STUDIA MATHEMATICA, T. XXXIII. (1969)

Formal expansion of the product $(x+i0)^{-n}(x-i0)^{-r}$ gives

$$\begin{split} \left\{ x^{-n} + \frac{i\pi(-1)^n}{(n-1)!} \, \delta^{(n-1)} \right\} \left\{ x^{-r} - \frac{i\pi(-1)^r}{(r-1)!} \, \delta^{(r-1)} \right\} \\ &= \left\{ x^{-n} x^{-r} + \frac{\pi^2(-1)^r}{(n-1)!(r-1)!} \, \delta^{(n-1)} \, \delta^{(r-1)} \right\} + \\ &+ i\pi \left\{ \frac{(-1)^n}{(n-1)!} \, \delta^{(n-1)} x^{-r} - \frac{(-1)^r}{(r-1)!} \, \delta^{(r-1)} x^{-n} \right\} \end{split}$$

and so both real and imaginary parts are divergent except when n=r and in this case the imaginary part is zero. We will, however, have

$$2x^{-n}x^{-r} + \frac{2i\pi(-1)^n}{(n-1)!} \delta^{(n-1)}x^{-r} - (x+i0)^{-n}(x-i0)^{-r}$$

$$= x^{-n-r} + \frac{i\pi(-1)^{n+r}}{(n+r-1)!} \delta^{(n+r-1)}$$

and in particular when n = r

$$2(x^{-n})^2 - (x+i0)^{-n}(x-i0)^{-n} = x^{-2n}.$$

References

I. M. Gelfand and G. E. Shilov, Generalised functions, Vol. I, 1964.
 J. Mikusiński, On the square of the Dirac delta-distribution, Bull. Acad.
 Polon. Sci., Sér. sci. math., astr. et phys., 14 (1966), p. 511-513.

Reçu par la Rédaction le 28. 8. 1968

Two renorming constructions related to a question of Anselone

b:

V. KLEE (Seattle)*

To Professors S. Mazur and W. Orlicz on the fortieth anniversary of their scientific research

INTRODUCTION

Let X denote a normed linear space and X^* its conjugate space. For any point x of X let x^c denote the set of all points of X^* conjugate to x; that is, $y \, \epsilon \, x^c$ if and only if $y \, \epsilon \, X^*$, $\|y\| = \|x\|$, and $\langle x, y \rangle = \|x\|^2$. Let us say that X has the A-property provided that for each totally bounded subset T of X, the restriction of c to T admits a selection with totally bounded range; that is, there is a function s on T to X^* such that $s(t) \, \epsilon \, t^c$ for all $t \, \epsilon \, T$ and the set $s \, T$ is totally bounded. This property was introduced by Anselone [1] in studing the total boundedness of sets of linear operators into X. Plainly, every finite-dimensional X has the X-property. Anselone [1] noted that X has the X-property if X^* is uniformly rotund and asked whether all normed spaces have the X-property. Here the question is resolved with the aid of an adaptation of a construction of Mazur and Sternbach [4] by showing that

Every infinite-dimensional Banach space can be renormed so as to lack the A-property.

On the other hand, the following problem is unsettled:

Can every Banach space (or at least every separable one) be renormed so as to have the A-property?

When X is complete the closure of any totally bounded subset of X is compact. For the A-property it then suffices to assume that the function c is single-valued and continuous or, equivalently, that the unit sphere $S=\{x\colon \|x\|=1\}$ is Fréchet-smooth at each point. This is weaker than uniform rotundity of X^* , which is equivalent to uniform Fréchet-smooth-

^{*} Research supported in part by the Office of Naval Research, U. S. A. (NSF-GP-3579).

ness of S. (See Mazur [3] and Day [2] for a general discussion of smoothness of unit spheres and differentiability of norms.) It is natural to ask whether Gateaux-smoothness is sufficient. Here the question is resolved by showing that

There is a renormed version of l^2 which lacks the A-property even though its unit sphere is everywhere Gateaux-smooth and is Fréchet-smooth except at two points.

Along with Phelps's example [5] of a renormed version of l^1 whose unit sphere is everywhere Gateaux-smooth but nowhere Frechet-smooth, this is of interest in connection with Mazur's question [3] concerning the relationship between Fréchet-smoothness and Gateaux-smoothness.

The A-property fails in a very simple way for the spaces constructed here. In each case there is a convergent sequence x_1, x_2, \ldots of points of the unit sphere such that $||y_i - y_j|| > \frac{1}{2}$ whenever $y_i \in x_i^c, y_j \in x_j^c$, and $i \neq j$.

I am indebted for a helpful comment to Drs. E. Heil and P. Mani.

