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Formal expansion of the product (z-+40)""(z—10)"" gives
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and so both real and imaginary parts are divergent except when n =y
and in this case the imaginary part is zero. We will, however, have
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and in particular when n =7
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Two renorming constructions related to a question of Anselone
by

V. KLEE (Seattle)*

To Professors S. Mazur and W. Orlics *
on ihe fortieth anniversary of their seientific research

INTRODUCTION

Let X denote a normed linear space and X™ its conjugate space.
For any point # of X let 2 denote the set of all points of X* conjugate
to @; that is, yea® if and only it yeX*, |yl = llzll, and <z, y> = |la|2.
Let us say that X has the A-property provided that for each totally
bounded subset T' of X, the restriction of ¢ to 7 admits a selection with
totally bounded range; that is, there is a function s on 7 to X* such that
8(t)et® for all teT and the set T is totally bounded. This property was
introduced by Anselone [1] in studing the total boundedness of sets
of linear operators into X. Plainly, every finite-dimensional X has the
A-property. Anselone [1] noted that X has the A-property if X* is uni-
formly rotund and asked whether all normed spaces have the A-property.
Here the question is resolved with the aid of an adaptation of a construction
of Mazur and Sternbach [4] by showing that

Bwery infinite-diménsional Banach space can be renormed so as to
lack the A-property.

On the other hand, the following problem is unsettled:

Can every Bamach space (or at least every separable one) be renormed
so as to have the A-property?

When X is complete the closure of any totally bounded subset of X
is compact. For the A-property it then suffices to assume that the function ¢
is single-valued and continuous or, equivalently, that the unit sphere
8 = {#: |jg| = 1} is Fréchet-smooth at each point. This is weaker than
uniform rotundity of X*, which is equivalent to uniform Fréchet-smooth-

* Research supported in part by the Office of Naval Research, U. S. A.
(NSF-GP-3579).
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ness of §. (See Mazur [3] and Day [2] for a general discussion of smoothness
of unit spheres and differentiability of norms.) It is I}atural to ask Whetl.ler
Gateaux-smoothness is sufficient. Here the question is resolved by showing
that

There is a renormed version of 12 which lacks the A-property even though
its unit sphere is everywhere Gateoum-smooth and is Fréchel-smooth except
at two points. .

Along with Phelps’s example [5] of a renormed version of I* whose
unit sphere is everywhere Gateaux-smooth but nowhere Fre_chet—smoo"ﬁh,
this is of interest in connection with Mazur’s question [3] concerning
the relationship between Fréchet-smoothness and Gateaux-smoothness.

The A-property fails in a very simple way for the spaces constructed
here. In each case there is a convergent sequence %, :cg,;... of Cpom’us
of the unit sphere such that |ly;—u;ll > % whenever y;eu;, ¥;ex;, and
i #]. . ‘

I am indebted for a helpful comment to Drs. E. Heil and P. Mani,

RENORMING SO AS TO LACK THE A-PROPERTY
Consider an arbitrary infinite-dimensional Banach space X and

let V be a (closed) hyperplane through the origin in X. We want to produce
a closed linear subspace W of V and infinite biorthogonal sequences

Wy, Wy ..., in W and fi,f3, ... in W* such that the following three con-
ditions are satisfied:

(1) the linear hull of {w,, w,,...} is dense in W;

(2) lwill = IIfi')] = <wi, fi'> =1 for all 4;

(3) {wg, 'Y =0  whenever ¢ #j.

