On some properties of p-nuclear and p-integral operators

by

ARNE PERSÖN (Lund)

Introduction. In a recent paper [5] A. Pietsch and the present author investigated the general properties of so called p-nuclear and p-integral operators. These are natural generalizations to arbitrary $1 \leq p < \infty$ of the classes of nuclear and integral operators, respectively, which were introduced and studied by Grothendieck [4]. Among other things Grothendieck proved that an integral operator between two Banach spaces E and F is nuclear provided that one of the following four conditions is satisfied:

(i) E is reflexive;
(ii) E has a separable dual;
(iii) F is reflexive;
(iv) F is separable and isomorphic to the dual of a Banach space.

Neither of conditions (iii) and (iv) is sufficient for the corresponding statement for p-integral and p-nuclear operators to hold true. This is shown for example by the natural injection of l^p into l^p, which is 2-integral ([5], §10) but not 2-nuclear; in fact, it is not even compact. The principal aim of the present paper is to show that either of conditions (i) and (ii) is sufficient in order that a p-integral mapping of E into F be p-nuclear. The first case is obtained as a corollary of the more general statement (due to Grothendieck [4]) in the case $p = 1$ that the composition of a weakly compact linear operator and a p-integral operator is p-nuclear. The proof of this fact depends on a formulation for arbitrary p (cf. also Chevet [2]) of another result of Grothendieck [4], stating that the space of nuclear operators of E into an L^p-space can be identified with the corresponding space of E'-valued integrable functions. This extension makes it also possible to give a complete characterization of a p-nuclear operator of an L^p'-space into an L^p-space, where $1/p + 1/p' = 1$. The situation turns out to be quite analogous to the case of Hilbert-Schmidt mappings between L^p-spaces.

Throughout the paper, E and F will denote complex Banach spaces with unit balls U and V, respectively. The corresponding weakly compact
unit balls in the dual Banach spaces E' and F' will be denoted by B^n and V^m. The letters X and Y are used for locally compact spaces, μ and γ denote positive Radon measures on X and Y, and the spaces $L^p(X)$ or $L^q(Y)$, $1 \leq p < \infty$, of equivalence classes of complex-valued μ-measurable functions on X are defined in the usual way. The Banach space of (equivalence classes of) E-valued μ-measurable functions on X such that
\[
\left(\int \|f(x)\|^p d\mu(x) \right)^{\frac{1}{p}} < \infty
\]
will be denoted by $L^p(X, E)$ or $L^p(E)$. We shall make no notational distinction between an element f in an L^p-space and a representing function for f.

1. p-nuclear operators between L^p-spaces. As in [3], § 1, we denote by $N_p(E, F)$ the set of all linear mappings T of E into F which can be written in the form
\[
T u = \sum_{n=1}^{\infty} \langle u, w_n \rangle v_n
\]
with
\[
\left(\sum_{n=1}^{\infty} |\langle u, w_n \rangle|^p \right)^{\frac{1}{p}} < \infty \quad \text{and} \quad \sup_{n \geq 1} \left(\sum_{n=1}^{\infty} |\langle u, v_n \rangle|^p \right)^{\frac{1}{p}} < \infty
\]
when $1 \leq p < \infty$ and with the additional requirement $|\langle u, w_n \rangle| \to 0$, $n \to \infty$, in the case $p = \infty$. It turns out that $N_p(E, F)$ is a linear space and in fact a Banach space when equipped with the norm
\[
N_p(T) = \inf \left(\sum_{n=1}^{\infty} |\langle u, w_n \rangle|^p \sup_{n \geq 1} \left(\sum_{n=1}^{\infty} |\langle u, v_n \rangle|^p \right)^{\frac{1}{p}} \right)^{\frac{1}{p}},
\]
where the infimum is taken over all adequate representations (1) of T. The elements in $N_p(E, F)$ are called p-nuclear operators or operators of type N_p. Interchanging the roles of the sequences (w_n) and (v_n) one obtains in the same way another Banach space $N^p(E, F)$ of operators, the norm being given by
\[
N^p(T) = \inf \left(\sum_{n=1}^{\infty} |\langle u, w_n \rangle|^p \sup_{n \geq 1} \left(\sum_{n=1}^{\infty} |\langle u, v_n \rangle|^p \right)^{\frac{1}{p}} \right)^{\frac{1}{p}}.
\]