RENORMING SO AS TO LACK THE A PROPERTY

Consider an arbitrary infinite-dimensional Banach space X and let V be a (closed) hyperplane through the origin in X. We want to produce a closed linear subspace W of V and infinite biorthogonal sequences w_1, w_2, \ldots , in W and f_1'', f_2'', \ldots in W^* such that the following three conditions are satisfied:

(1) the linear hull of
$$\{w_1, w_2, ...\}$$
 is dense in W ;

(2)
$$||w_i|| = ||f_i''|| = \langle w_i, f_i'' \rangle = 1$$
 for all i ;

(3)
$$\langle w_i, f'' \rangle = 0$$
 whenever $i \neq j$.

Let S denote the unit sphere of V for the original norm, and S^* the unit sphere of V^* . Choose $w_1 \in S$ and use the Hahn-Banach theorem to produce $f_1'' \in S^*$ with $\langle w, f'' \rangle = 1$. Then proceed as follows. Having chosen w_1, \ldots, w_n in S and f_1'', \ldots, f_n'' in S^* so that (2) and (3) hold for all $i, j \leq n$, let

$$L_n = \text{linear hull of } \{w_1, \ldots, w_n\},$$

$$M_n = \{x \in V : \langle x, f_1'' \rangle = \ldots = \langle x, f_n'' \rangle = 0\}.$$

As dim $M_n > \dim L_n$, a theorem of Tikhomirov [6] guarantees the existence of $w_{n+1} \epsilon S \cap M_n$ such that the flat $w_{n+1} + L_n$ includes no point of norm < 1. By the Hahn-Banach theorem there exists $f''_{n+1} \epsilon S^*$ such that $\langle w_{n+1} + x, f''_{n+1} \rangle = 1$ for all $x \epsilon L_n$, and with this choice of w_{n+1} and

 $f_{n+1}^{"}$ conditions (2) and (3) are satisfied for all $i, j \leq n+1$. Thus by induction there exist infinite sequences w_1, w_2, \ldots in S and $f_1^{"}, f_2^{"}, \ldots$ in S^* satisfying (2) and (3). Let W be the closed linear hull of $\{w_1, w_2, \ldots\}$ and replace each $f_i^{"}$ (without changing notation) by its restriction to W. Then (1), (2), and (3) are satisfied. This construction is an adaptation of one suggested by Mazur and Sternbach [4].

Let $\varepsilon_1, \varepsilon_2, \ldots$ be a sequence of numbers with $0 < \varepsilon_i < 2^{-i}$ and let

$$C = \Big\{ \sum_{1}^{\infty} \lambda_k w_k \colon |\lambda_i| \leqslant \varepsilon_i \text{ for all } i \Big\}.$$

Let \mathcal{U}_V denote the (closed) unit ball of V for the original norm and let

$$U = \operatorname{cl} \operatorname{con} ((w+C) \cup U_{V} \cup (-w-C)),$$

where w is a point of $X \sim V$. Then U is a bounded closed convex body in X with U = -U and hence U is the unit ball for a new norm compatible with the original topology of X. Henceforth $\|\cdot\|$ will denote this new norm on X or subspaces of X, or conjugate norms induced by these. Let μ_1, μ_2, \ldots be a sequence in]0, 1[converging to 1 and let

$$q_i = \left(\sum_{k \neq i} \mu_k \, \varepsilon_k w_k\right) + \varepsilon_i w_i \, \epsilon \, C.$$

Finally, let

$$x_i = \mu_i(w+q_i) + (1-\mu_i)w_i \in U.$$

The sequence x_1, x_2, \ldots converges to the point $w + \sum_{1}^{\infty} \varepsilon_k w_k$. We show below that if $y_i \in x_i^c$ the restriction of y_i to W is equal to $f_i^{\prime\prime}$. It then follows from (2) and (3) that $||y_i - y_j|| \ge 1$ whenever $i \ne j$ and thus the new norm has the properties claimed for it.

Note that $\|w\|=1$, that each point x of X admits a unique expression in the form x=v(x)+f(x)w with $v(x)\in V$ and f(x) real, and that the functional f belongs to X^* with $\|f\|=1$. Since $C\subset U_V$, it is easily verified that $U\cap V=U_V$ and hence $\|w_i\|=\|f_i''\|=1$ in the new norm as well as the old. For each i the Hahn-Banach theorem guarantees the existence of $f_i'\in V^*$ with $f_i''\subset f_i'$ and $\|f_i'\|=1$. Let $f_i=f_i'\circ v$, so that $f_i\in X^*$ with $f_i''\subset f_i$ and $\|f_i\|=1$, and let $g_i=(1-\varepsilon_i)f+f_i$. By routine computation,

$$\langle w+q_i, g_i \rangle = \langle w_i, g_i \rangle = 1,$$

while

$$\langle x, g_i \rangle \leqslant 1$$
 for all $x \in (w+C) \cup U_V \cup (-w-C)$.

Hence the set $\{x \in X : \langle x, g_i \rangle = 1\}$ is a supporting hyperplane of U and the segment $[w+q_i, w_i]$ lies in the unit sphere S for the new norm. In particular, $x_i \in S$. Now consider an arbitrary member y_i of x_i^c and note

(4) the *U*-maximum of y_i is 1, attained at x_i and hence also at $w+q_i$ and w_i .