Let § denote the unit sphere of ¥ for the original norm, and §* the
unit sphere of V*. Choose w,eS and use the Hahn-Banach theorem to
produce f;" e8* with (w, > = 1. Then proceed as follows. Having chosen
Wyy ooyt in S and fyy ..., fx in 8% so that (2) and (3) hold for all 4, j < n, let

L, = linear hull of {w,,...,w.},

My ={oeV: @ fi> = ... = @, i) =0}

As dim M, > dimL,, a theorem of Tikhomirov [6] guarantees the
existence of wy1e8 ~ M, such that the flat w,.,+ L, includes no point
of norm < 1. By the Hahn-Banach theorem there exists fn,eS* such
that (wp14 @, fury = 1 for all zeL,, and with this choice of w,.; and

e ©
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fas1 conditions (2) and (3) are satistied for all i, j < n+1. Thus by in-
duction there exist infinite sequences w,, w,, ... in § and fisfsy . in 8
satisfying (2) and (3). Let W be the closed linear hull of {w,,ws,,...}
and replace each f;' (without changing notation) by its restriction to W.
Then (1), (2), and (3) are satisfied. This construction is an adaptation
of one suggested by Mazur and Sternbach [4]. ’

Let &1, 65,... e a sequence of numbers with 0 < &< 27 and let
a 3{211510]9: M1| < &; for all 7;}
1

Let Uy denote the (closed) unit ball of ¥ for the original norm and
let

U=cleon(w+0) v Upo (—w—0)),

where w is & point of X ~ V. Then U is a bounded closed convex body
in X with U = —U and hence U is the unit ball for a new norm com-
patible with the original topology of X. Henceforth [l will denote this
new norm on X or subspaces of X, or conjugate norms induced by these.
Let py, thay ... be a sequence in J0, 1[ converging to 1 and let

4= (Zﬂkﬁkwk) +eiw;eC.

o)
Finally, let

@ = pi(w=+g;)+ (1— ps)w;e U.

. [e<]
The sequence @, @,, ... converges to the point w4 3 e,w,. We show
1

below that if y;eaf the restriction of y; to W is equal to f; . It then follows
from (2) and (3) that |y;—wll > 1 whenever i = j and thus the new
norm has the properties claimed for it.

Note that |lw|| = 1, that each point z of X admits a unique expression
in the form o = v(s)+f(@)w with v(z)eV and f() real, and that the
functional f belongs to X* with ||f] = 1. Since 0 = Uy, it is easily ver-
ified that U ~ V = Uy and hence |fwi| = [|f;'| = 1 in the new norm
as well as the old. For each ¢ the Hahn-Banach theorem guarantees the
existence of fieV* with f;' = fi and |fi| =1. Let f; = fiov, so that
fieX* with f;" < f; and [|f] =1, and let g; = (1—e&)f--f;. By routine
computation,

<+ gis g = {wiy > = 1,
while ‘
{wy,90 <1 for all se(w+C) v Up v (—w—0).
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Hence the set {zeX: <z, ¢;> = 1} is a supporting hyperplane of U
and the segment [w--q;, w;] Hes in the unit sphere S for the new norm.
In particular, 2;eS. Now consider an arbitrary member ¥; of #; and note

(4)

the U-maximum of y; is 1, attained at »; and hence also at w+g;
and w;.

From (4) it follows that the (w+ C)-maximum of y; is attained at
w+¢q;, whence the C-maximum of y; is attained at ¢;. This implies
(wj, yiy = Oforallj + i, for ¢; is the average of the points ¢; 4 (1 — u;) gw;
of C. It then follows from (1)-(3) that the restriction of y; to W is a mul-
tiple of f;'. By (4), however, the (Uy ~ W)-maximum of y;is 1, attained
at w;, whenee the restriction of y; to W is equal to f;' and the proof is
complete.

GATEAUX-SMOOTHNESS AND FRECHET-SMOOTHNESS

Recall that a real-valued function y on a normed space X is said
to be Gateawx-differentiable (weakly differentioble in the sense of Mazur
[3]) at a point z, provided that there exists a continuous linear funetional
feX* such that if

(5)

then lim ¢(x) = 0 for every ray R issuing from 0 in X. The function y
TeR, 20
is said to be Fréchet-differentiable (strongly differentiable in the sense of

Mazur [3]) at z, provided that there exists feX* with lim e(z) = 0.

