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Products of generalized functions
by

B. FISHER (Leicester)

In this paper we will consider products of the generalised functions
(2+£i0)" which are defined for integer values of n by

(#+130)" = o™
for n =0,1,2,... and

im(—1)" 50—

(2410)™" =~ im

for n =1,2,..., see [1]. It follows immediately that

_d% (-£130)" = n (@ i0)" "
for n =0, 4+1, +2,...
First of all if », n > 0 we obviously have
(@440)" (@£ d0)" = (w£00)"""
and we have

(@ 80)" (@£ 10)~" = & {m—ri im(—1)° 5(7_1)}

(r—1)!
ey T ey
P for n >
a7+ —-—'(:j(%_jir)! o1 for r >n
= (@30

Now let us consider the square of (x4 40)~'. Formally, we have

(#+i0)" (@£10)" = (7' F ind)? = {(z ') — " &} F 2inda™".
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) and 6° do not exist on their own, Mikusirski [2]

Although (x~
*— 7’ 0%} exists if considered as a single entity and

has shown that {(#7')
gives the result

2

(32 —a? 0 = o
At the same time he gives the result
ot = —34.
Thus, using these results, we have
(24140)" (@ +10)"" = (2£i0)""
We define further products by formal differentiation to obtain the
result that
(2410)"" (0 £40)™" = (x£30)~"",
for m,» =1,2,... We prove this result by induction since assuming’
this result for n--r < m we have
{4 0)" " = (2 £i0)™"

Formal differentiation gives

m{(x440)"1 " — ( @ 40)” —m(z440)""*
and hence we define
(430)"" (3 £40)" = (2 4140).”™}
Formal differentiation of the equation
= (2-40)™™

(2 40)~"™ 5 (gL 0)~
gives .

(m—8) (@ 30)™" 4 (& 4 10) "+ 8 (1= 10) ="+ (g4 §0)—*" =
Assuming the result that
(£80)™" (54 i0)*
for some s it follows that (
T (B90) M (@ 40) T = (o 50)"" 2,

Since the assumption is true for s =.2 it follows by induetion that
the result is true for s = 2,...,m. But the case s = m is equivalent
to the case s =1 and so we have

{2£i0)"™ (2 1i0)"° =

(mj:zO) M1

— (w;];iO)"m“l

(@£i0)™ 1

©
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Products of gemeralized fumctions

for s - 1,2,...,m and by our first assumption we have

(£90)""(2+£10)™" = (wi0)”
for n+r <m+1. Our result now follows by induction. Thus
(@4 50)" (04 40) = (w1 70)™+"

for n,r =20, 1, 4+2,...
Thus considering negative integers only we have

L o Cn (=1 e dm(=1)T
(@+10)~" (24 30) r={m +W6( I)}{m +W6( 2
R _%Vi(l;lzt; ' 50D gr=1) 4
r
'+’L {(( 1)) 6(71 1) —r_'_ (5 :;-))' 6(r—l)m—n}
"— r—1)! )
= (z++140)""
— gt im(—1)" 6(n+r by
(n+r—1)!
Equating real and imaginary parts we get
oy — _ =yt (=Dgr=1) — gnT
(n—1) 1 (r—1)!
g td 747
(=1) (n—1) - (—1) §E-Dgpm — (—1) _ gndr=1
(n—1)! (r—1)! (n+47r—1)!
for m,r=1,2,...

In particular, when r = n we have
— 2%

(& — B {(n—1) 2 {0 = 5=,
S g — (—1)"(n—1)!

@en—1)
T 2(2n—1)!

It follows that

%1 on—
w-va(m ,L-O).-n (w-n)z 2(_§m ( 1),
- (=1)"(n=1)! om_y
8D (@£ i0)™" ( 1)1 { 8y = To@n—1)t o
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Formal expansion of the product (z-+40)""(z—10)"" gives

{m‘n L im(=1)" 5(7»—1)} {W_ (1) 5<r—1)}
S (n—1)!

— {x_nw_r_l_ ____ng (_1)1“___ C3(“’1) 5("“1)} 4

(n—1)1(r—1)!
. (_l)n n—1) j =1 __(vﬂ)j, (1'~1),,‘n}
+ iz {?n-—'l-)—' 6Ny 1) oy

and so both real and imaginary parts are divergent except when n =y
and in this case the imaginary part is zero. We will, however, have

22~ "5~ 4 L_—_ZZZ(—_S') 8"V g™ — (24 i0)"" (z—140)~"
—grer o U
(n+r—1)!

and in particular when n =7

2(@™") — (@ +4i0) " (w—i0)™" = 2"
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Two renorming constructions related to a question of Anselone
by

V. KLEE (Seattle)*

To Professors S. Mazur and W. Orlics *
on ihe fortieth anniversary of their seientific research

INTRODUCTION

Let X denote a normed linear space and X™ its conjugate space.
For any point # of X let 2 denote the set of all points of X* conjugate
to @; that is, yea® if and only it yeX*, |yl = llzll, and <z, y> = |la|2.
Let us say that X has the A-property provided that for each totally
bounded subset T' of X, the restriction of ¢ to 7 admits a selection with
totally bounded range; that is, there is a function s on 7 to X* such that
8(t)et® for all teT and the set T is totally bounded. This property was
introduced by Anselone [1] in studing the total boundedness of sets
of linear operators into X. Plainly, every finite-dimensional X has the
A-property. Anselone [1] noted that X has the A-property if X* is uni-
formly rotund and asked whether all normed spaces have the A-property.
Here the question is resolved with the aid of an adaptation of a construction
of Mazur and Sternbach [4] by showing that

Bwery infinite-diménsional Banach space can be renormed so as to
lack the A-property.

On the other hand, the following problem is unsettled:

Can every Bamach space (or at least every separable one) be renormed
so as to have the A-property?

When X is complete the closure of any totally bounded subset of X
is compact. For the A-property it then suffices to assume that the function ¢
is single-valued and continuous or, equivalently, that the unit sphere
8 = {#: |jg| = 1} is Fréchet-smooth at each point. This is weaker than
uniform rotundity of X*, which is equivalent to uniform Fréchet-smooth-

* Research supported in part by the Office of Naval Research, U. S. A.
(NSF-GP-3579).
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