For $p = 1$ the two classes $N_1(E, F)$ and $N^1(E, F)$ are equal and coincide with the space of nuclear operators of E into F. The set $L_1(E, F)$ of finite-dimensional linear mappings of E into F is dense in all the spaces $N_p(E, F)$ and $N^p(E, F)$. It is easy to see that an operator T of type N_p has a factorization of the form
\[
E \overset{T}{\longrightarrow} E' \overset{D}{\longrightarrow} L^p \overset{\Phi}{\longrightarrow} F
\]
where $||F|| \leq 1$, $||Q|| \leq 1$ and D is multiplication with a sequence (λ_n) satisfying
\[
\sum_{n=1}^{\infty} |\lambda_n|^p \leq N_p(T) + \varepsilon,
\]
$\varepsilon > 0$ being given in advance. Similarly, every $T \in N^p(E, F)$ can be written
\[
E \overset{P}{\longrightarrow} E' \overset{Q}{\longrightarrow} L^p \overset{\Phi}{\longrightarrow} F
\]
with P, Q, D as above and
\[
\sum_{n=1}^{\infty} |\lambda_n|^p \leq N^p(T) + \varepsilon.
\]

This fact is used in the proof of the following lemma, which in the case of operators of type N_p is contained in [5], § 6, Lemma 7, and which can be proved in a similar way in the case of N^p-operators.

LEMMA 1. Suppose E or F satisfies the metric approximation condition and that $T : E \to F$ has finite-dimensional range. Then, for every $\varepsilon > 0$, there exists a finite representation $T u = \sum_{n=1}^{M} \langle u, w_n \rangle v_n$ such that
\[
\sum_{n=1}^{M} |\langle u, w_n \rangle|^p \sup_{n \geq 1} \left(\sum_{n=1}^{M} |\langle u, v_n \rangle|^p \right)^{\frac{1}{p}} < N_p(T) + \varepsilon.
\]

Similarly, there exists a finite representation $T u = \sum_{n=1}^{N} \langle u, x_n \rangle y_n$ such that
\[
\sup_{n \geq 1} \left(\sum_{n=1}^{N} |\langle u, x_n \rangle|^p \right)^{\frac{1}{p}} \sum_{n=1}^{N} |\langle u, y_n \rangle|^p < N^p(T) + \varepsilon.
\]

If $\Phi \in L_1^0(X, E')$, then the formula
\[
(T u)(x) = \langle u, \Phi(x) \rangle \quad \text{a.e.}
\]
determines a bounded linear mapping T of E into $L_1^0(X)$. Grothendieck [4] proved that this correspondence is an isometry between $L_1^0(E')$ and $N_1(E, L_1^0)$. We shall prove the following extension of this result to arbitrary $1 \leq p < \infty$ (a similar generalization has been announced by Chevet [3]):

THEOREM 1. For $1 \leq p < \infty$ we have natural embeddings
\[
N_p(E, L_1^0) \subset L_p(E') \subset N_p(E, L_p^0),
\]
each of norm < 1 and such that elements $T : E \to L_p^0$ and $\Phi \in L_1^0(E')$ corresponding to each other satisfy identity (2).
Proof. A linear operator T of E into L_p^q with finite-dimensional range has a finite representation of the form

$$T = \sum_{t=1}^{M} \langle u_t, u'_t \rangle v_t,$$

and it is easy to see that the function

$$\Phi_T = \sum_{t=1}^{M} u'_t v_t$$

in $L_p^q(E')$ does not depend on the actual choice of representation of T. Hence the correspondence $T \rightarrow \Phi_T$ defines a linear mapping of $L_p(E, L_p^q)$ into $L_p^q(E')$, and since

$$\left(\int \|\Phi_T(x)\|^{p'} d\mu(x) \right)^{1/p'} = \left(\int \sup_{\|x\| \leq 1} \left(\sum_{t=1}^{M} \langle u_t, u'_t \rangle \tau v_t (x) \right)^{p'} d\mu(x) \right)^{1/p'},$$

for all $g \in L_p^q$. According to the definition of the norm in $N_p(E, L_p^q)$ this shows the desired inequality (3) and thus completes the proof of the theorem.

In the same way one proves

Theorem 2. For $1 \leq p < \infty$ we have natural embeddings

$$N_p(L_p^q, E) \subset L_p^q(E', F) \subset N_p(L_p^q, F),$$

each of norm ≤ 1 and such that elements $T: L_p^q \rightarrow F$ and $\Phi \in L_p^q(E)$ corresponding to each other satisfy

$$Tu = \int \Phi(y) u(y) d\mu(y).$$

Before stating the last theorem of this section we recall that a linear mapping $T: E \rightarrow F$ is called absolutely p-summing (cf. [1]) if there exists a constant C such that for every finite sequence $(u_n)_{n=1}^M$ satisfying

$$\sum_{t=1}^{M} \langle u_n, u'_n \rangle \leq ||u_n||_p, \quad u' \in E',$$

one has

$$\left(\sum_{t=1}^{M} ||Tu_n||_q \right)^{1/q} \leq C.$$
Theorem 3. For linear operators $T : L^p_c(Y) \to L^p_c(X)$, $1 < p < \infty$, the following conditions are equivalent:

