumctional defined and continuous on 8 in the topology of K{z). Then f(a)
is continuous on 8 in the topology of K,{z) for some r # 0 in Ng.

Proof. Suppose f(a) is not continuous on § regarded as subspace
of K,{#) for any » # 0 in Ng. Since K has a non-trivial valuation, there
exists a sequence {4;} in K such that |4;] — oo a8 ¢ — co. Then by Monna’s
results ([3], p. 1134-1135, Theorems 9 and 10), we can for each ¢ choose
an «; such that, given any M and 4;,

(4.1) 1f(a) > M|z |4l
Now let #;¢K be such that

1 1
4.2 0 G <— 1
(4.2) < M S T ]

+this being possible since the valuation of K is non-trivial. We put a; = toas.
Then |f(a;)| = [f(t:ei)| = 14:]1f(e3)]. Therefore, by (4.1) and (4.2), we have

(4.3) I (el > M (8] |z 1Al |«

(%) The author is grateful to Prof. Dr. A. F. Monna for having pointed out
this fact and for having kindly serutinized an earlier version of this paper.
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Now, we choose M such that M |%|ei:|A4l] >1. Hence, by (4.3),
[f(es)l > 1, and, by (4.2),
1
Jout [Ael] = [tal|as: [Al) < —.
|ass | = Itz 1l | <

This implies, by definition of |o;: |4;]| in (3.1) that

: 1 yn 1 -
Jag] < —IZ;'T, Jaa [ 144 §|'A—'Ij/77y nzl,
T
ie.
1
(4.4) laan M 14 < A (——)
144

Since |4;] — oo, we can assume that [4;] > 1 for all <. Then (4.4) gives
that |am|"" 14 <1, ie. |aw'" <1/|%] for each n>1. Thus we have

1yn

latgo] < - | <2 >1
ol <— a; — > 1.
0 MLJ b3 ‘mi =~ Mtl ) n

Therefore, by definition of |a;] in (2.2), |a;] < 1/|4;]. But 1/} -0
a8 4 — oo. Therefore |a;] -0 as ¢ - oco. On the other hand, |f(e;)| > 1,
i.e. f(a) is not continuous on § in the topology of K (). This proves the
result.

The author is indebted to the referee for correcting an error in an
earlier version of the paper and for pointing out that Theorem 3.2 is
equivalent to Theorem 3.1 of [5].
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An I'-algebra for algebraically irreducible semigroups *
by

JOHN G. BERGMAN and NEAL J. ROTHMAN (Urbana, Il.)

1.1. Introduction. This paper i another chapter in the theory of
I'-algebras of linearly quasi-ordered semigroups. Algebraically irreducible
commutative semigroups are known to be a special case of linearly quasi-
ordered semigroups, but the structure of the semigroup over an idem-
potent are in the decomposition space §/# is more amenable for the
algebraically irreducible semigroups (see Theorem 1.3). Adapting the work
of Lardy [4] on L'(a,d), where (a,.b) is an idempotent commutative
semigroup and using Lebesgue measure -on (e, b) we introduce a. measure
M on the algebraically irreducible semigroups § for which §/% is an
idempotent semigroup. We show that I8, M) is semisimple and that
the multiplicative linear functionals (maximal ideal space) of this algebra
is in one-to-one correspondence with the measurable semichardcters
on 8. We conclude the paper with some remarks as to the extension of the
results here to a wider class of linearly quasi-ordered semigroups. Our
work here was motivated by Lardy [4] and the remarks in Rothman [7]
about assigning measure zero to idempotent ares in §/%. The methods
of [6] and [7] are used. While the notation here is different, it is clear
that it is in agreement with that of [6] and [7] when passing from fune-
tions in L'(S, M) to the corresponding measures in M (8):

1.2. Definitions and basic theorems. In what follows, a semigroup S
is a Hausdorff topological space together with a continuous associative
multiplieation. We shall use 1 to denote the identity element, K to denote
the minimal ideal (which exists in § is compact [9]), and H to denote the
maximal subgroup of § with identity 1. ‘

A compact connected semigroup § is algebraically irreducible about
B < S it § contains no proper closed connected subsemigroup containing B.
In particular, a compact connected abelian semigroup with an identity
element, 1, algebraically irreducible about K o H will be called an A-T
semigroup [5]. We use the left equivalence of Green [2] defined for S

* The authors were supported in part by the NSF Grant GP 5370.
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