xeX,x—0
For our present purposes it is convenient to work directly with smoothness
properties of sets rather than differentiability properties of functions.
Suppose that 2z, is a point of a subset Z of a normed linear space. A (closed)
hyperplane H is said to be a G-tangent of Z at z, provided that if

e(@) = (y(zo+2) — (20) —f(2)) Il

(6) o(h) = 3(h, Z) [|h— 2,
then lim o(h) = 0 for every ray R issuing from 0 in X; and H is an
heR, sz
F-tangent of Z at z, provided that lim o (k) = 0. (Here 6(k, Z) = int|h—2|,
hell, 2y 2eZ

the distance from the point & to the set Z). The set Z is said to be G-smooih
(or Gateaum-smooth) at 2z, provided that Z admits a unique G-tangent
at 2, and to be F-smooth (or Fréchei-smooth) ab 2, provided that Z admits
a unique F-tangent at z,.

THEOREM. Suppose that 2, is @ point of o convew subset Z of a normed
linear space X. Then Z is G-smooth at 2, if and only if there is a unique
hyperplane H supporting Z at z,. (H is then the G-tangent of Z ot 2,.) If
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Z has aw interior point p, then Z is G-smooth at 2y if and only if 2, is in the
boundary of Z and the gauge functional of Z relative to P 18 Gateaus-differ-
entiable ot z,. (The G-tangent of Z at 2, is then {z: f(z) =1}, where f is
as in (B).)

Proof. Assume for notational simplicity that z, = 0. Note that

(1) If a set Z is supported at 2, by a hyperplane H, then no other

hyperplane is a G-tangent of Z at z,.

To prove (7), let @ be an open halfspace which misses 8 and has
boundary H. Any hyperplane through 2, other than H includes a point ¢
of @ and hence contains the ray {ig: 1 > 0}. But then

o(Ag, 2) _ 6(Mq, H) _ d(g, H)

lig—zl = gl llgll

and the desired conclusion follows.

Now suppose that Z is G-smooth at 2,, whence there exists geX ~ {0}
and & >0 such that

(8) (4, Z)[lagll > &

for positive values of A arbitrarily close to 0. (Otherwise every hyperplane
through z, would be an F-tangent of Z at #,.) Suppose that Z is CONVeEX,
consider an arbitrary u > 0, and choose A¢]0, u[ such that (8) holds.
Then (A/u)Z = Z by convexity (for 0 = z,¢Z) and it follows that

S(ug, Z) _ 6(2g,(A|w)Z) _ é(ig, Z)

= e
Nl llAgl| gl

Hence the convex set Z is disjoint from the open convex cone
“L>Jo {peX: llo— pgl < elugl} = 10, ool {&: lo— gl < ellqll}
and the two convex sets are separated by a hyperplane. As any such
hyperplane supports Z at 2, it follows from (7) and the G-smoothness
of Z at %, that there is a unique hyperplane H supporting Z at z, and H
is the G-tangent of Z at z,.

Now suppose, conversely, that Z is convex and there is a unique
hyperplane H supporting Z abt #,. It follows from (7) that Z admits at
most one G-tangent ati z,. And H itself is such a tangent, for otherwise
the reasoning of the preceding paragraph applies to a point g of H ~ {z,}
and the resulting separating hyperplane contradicts the uniqueness
of H. It follows that Z is G-smooth at z,.

The remainder of the theorem follows from the well-known equi-
valence hbetween Gateaux-differentiability of gauge functionals and
uniqueness of supporting hyperplanes (Mazur [3], Day [2]).
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THEOREM. Suppose that 2, is a point of a convex subset Z of a normed
limear space X. Then Z is F-smooth at 2, if and only if one of the following
two conditions is satisfied:

(9) Z is contained in a hyperplane H and z, is interior to cl Z relative
to H;

cl Z has an interior point p, 2, is in the boundary of clZ, and the
gauge functional of clZ relative o p is Fréchel-differentiable at .