From (4) it follows that the (w+C)-maximum of y_i is attained at $w+q_i$, whence the C-maximum of y_i is attained at q_i . This implies $\langle w_j, y_i \rangle = 0$ for all $j \neq i$, for q_i is the average of the points $q_i \pm (1-\mu_i) \, \epsilon_i w_j$ of C. It then follows from (1)-(3) that the restriction of y_i to W is a multiple of $f_i^{r'}$. By (4), however, the $(U_V \cap W)$ -maximum of y_i is 1, attained at w_i , whence the restriction of y_i to W is equal to $f_i^{r'}$ and the proof is complete.

GATEAUX-SMOOTHNESS AND FRÉCHET-SMOOTHNESS

Recall that a real-valued function γ on a normed space X is said to be *Gateaux-differentiable* (weakly differentiable in the sense of Mazur [3]) at a point z_0 provided that there exists a continuous linear functional $f \in X^*$ such that if

(5)
$$\varepsilon(x) = \left(\gamma(z_0 + x) - \gamma(z_0) - f(x)\right) / ||x||,$$

then $\lim_{x \in R, x \to 0} \varepsilon(x) = 0$ for every ray R issuing from 0 in X. The function γ is said to be $Fr\acute{e}chet$ -differentiable (strongly differentiable in the sense of Mazur [3]) at z_0 provided that there exists $f \in X^*$ with $\lim_{x \in X, x \to 0} \varepsilon(x) = 0$.

For our present purposes it is convenient to work directly with smoothness properties of sets rather than differentiability properties of functions. Suppose that z_0 is a point of a subset Z of a normed linear space. A (closed) hyperplane H is said to be a G-tangent of Z at z_0 provided that if

(6)
$$\sigma(h) = \delta(h, Z) / ||h - z_0||,$$

then $\lim_{h\in R,h\to z_0}\sigma(h)=0$ for every ray R issuing from 0 in X; and H is an F-tangent of Z at z_0 provided that $\lim_{h\in H,h\to z_0}\sigma(h)=0$. (Here $\delta(h,Z)=\inf_{z\in Z}\|h-z\|$, the distance from the point h to the set Z). The set Z is said to be G-smooth (or Gateaux-smooth) at z_0 provided that Z admits a unique G-tangent at z_0 and to be F-smooth (or Fréchet-smooth) at z_0 provided that Z admits a unique G-tangent at G0.

THEOREM. Suppose that z_0 is a point of a convex subset Z of a normed linear space X. Then Z is G-smooth at z_0 if and only if there is a unique hyperplane H supporting Z at z_0 . (H is then the G-tangent of Z at z_0 .) If

Z has an interior point p, then Z is G-smooth at z_0 if and only if z_0 is in the boundary of Z and the gauge functional of Z relative to p is Gateaux-differentiable at z_0 . (The G-tangent of Z at z_0 is then $\{x: f(x) = 1\}$, where f is as in (5).)

Proof. Assume for notational simplicity that $z_0 = 0$. Note that

(7) If a set Z is supported at z₀ by a hyperplane H, then no other hyperplane is a G-tangent of Z at z₀.

To prove (7), let Q be an open halfspace which misses S and has boundary H. Any hyperplane through z_0 other than H includes a point q of Q and hence contains the ray $\{\lambda q \colon \lambda > 0\}$. But then

$$\frac{\delta(\lambda q, Z)}{\|\lambda q - z_0\|} \geqslant \frac{\delta(\lambda q, H)}{\|\lambda q\|} = \frac{\delta(q, H)}{\|q\|} > 0$$

and the desired conclusion follows.

Now suppose that Z is G-smooth at $z_0,$ whence there exists $q \, \epsilon \, X \, \sim \{0\}$ and $\varepsilon > 0$ such that

$$\delta(\lambda q, Z)/\|\lambda q\| > \varepsilon$$

for positive values of λ arbitrarily close to 0. (Otherwise *every* hyperplane through z_0 would be an F-tangent of Z at z_0 .) Suppose that Z is convex, consider an arbitrary $\mu>0$, and choose $\lambda \in]0$, $\mu[$ such that (8) holds. Then $(\lambda/\mu)Z \subset Z$ by convexity (for $0=z_0 \in Z$) and it follows that

$$rac{\delta(\mu q,Z)}{\|\mu q\|} = rac{\delta(\lambda q,(\lambda/\mu)Z)}{\|\lambda q\|} \geqslant rac{\delta(\lambda q,Z)}{\|\lambda q\|} > arepsilon.$$

Hence the convex set Z is disjoint from the open convex cone

$$\bigcup_{\mu>0}\left\{x\,\epsilon\,X\colon\,\|x-\mu q\|<\varepsilon\,\|\mu q\|\right\}=\,\left]0\,,\,\infty\left[\,\left\{x\colon\,\|x-q\|<\varepsilon\,\|q\|\right\}\right.$$

and the two convex sets are separated by a hyperplane. As any such hyperplane supports Z at z_0 , it follows from (7) and the G-smoothness of Z at z_0 that there is a unique hyperplane H supporting Z at z_0 and H is the G-tangent of Z at z_0 .