(10)

Proof. Suppose that Z is convex and F-smooth at 2y, let H be the
F-tangent of Z at 2,, and assume ags before that z, = 0. We claim that

if geX ~ H and if fy, fa,... is a sequence in X* with fu(g) >0
and ||fall —1 a8 # — oo, then lim inf(sup f,Z) > 0.
Ner00

(11)

Indeed, from f,(g) >0 and |f.] =1 it follows that the norm of
fa's restriction to H converges to 1 as # — oo; hence there is a sequence
hyy by, ... in H such that [k, =1 and f,(h,) - 1. Now for each 1 >0,

8(Alny Z) > f(Ahg)— SUDfuZ

for all n, and if the limit inferior of supf,Z is 0 there exists n(4) such
that 8(Ahnm Z) > A[2. This contradicts the fact that H is an F-tangent
of Z at z,.

Now suppose that Z is not contained in H and choose qeZ ~ IH.
Then the point ¢/2 is interior to ¢l Z. For, if not, ¢/2 is the limit of a se-
quence P;, Ps, ... in X ~clZ, and by a standard separation theorem
there is a sequence f,, fy, ... in X" such that ||f,]| = 1 and supfnZ << fu(pa).
Sinee

fa(a/2) = $7u(9) < fa(@) < fn(Pn)

and fu(pa) = fa(q/2), it follows that fa(g) — 0, fu(pa) =0, and (11) is
contradicted. Hence g/2<intcl Z. A similar but simpler argument, also
based on (11), shows that if Z < H, then ¢, is interior to ¢l Z relative
to H. .

The preceding two paragraphs show that if Z is F-smooth at z,
then (9) holds or clZ has non-empty interior. Plainly, (9) implies the
F-smoothness of Z at 2, and the latter implies 2, is a boundary point
of Z. To complete the proof it suffices to show that if 2, i8 a boundary
point and p an interior point of a closed convex body Z, then Z iy F-smooth
at 2, if and only if the gauge-functional y of Z relative to p is Fréchet-

differentiable at 2,; in doing this we assume for notational convenience
that p = 0.
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Suppose first that y is Fréchet-differentiable ab 2. Let f and ¢ be
as in (5) and let H = {z: f(x) = 1}, the unique supporting hyperplane
of Z at z,. For heH we have y(h) > 1 and hily(h)eZ, whence

() = 20 2) _Wh=hpy W] _ y(B)—y(z) [l
h—zoll = [h—2 lk—z2ll  »(h)
Fh—z) ||
= g(h—zy) - L0 .
S ey N1

But f(k) =f(2) for heH, and e(h—2) =0, bl = [z, and y(h)
> (%) a8 b —>2,. Hence o(h) -0 as & —>2%, and Z iy F-smooth at z,.

Now suppose, conversely, that Z is F-smooth at 2y, let H be the unique
hyperplane supporting Z at z,, and let feX* with H — {z: f(z) =1}.
Defining ¢ by (5), we want to show

(12) () >0 as x—0.

For each point & of X, let vw(z) = s—f(z)2,, whence flo(@) =o.
As X is both algebraically and topologically the direct sum of the hyper-
plane {z: f(x) = 0} and the line {x: v(z) = 0}, there is a finite M such
that

(13) (Il @)1+ 1If (@)D flleell < M
Note also that

(14)

for all 2eX ~ {0}.

f<vy,

for this inequality plainly holds on H, while f is homogeneous and y is
non-negative and positively homogeneous. For all # such that f(z) >0 ,
it is a consequence of (13), (14), the positive homogeneity and subaddi-
tivity of y, and the fact that y(e)) = 1 = f(z,), that

0< e(w) = y(’l)(m) +f(@) 204 zo)_')’(zo)_f(”(w) ‘|“f(w)zo)
- ll]
y('u(w)+z0)-—y(z0)—-f(w(a?))_ flo (@) [l (@)l +11f () ol
o ()l llo (@)l + {1 f (@) voll [l]|

=

< Me(v(2)).

Since v(x) -~ 0 as @ —0, it therefore suffices in proving (12) to
consider those @ for which f(x) = 0. For each such =, choose z(x) in the
boundary of Z such that

llzo+2—2(2)]| < 26(20+2, Z);
note that z,+z<H and hence, by F-smoothness,

(15) lleo+2—2(@)|/l2] >0 as z — 0.
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By the subadditivity of v,
y (@) — y(2(0)— 20— ) < v (50 +2) <ple(@) +¥ (2t o—2(0).
As y(2) =1 = y(2(z)) and f(z) =0, it follows from the definition
(5) that
(16) —y(2(@)—2—a) < |z e(2) < y{e(@)—2,—a)

Being convex and continuous, y is majorized by a multiple of || ||,
whenee it follows from (15) and (16) that ¢(2) — 0 as # — 0. This completes
the proof of the theorem.

The following is an immediate consequence of the preceding two
theorems:

COROLLARY. If a comver set Z is F-smooth at a point 2,, then it is also
G-smooth at 2.

Note that the corollary does not apply to all sets Z. Indeed, let Z’
be a convex set which has ab #, a unique G-tangent H' but no F-tangent,
and let Z" be a convex set which has at 2, a unique F-tangent H'’ different
from H'. Then the set Z' w Z" is F-smooth at 2, but it is not G-smooth,
for both H' and H'' are G-tangents of Z' v Z" at 2.

A set Z is said to be G-smooth [resp. F-smooth] at a subset Z, of Z
provided that it is G-smooth [resp. F-smooth] at each point of Z,. And Z
is said to be wuniformly F-smooth i Z, provided that Z admits a unique
F-tangent H(z,) at each point z, of Z, and there exists & such that

(17) & is a function on ]0, oo to 0, oo with limI EA)y =0
AT

and for all zneZO and heH(z,) it is true that

(18) 8(k, 2) < &(Ih—zoll) lh— 2]

This situation is also described by saying that Z is &-smooth at Zy.

TesoREM. Suppose that Z is a weakly compact subset of a Banach
.space, C = cl con Z, and H is a hyperplane supporting C. Then G-smoothness
or uniform F-smoothness of Z at Z ~ H implies that of C at O~ H.

Proof. By Phillips’ version of a theorem of Krein (see [2], p. 0B),
the set C is weakly compact and hence of course 0 ~ I is weakly compact.
By the Krein-Milman theorem, ¢ ~ H is the closed convex hull of its
extreme points. Bach extreme point of 0 ~ H is an extreme point of C
and hence, by Milman’s theorem, belongs to Z. It follows then that
0~ H =cleon(Z ~ H). It C is not G-smooth at ¢ ~ H there is o point
of ¢ ~ H which lies on another supporting hyperplane H' of C. Relative
to H, H' ~ H is a supporting hyperplane of ¢ ~ H and the preceding
reasoning shows

O~H ~H=clcon(Z~H ~ H).
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In particular, H' ~ H includes a point 2, of Z and Z is supported
at 2, by both H" and H. This contradiets the assumption that Z is G-smooth
at Z ~ H.

Now suppose that Z is uniformly F-smooth at Z ~ H and let & be
as above. Since Z is supported by H at each point of Z ~ H, and since
F-smoothness implies G-smoothness, the H (z,) above (in the definition
of uniform F-smoothness) is in fact equal to H for all %0¢Z ~ H. To show
that O is uniformly F-smooth at ¢ ~ H we show

(19) (ks O) < &(lIh— el lIh— o]+ 2e

for all ¢peC ~ H, hell, and ¢>0. As 0 ~ H = cleon (% ~ H), there

are Points 2, ..., 2 of Z ~ II and positive numbers u,, ..., g, such that
n

(20) D=1,

i 1 n

(21) leo— X e | < e.