Now suppose, conversely, that Z is convex and there is a unique hyperplane H supporting Z at z_0 . It follows from (7) that Z admits at most one G-tangent at z_0 . And H itself is such a tangent, for otherwise the reasoning of the preceding paragraph applies to a point q of $H \sim \{z_0\}$ and the resulting separating hyperplane contradicts the uniqueness of H. It follows that Z is G-smooth at z_0 .

The remainder of the theorem follows from the well-known equivalence between Gateaux-differentiability of gauge functionals and uniqueness of supporting hyperplanes (Mazur [3], Day [2]).

THEOREM. Suppose that z_0 is a point of a convex subset Z of a normed linear space X. Then Z is F-smooth at z_0 if and only if one of the following two conditions is satisfied:

- (9) Z is contained in a hyperplane H and z₀ is interior to cl Z relative to H;
- (10) cl Z has an interior point p, z₀ is in the boundary of cl Z, and the gauge functional of cl Z relative to p is Fréchet-differentiable at z₀.

Proof. Suppose that Z is convex and F-smooth at z_0 , let H be the F-tangent of Z at z_0 , and assume as before that $z_0 = 0$. We claim that

(11) if $q \in X \sim H$ and if f_1, f_2, \ldots is a sequence in X^* with $f_n(q) \to 0$ and $||f_n|| \to 1$ as $n \to \infty$, then $\lim_{n \to \infty} \inf(\sup f_n Z) > 0$.

Indeed, from $f_n(q) \to 0$ and $||f_n|| \to 1$ it follows that the norm of f_n 's restriction to H converges to 1 as $n \to \infty$; hence there is a sequence h_1, h_2, \ldots in H such that $||h_n|| = 1$ and $f_n(h_n) \to 1$. Now for each $\lambda > 0$,

$$\delta(\lambda h_n, Z) \geqslant f(\lambda h_n) - \sup f_n Z$$

for all n, and if the limit inferior of $\sup f_n Z$ is 0 there exists $n(\lambda)$ such that $\delta(\lambda h_{n(\lambda)}, Z) > \lambda/2$. This contradicts the fact that H is an F-tangent of Z at z_0 .

Now suppose that Z is not contained in H and choose $q \in Z \sim H$. Then the point q/2 is interior to cl Z. For, if not, q/2 is the limit of a sequence p_1, p_2, \ldots in $X \sim \operatorname{cl} Z$, and by a standard separation theorem there is a sequence f_1, f_2, \ldots in X^* such that $||f_n|| = 1$ and $\sup f_n Z < f_n(p_n)$. Since

$$f_n(q/2) = \frac{1}{2}f_n(q) < f_n(q) < f_n(p_n)$$

and $f_n(p_n) \to f_n(q/2)$, it follows that $f_n(q) \to 0$, $f_n(p_n) \to 0$, and (11) is contradicted. Hence $q/2 \in I$ a similar but simpler argument, also based on (11), shows that if $Z \subset H$, then z_0 is interior to cl Z relative to H.

The preceding two paragraphs show that if Z is F-smooth at z_0 , then (9) holds or cl Z has non-empty interior. Plainly, (9) implies the F-smoothness of Z at z_0 and the latter implies z_0 is a boundary point of Z. To complete the proof it suffices to show that if z_0 is a boundary point and p an interior point of a closed convex body Z, then Z is F-smooth at z_0 if and only if the gauge-functional γ of Z relative to p is F-séchet-differentiable at z_0 ; in doing this we assume for notational convenience that p=0.

Suppose first that γ is Fréchet-differentiable at z_0 . Let f and ε be as in (5) and let $H = \{x \colon f(x) = 1\}$, the unique supporting hyperplane of Z at z_0 . For $h \in H$ we have $\gamma(h) \ge 1$ and $h/\gamma(h) \in Z$, whence

$$\begin{split} \sigma(h) &= \frac{\delta(h,Z)}{\|h-z_0\|} \leqslant \frac{\|h-h/\gamma(h)\|}{\|h-z_0\|} = \frac{\gamma(h)-\gamma(z_0)}{\|h-z\|} \frac{\|h\|}{\gamma(h)} \\ &= \varepsilon(h-z_0) + \frac{f(h-z_0)}{\|h-z_0\|} \frac{\|h\|}{\gamma(h)}. \end{split}$$

But $f(h) = f(z_0)$ for $h \in H$, and $\varepsilon(h - z_0) \to 0$, $||h|| \to ||z_0||$, and $\gamma(h) \to \gamma(z_0)$ as $h \to z_0$. Hence $\sigma(h) \to 0$ as $h \to z_0$ and Z is F-smooth at z_0 . Now suppose, conversely, that Z is F-smooth at z_0 , let H be the unique hyperplane supporting Z at z_0 , and let $f \in X^*$ with $H = \{x : f(x) = 1\}$. Defining ε by (5), we want to show

(12)
$$\varepsilon(x) \to 0 \quad \text{as } x \to 0$$

For each point x of X, let $v(x) = x - f(x)z_0$, whence f(v(x)) = 0. As X is both algebraically and topologically the direct sum of the hyperplane $\{x\colon f(x)=0\}$ and the line $\{x\colon v(x)=0\}$, there is a finite M such that

(13)
$$(\|v(x)\| + \|f(x)\|)/\|x\| < M \quad \text{for all } x \in X \sim \{0\}.$$

Note also that

$$(14) f \leqslant \gamma,$$

for this inequality plainly holds on H, while f is homogeneous and γ is non-negative and positively homogeneous. For all x such that f(x) > 0, it is a consequence of (13), (14), the positive homogeneity and subadditivity of γ , and the fact that $\gamma(z_0) = 1 = f(z_0)$, that

$$\begin{split} 0 &\leqslant \varepsilon(x) = \frac{\gamma \big(v(x) + f(x) \, z_0 + z_0 \big) - \gamma (z_0) - f \big(v(x) + f(x) z_0 \big)}{\|x\|} \\ &\leqslant \frac{\gamma \big(v(x) + z_0 \big) - \gamma (z_0) - f \big(v(x) \big)}{\|v(x)\|} \frac{\|v(x)\|}{\|v(x)\| + \|f(x) \, v_0\|} \frac{\|v(x)\| + \|f(x) \, v_0\|}{\|x\|} \\ &< M \varepsilon \big(v(x) \big) \,. \end{split}$$

Since $v(x) \to 0$ as $x \to 0$, it therefore suffices in proving (12) to consider those x for which f(x) = 0. For each such x, choose z(x) in the boundary of Z such that

$$||z_0 + x - z(x)|| \leq 2\delta(z_0 + x, Z);$$

note that $z_0 + x \in H$ and hence, by F-smoothness,

(15)
$$||z_0 + x - z(x)||/||x|| \to 0$$
 as $x \to 0$.

By the subadditivity of γ ,

$$\gamma\big(z(x)\big)-\gamma\big(z(x)-z_0-x\big)\leqslant\gamma(z_0+x)\leqslant\gamma\big(z(x)\big)+\gamma\big(z_0+x-z(x)\big)\,.$$

As $\gamma(z_0)=1=\gamma \big(z(x)\big)$ and $f(x)=0\,,$ it follows from the definition (5) that

$$(16) -\gamma (z(x)-z_0-x) \leqslant ||x|| \varepsilon(x) \leqslant \gamma (z(x)-z_0-x)$$

Being convex and continuous, γ is majorized by a multiple of $\|\cdot\|$, whence it follows from (15) and (16) that $\varepsilon(x) \to 0$ as $x \to 0$. This completes the proof of the theorem.

The following is an immediate consequence of the preceding two theorems:

COROLLARY. If a convex set Z is F-smooth at a point z_0 , then it is also G-smooth at z_0 .

Note that the corollary does not apply to all sets Z. Indeed, let Z' be a convex set which has at z_0 a unique G-tangent H' but no F-tangent, and let Z'' be a convex set which has at z_0 a unique F-tangent H'' different from H'. Then the set $Z' \cup Z''$ is F-smooth at z_0 but it is not G-smooth, for both H' and H'' are G-tangents of $Z' \cup Z''$ at z_0 .

A set Z is said to be G-smooth [resp. F-smooth] at a subset Z_0 of Z provided that it is G-smooth [resp. F-smooth] at each point of Z_0 . And Z is said to be uniformly F-smooth at Z_0 provided that Z admits a unique F-tangent $H(z_0)$ at each point z_0 of Z_0 and there exists ξ such that

(17) ξ is a function on $]0,\infty[$ to $]0,\infty[$ with $\lim_{\lambda\to 0^+}\xi(\lambda)=0$ and for all $z_0\epsilon Z_0$ and $h\epsilon H(z_0)$ it is true that

$$\delta(h, Z) \leqslant \xi(\|h - z_0\|) \dot{|h - z_0|}.$$

This situation is also described by saying that Z is ξ -smooth at Z_0 . THEOREM. Suppose that Z is a weakly compact subset of a Banach space, $C = \operatorname{cl} \operatorname{con} Z$, and H is a hyperplane supporting C. Then G-smoothness or uniform F-smoothness of Z at $Z \cap H$ implies that of C at $C \cap H$.