1

Since 2+ h—eyeH, it follows from (18) (with the roles of % and z,
in (18) played by &+ h—o¢, and 2; respectively) that

0(2+h— o, Z) < E(Ih—coll) Il — ol
and hence there exists wyeZ such that
(22) llez+ 7o — o —t0xll < &([Ih~ eoll) [ — coll +-&.
Now use (20), (21), and (22) to show that

n
“7L~Zﬂkwkl
1

< Hh*- an.uhwk—co-l- jﬂk%“ +e
1 1

n
< D plle+ =y — 1w+ & < o(lh— eoll) [ — 6ol| +-2¢,
1

n
whenee (19) follows from the fact that ) uw;eC.
1

A SMOOTH RENORMING OF HILBERT SPACE WHICH LACKS THE A-PROPERTY

We now proceed with the promised renorming of 12, whose points
. o0
. 2
are Sequences & = (&, &y, &, ...) of real numbers with > af < co. The

0
new norm is described in detail but the proof that it has the stated prop-
erties is given somewhat sketchily, for several of its steps are routine.
Let the hyperplane {@wel®: #, = 0} be denoted by V, its unit ball and


GUEST


240 V. Klee

unit sphere by -Up and Sy respectively. For- each bounded .sequel‘lce
a = (ag, a ) of real numbers, let T, denote the linear transformation
- 1y P29 o

of V into V given by
To(m) = (0, ayy, assy...) (V)5

it is a self-homeomorphism of ¥ if inf|ay| > 0. For each i¢[—1,1] and

for each sequence 4 = (1, 7, -..) of even functions on [—1, 1] to [0,1]
with »;(0) = 1 for all 4, let 5() = (n:(4), na(4), ...). Then let

U, = U A6+ Ty Up, 8, = U 15()»[—1',1(;,)81-,

! 141<t 141

U = clcon Uy, 8 = boundary of U.

(Here 6, = (1,0,0,...).) As U is a bounded closed convex body in .Zﬂ
with U = — U, U and § are respectively the unit 1)&%1 and 1;]10‘ 1'11111:
sphere of I* with respect to a mew norm compatible with the original
topology. Note that dyeS. If n:(4) = Y1—i2 for all i and A, then S =8,
8 is the usual unit sphere of 12, and § is uniformly F-smooth. We shall
describe a sequence 7, 7;, ... for which the resulting § is G-smooth bus
not F-smooth at 8, and — &,, is F-smooth at all other points (in fact,
uniformly F-smooth at every closed subset of 8§ ~ {d,, —do}), and yet
the renormed version of I2 lacks the A-property.

Let &y, €5, ... be a sequence in J0, ; [converging to 0 and let »,, M2y o
be even functions on [0,1] to [0,1] such that the following conditions
are satisfied:

(23) i continuous and concave, with 7;(0) = 1, 5{l— &) = 2¢,

and #;(1) = 0; , ,
(24) ;i differentiable on [0, 1], With #;(0) = 0 and #i(1—&) = —1;
(25) 7 has a vertical tangent at 1; that is, }il;ri N4 (A) == —o0.

As #; is strietly positive on [0, 1[, it follows that
Uy ={—3, &} v {mel®: |og] <1 and 3 (m/mu(ay))? < 1}
1

and from this that the set U, is weakly closed. Hence U, is weakly compact
and it follows that
(26) ‘ ' U~ H =clecon(U, ~H)
for ievery supporting hyperplane H of U. In particular,
Un(£a+V) ={+a}

and it follows from (25) that U, and U are both G-smooth at 8y and — 4.
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The remainder of the proof requires an examination of the intersee-
tions of S, with the various planes (2-flats) through the line L = {Ad,:
—oo < A < oo} and with the various hyperplanes parallel to 7. Consider,
for an arbitrary seS;, the intersection of 8, with the halfplane P, = L
+ [0, oofs. It is B ’ .

{28, +75(4)s: Al <1},
where 7;(4-1) = 0 and for |A| < 1 the number 75(4) is the positive solution
. d

of » (rs(}»)sk/ﬂyk(l))2 = 1; that i,
1
(27) 75 = (Zs,iy;,;ﬂ)“”z on ]—1, 1].
. 1

Fixing our attention on an arbitrary number Ze]O, 1[, we claim

(28)  the derivatives 7;, for seSy, exist and are equicontinuous on

-2, 21.
To verify (28), let ¢; = 75" = Y'siyi®. It follows from (24) and (25)
1

that on ]—2, A[ the functions N1y Moy +.. AT equiconﬁhuous and uniformly
bounded away from both 0 and oo, and the derivatives Ny Tgy ... AT
equicontinuous and uniformly bounded. Hence os is differentiable and

o0
e = —2 ) sty
1

whence the functions g, are equicontinuous for seSp. Then (28) follows
from the fact that =, = —}o7*ps. A consequence of (28) is