Proof. By Phillips' version of a theorem of Krein (see [2], p. 55), the set C is weakly compact and hence of course $C \cap H$ is weakly compact. By the Krein-Milman theorem, $C \cap H$ is the closed convex hull of its extreme points. Each extreme point of $C \cap H$ is an extreme point of C and hence, by Milman's theorem, belongs to C. It follows then that $C \cap H = \operatorname{clcon}(Z \cap H)$. If C is not C-smooth at $C \cap H$ there is a point of $C \cap H$ which lies on another supporting hyperplane C of C. Relative to C is a supporting hyperplane of $C \cap C$ and the preceding reasoning shows

$$C \cap H' \cap H = \operatorname{cl} \operatorname{con} (Z \cap H' \cap H).$$

In particular, $H' \cap H$ includes a point z_0 of Z and Z is supported at z_0 by both H' and H. This contradicts the assumption that Z is G-smooth at $Z \cap H$.

Now suppose that Z is uniformly F-smooth at $Z \cap H$ and let ξ be as above. Since Z is supported by H at each point of $Z \cap H$, and since F-smoothness implies G-smoothness, the $H(z_0)$ above (in the definition of uniform F-smoothness) is in fact equal to H for all $z_0 \in Z \cap H$. To show that C is uniformly F-smooth at $C \cap H$ we show

(19)
$$\delta(h, C) < \xi(\|h - c_0\|) \|h - c_0\| + 2\varepsilon$$

for all $c_0 \in C \cap H$, $h \in H$, and $\varepsilon > 0$. As $C \cap H = \operatorname{cl} \operatorname{con} (Z \cap H)$, there are points z_1, \ldots, z_n of $Z \cap H$ and positive numbers μ_1, \ldots, μ_n such that

$$\sum_{1}^{n} \mu_{k} = 1,$$

$$\left\| c_0 - \sum_1^n \mu_k z_k \, \right\| < \varepsilon.$$

Since $z_k+h-c_0\,\epsilon\,H$, it follows from (18) (with the roles of h and z_0 in (18) played by z_k+h-c_0 and z_i respectively) that

$$\delta(z_k + h - c_0, Z) \leqslant \xi(\|h - c_0\|) \|h - c_0\|$$

and hence there exists $w_k \, \epsilon Z$ such that

$$||z_k + h - c_0 - w_k|| \leq \xi(||h - c_0||) ||h - c_0|| + \varepsilon.$$

Now use (20), (21), and (22) to show that

$$\begin{split} \left\|h-\sum_{1}^{n}\mu_{k}w_{k}\right\| &\leqslant \left\|h-\sum_{1}^{n}\mu_{k}w_{k}-c_{0}+\sum_{1}^{n}\mu_{k}z_{k}\right\|+\varepsilon \\ &\leqslant \sum_{1}^{n}\mu_{k}\|z_{k}+h-c_{0}-w_{k}\|+\varepsilon \leqslant \sigma(\|h-c_{0}\|)\|h-c_{0}\|+2\varepsilon, \end{split}$$

whence (19) follows from the fact that $\sum_{i=1}^{n} \mu_{i} w_{i} \in C$.

A SMOOTH RENORMING OF HILBERT SPACE WHICH LACKS THE A-PROPERTY

We now proceed with the promised renorming of l^2 , whose points are sequences $x=(x_0,x_1,x_2,\ldots)$ of real numbers with $\sum\limits_0^\infty x_k^2<\infty$. The new norm is described in detail but the proof that it has the stated properties is given somewhat sketchily, for several of its steps are routine. Let the hyperplane $\{x \in l^2: x_0=0\}$ be denoted by V, its unit ball and

unit sphere by U_V and S_V respectively. For each bounded sequence $a=(a_1,a_2,\ldots)$ of real numbers, let T_a denote the linear transformation of V into V given by

$$T_a(x) = (0, a_1x_1, a_2x_2, ...) \quad (x \in V);$$

it is a self-homeomorphism of V if $\inf_{k} |a_k| > 0$. For each $\lambda \in [-1, 1]$ and for each sequence $\eta = (\eta_1, \eta_2, \ldots)$ of even functions on [-1, 1] to [0, 1] with $\eta_i(0) = 1$ for all i, let $\eta(\lambda) = (\eta_1(\lambda), \eta_2(\lambda), \ldots)$. Then let

$$U_\eta = igcup_{|\lambda| \leqslant 1} \lambda \delta_0 + T_{\eta(\lambda)} \, U_V, \quad S_\eta = igcup_{|\lambda| \leqslant 1} \lambda \delta_0 + T_{\eta(\lambda)} S_V,$$

$$U = \operatorname{cl} \operatorname{con} U_n,$$
 $S = \operatorname{boundary} \operatorname{of} U.$

(Here $\delta_0=(1,0,0,\ldots)$.) As U is a bounded closed convex body in l^2 with U=-U, U and S are respectively the unit ball and the unit sphere of l^2 with respect to a new norm compatible with the original topology. Note that $\delta_0 \in S$. If $\eta_i(\lambda) = \sqrt{1-\lambda^2}$ for all i and λ , then $S=S_\eta$, S is the usual unit sphere of l^2 , and S is uniformly F-smooth. We shall describe a sequence η_1, η_2, \ldots for which the resulting S is G-smooth but not F-smooth at δ_0 and $-\delta_0$, is F-smooth at all other points (in fact, uniformly F-smooth at every closed subset of $S \sim \{\delta_0, -\delta_0\}$), and yet the renormed version of l^2 lacks the A-property.

Let $\varepsilon_1, \varepsilon_2, \ldots$ be a sequence in $]0, \frac{1}{\delta}$ [converging to 0 and let η_1, η_2, \ldots be even functions on [0,1] to [0,1] such that the following conditions are satisfied:

- (23) η_i is continuous and concave, with $\eta_i(0) = 1$, $\eta_i(1 \varepsilon_i) = 2\varepsilon_i$, and $\eta_i(1) = 0$;
- (24) η_i is differentiable on [0,1], with $\eta_i'(0) = 0$ and $\eta_i'(1-\varepsilon_i) = -1$;
- (25) η_i has a vertical tangent at 1; that is, $\lim_{\lambda \to 1^-} \eta_i'(\lambda) = -\infty$.

As η_i is strictly positive on [0,1[, it follows that

$$U_{\eta} = \{-\delta_0, \ \delta_0\} \ \cup \ \{x \, \epsilon l^2 \colon \ |x_0| < 1 \ \ \text{and} \ \ \sum_{1}^{\infty} \big(x_k/\eta_k(x_0)\big)^2 \leqslant 1\}$$

and from this that the set U_{η} is weakly closed. Hence U_{η} is weakly compact and it follows that

$$(26) U \cap H = \operatorname{cl} \operatorname{con} (U_{\eta} \cap H)$$

for every supporting hyperplane H of U. In particular,

$$U \cap (\pm \delta_0 + V) = \{\pm \delta_0\}$$

and it follows from (25) that U_{η} and U are both G-smooth at δ_0 and $-\delta_0$.

The remainder of the proof requires an examination of the intersections of S_{η} with the various planes (2-flats) through the line $L = \{\lambda \delta_0: -\infty < \lambda < \infty\}$ and with the various hyperplanes parallel to V. Consider, for an arbitrary $s \in S_V$, the intersection of S_{η} with the halfplane $P_s = L + [0, \infty[s]$. It is

$$\{\lambda\delta_0+\tau_s(\lambda)s\colon |\lambda|\leqslant 1\},$$

where $\tau_s(\pm 1) = 0$ and for $|\lambda| < 1$ the number $\tau_s(\lambda)$ is the positive solution of $\sum_{1}^{\infty} (\tau_s(\lambda) s_k / \eta_k(\lambda))^2 = 1$; that is,

(27)
$$\tau_s = \left(\sum_{1}^{\infty} s_k^2 \eta_k^{-2}\right)^{-1/2} \quad \text{on }]-1, 1[.$$

Fixing our attention on an arbitrary number $\bar{\lambda} \in]0,1[$, we claim

(28) the derivatives τ'_s , for $s \in S_{\mathcal{V}}$, exist and are equicontinuous on $]-\overline{\lambda}, \overline{\lambda}[$.

To verify (28), let $\varrho_s = \tau_s^{-2} = \sum_1^\infty s_k^2 \eta_k^{-2}$. It follows from (24) and (25) that on $]-\bar{\lambda}, \bar{\lambda}[$ the functions η_1, η_2, \ldots are equicontinuous and uniformly bounded away from both 0 and ∞ , and the derivatives η_1', η_2', \ldots are equicontinuous and uniformly bounded. Hence ϱ_s is differentiable and

$$\varrho_{s}^{'} = -2\sum_{1}^{\infty} s_{k}^{2} \eta_{k}^{-3} \eta_{k}^{'},$$

whence the functions ϱ'_s are equicontinuous for $s \in S_V$. Then (28) follows from the fact that $\tau'_s = -\frac{1}{2} \varrho_s^{-3/2} \varrho'_s$. A consequence of (28) is

(29) the curves τ_s , for $s \in S_V$, are equi-F-smooth on $]-\overline{\lambda}, \overline{\lambda}[$; more specifically, there is a function ξ satisfying (17) such that each curve τ_s is ξ -smooth (relative to the plane containing P_s) at each point $\lambda \delta_0 + \tau_s(\lambda) s$ with $|\lambda| < \overline{\lambda}$. Note also that

(30) the "spheres" $T_{\eta(\lambda)}S_V$, for $|\lambda|<\overline{\lambda}$, are equi-F-smooth; this smoothness (relative to V) follows from the fact that S_V is uniformly F-smooth and the linear homeomorphisms $T_{\eta(\lambda)}$, for $|\lambda|<\overline{\lambda}$, are uniformly bounded with uniformly bounded inverses.