(29) the curves z,, for seSy, are equi-F-smooth on 1—17, I[;

more specifically, there is a function £ satisfying (17) such that each curve
7y 18 £-smooth (relative to the plane containing P;) at each point 18, +1,(1)s
with |1| < 2. Note also that

(80 the “spheres” T8y, for |1| <%, are equi-F-smooth;
(%) ;

this smoothness (relative to V) follows from the fact that Sy is uniformly
F-smooth and the linear homeomorphisms Ty, for 2] < 7, are uniformly
bounded with uniformly bounded inverses.

To establish the F-smoothness of § at each point pof 8 ~ {8y, — 4},
note that by (29) and (30) there is a unique hyperplane H supporting
8 at p. From U's weak compactness, the G-smoothness of U at -4 4,,
and the fact that U ~ (& 6,+7V) = {40}, there follows the existence
of 7¢]0,1[ such that

HAUc {z:iz) < 1},
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The uniform F-smoothness of § at H then follows from (29), (30),
and the last theorem of the preceding section.

Tt remains only to show that the renormed version of 12 lacks the
A-property. For 0 < < oo, let §; denote the point of I2 such that 6, =
or 0 according as j = ¢ or j # i; let o7 denote the same point considered
as a member of the conjugate space (I2)*. Note that for ¢ =1,2, ..
and for |[A] <1, any hyperplane in ¥V parallel to the hyperplane
Vi = {meV:a; = 0} is carried onto such a parallel hyperplane by the
transformation T,;. Note also that zs = 4. Since #; is concave, and
since Sy is supported at &; in V by a translate of V, it follows that U
is supported at the point Ad,+41:(4)d; by a hyperplane which containg
a translate of V; and also contains the tangent to ; at this point. In
particular (using (23) and (24)), with @; = (1—g) 8+ 26:6;¢8 and {y;)
= o} relative to the new norm || [, we have

Yo = (1—3e)) " (6] — ).

As &e]0,3[ and as Oy, Oy, ... 8 it follows that |ly;—uyll >3 for
i #j. But of course @y, ®,,... = &;, so the proof iy complete.
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A construction of basis in ¢ (I?)
by

Z. CIESIELSKI (Gdadsk)

The sequence {wn, n = 1,2, ...} of elements of a given real Banach
space [X, |[|| ]is called basis in X whenever each z<X has unique, con-
vergent in the norm |||, expansion

0
wzzaﬂwﬂ«

=1

with real coefficients a,, a,,... It is well known that the coefficients
@n = (%) are linear functionals over [X, || |]] and they are called coeffi-
cient functionals for the basis {w,}.

- There were two examples of seperable Banach spaces mentioned
in the Banach monograph [1] (p. 238) for which it was not known how
to construct bases. One of the examples is the space A of holomorphie
functions in the interior and continuous on the boundary of the unit
dise with uniform norm. The second example is the space OW(I%),
I =<0,1}, of all functions with continuous partial derivatives of the
first order on I* with the norm

I = lal] + | D, 2| + | D, 2l
where
o] = max{ja(s, ?)]: s, 11"},

a 0%
Dyxz(s, t) = (¢,%) and .Dzm(s,t)=~6?(s,t).

2
0s

The aim of thif paper is to give an effective construction of a basis
in the Banach space [0N(I®), | V] Tt follows immediately from the
construction that this result can be extended to the case of 0™ (I™) with
arbitrary » > 1.

The construction depends heavily on the properties of the Franklin
orthonormal system {f,,n =0,1,...}. )

To define the orthonormal Franklin system we need to recall the
definition of the Schauder functions: s, = 1, s,() =1 for tel, and for
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