To establish the F-smoothness of S at each point p of $S \sim \{\delta_0, -\delta_0\}$, note that by (29) and (30) there is a unique hyperplane H supporting S at p. From U's weak compactness, the G-smoothness of U at $\pm \delta_0$, and the fact that $U \cap (\pm \delta_0 + V) = \{\pm \delta_0\}$, there follows the existence of $\bar{\lambda} \in]0,1[$ such that

$$H \cap U \subset \{x: |x_0| < \overline{\lambda}\}.$$

The uniform F-smoothness of S at H then follows from (29), (30), and the last theorem of the preceding section.

It remains only to show that the renormed version of l^2 lacks the A-property. For $0 \le i < \infty$, let δ_i denote the point of l^2 such that $\delta_{ij} = 1$ or 0 according as j = i or $j \ne i$; let δ_i^* denote the same point considered as a member of the conjugate space $(l^2)^*$. Note that for $i = 1, 2, \ldots$ and for $|\lambda| < 1$, any hyperplane in V parallel to the hyperplane $V_i = \{x \in V : x_i = 0\}$ is carried onto such a parallel hyperplane by the transformation $T_{\eta(\lambda)}$. Note also that $\tau_{\delta_i} = \eta_i$. Since η_i is concave, and since S_P is supported at δ_i in V by a translate of V_i , it follows that U is supported at the point $\lambda \delta_0 + \eta_i(\lambda) \delta_i$ by a hyperplane which contains a translate of V_i and also contains the tangent to η_i at this point. In particular (using (23) and (24)), with $x_i = (1 - \varepsilon_i) \delta_0 + 2\varepsilon_i \delta_i \in S$ and $\{y_i\}$ = x_i^c relative to the new norm $\|\cdot\|$, we have

$$y_0 = (1 - 3\varepsilon_i)^{-1} (\delta_i^* - \delta_i^*).$$

As $\varepsilon_i \in]0, \frac{1}{6}[$ and as $\delta_1, \delta_2, \ldots \in S$ it follows that $||y_i - y_j|| > \frac{1}{2}$ for $i \neq j$. But of course $x_1, x_2, \ldots \to \delta_0$, so the proof is complete.

References

- [1] P. M. Anselone, A criterion for a set of linear operators to be totally bounded, to appear.
 - [2] M. M. Day, Normed linear spaces, Berlin 1958.
- [3] S. Mazur, Über schwach Konvergenz in den Räumen (L^p) , Studia Math. 4 (1933), p. 128-133.
- [4] and L. Sternbach, Über die Borelschen Typen von linearen Mengen, ibidem 4 (1933), p. 48-53.
- [5] R. R. Phelps, A representation theorem for bounded convex sets, Proc. Amer. Math. Soc. 11 (1960), p. 976-983.
- [6] V. M. Tikhomirov, Diameters of sets in function spaces and the theory of best approximations, Russ. Math. Surveys 15 (1960), no. 3, p. 75-111. (Translated from Uspehi Mat. Nauk 15 (1960), no. 3 (93), p. 81-120.)

UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON, U.S. A.

Reçu par la Rédaction le 5. 10. 1968

A construction of basis in $C^{(1)}(I^2)$

pz

Z. CIESIELSKI (Gdańsk)

The sequence $\{x_n, n = 1, 2, ...\}$ of elements of a given real Banach space $[X, \| \|]$ is called *basis* in X whenever each $x \in X$ has unique, convergent in the norm $\| \|$, expansion

$$x = \sum_{n=1}^{\infty} a_n x_n$$

with real coefficients a_1, a_2, \ldots It is well known that the coefficients $a_n = a_n(x)$ are linear functionals over [X, || ||] and they are called *coefficient functionals* for the basis $\{x_n\}$.

There were two examples of seperable Banach spaces mentioned in the Banach monograph [1] (p. 238) for which it was not known how to construct bases. One of the examples is the space A of holomorphic functions in the interior and continuous on the boundary of the unit disc with uniform norm. The second example is the space $C^{(1)}(I^2)$, $I = \langle 0, 1 \rangle$, of all functions with continuous partial derivatives of the first order on I^2 with the norm

$$||x||^{(1)} = ||x|| + ||D, x|| + ||D, x||$$

where

$$||x|| = \max\{|x(s,t)|: s, t \in I^2\},$$

$$D_1 x(s,t) = rac{\partial x}{\partial s}(s,t) \quad ext{ and } \quad D_2 x(s,t) = rac{\partial \dot{x}}{\partial t}(s,t).$$

The aim of this paper is to give an effective construction of a basis in the Banach space $[C^{(1)}(I^2), || ||^{(1)}]$. It follows immediately from the construction that this result can be extended to the case of $C^{(1)}(I^n)$ with arbitrary $n \ge 1$.

The construction depends heavily on the properties of the Franklin orthonormal system $\{f_n, n=0, 1, \ldots\}$.

To define the orthonormal Franklin system we need to recall the definition of the Schauder functions: $s_0 = 1$, $s_1(t) = t$ for $t \in I$, and for