(a) T is p-nuclear;
(b) T is absolutely p-summing;
(c) T can be written in the form

$$\langle Tu(x), y \rangle = \int g(x, y) u(y) \, dv(y)$$

with $g \in L^p_{\text{ess}}(X \times Y)$;
(d) there exists a non-negative function $h \in L^p$, such that $\|T u(x)\| < h(x)$ a.e. for all $u \in L^p$ with $\|u\|_{L^p}^{p} \leq 1$.

Moreover

$$N_p(T) = A_p(T) = \left(\int \|y^n \|_{L^p}^p \, dx \right)^{\frac{1}{p}} \leq \left(\int h^p \, dx \right)^{\frac{1}{p}}.$$

Proof. The equivalence of (a) and (c) follows immediately from Theorem 1 and Theorem 2 by observing the familiar fact that $L^p_c(X, L^p_c(Y))$ is isometrically isomorphic to $L^p_{\text{ess}}(X \times Y)$ (cf. [3, ch-III, p. 198]). Condition (c) implies (b); if (c) is satisfied and $(u_n)_n$ is any finite sequence of functions in L^p, with

$$\sum_{n=1}^{N} |\langle u, u_n \rangle|^{p} \leq \int \|u\|_{L^p}^p \, dx,$$

then

$$\sum_{n=1}^{N} \|Tu_n\| = \left(\int \sum_{n=1}^{N} \left| \int g(x, y) u_n(y) \, dv(y) \right|^p \, dx \right)^{\frac{1}{p}} \leq \left(\int \|g\|_{L^p}^p \, dx \right)^{\frac{1}{p}} \leq \left(\int \|u\|_{L^p}^p \, dx \right)^{\frac{1}{p}} \leq \left(\int \|h\|_{L^p}^p \, dx \right)^{\frac{1}{p}}.$$

To prove that (b) implies (c), we use the fundamental fact (cf. [5], § 8) that the dual of $N_p(L^p, L^p)$ via $\langle S, T \rangle = \text{tr}(ST)$ can be identified with the space of absolutely p'-summing operators of L^p into L^p. Therefore, if T is a given element in $A_p(L^p, L^p)$, then for any $S \in N_p(L^p, L^p)$ with a representation $f(s, y)$ according to (c), we have the inequality

$$\text{tr}(ST) \leq A_p(T) N_p(S) \leq A_p(T) \left(\int \|f\|_{L^p}^p \, dx \right)^{\frac{1}{p}}.$$

This shows that there exists a function $g \in L^p_{\text{ess}}(X \times Y)$ such that

$$\text{tr}(TS) = \int \int f(x, y) g(y, x) \, dx \, dy.$$

Choosing in particular operators of the form $Su = \langle u, u' \rangle v$, $u' \in L^p$, $v \in L^p$, we obtain

$$\langle u'; T v \rangle = \text{tr}(TS) = \int \int u'(y) v(s(y, x)) \, dx \, dv(y)$$

$$= \int u'(y) \, dv(y) \int g(y, x) v(x) \, dx \, dv(x),$$

whence

$$(Tv)(y) = \int g(y, x) v(x) \, dx \, dv(x) \text{ a.e.}$$

The implication (b) \Rightarrow (c) follows from this by interchanging L^p_c and L^p. In the course of the proof we have also obtained the equality signs in formula (4).

It is obvious that (c) \Rightarrow (d), and we complete the proof of the theorem by showing that (d) \Rightarrow (b). Put

$$M = \{u \in L^p_c(X) : |(u(x)| \leq h(x) \text{ a.e.} \}$$

and let L^p_M denote the linear hull of M. A Banach space structure is introduced on L^p_M by considering M as the unit ball. If T satisfies (d), then it has a factorization of the form

$L^p_c \xrightarrow{T_1} L^p_M \xrightarrow{T_2} L^p_{\text{ess}}$.

where $T_1 = T$, I is the identity and

$$(Tu)(x) = \begin{cases} u(x) & h(x) \neq 0, \\ h(x)/h(x) & h(x) = 0, \end{cases}$$

$$(Tv)(x) = h(x) v(x).$$

However, by [8] the mapping f is absolutely p-summing with

$$A_p(I) \leq \left(\int h^p \, dx \right)^{\frac{1}{p}}.$$
with \(L_p(T) \subseteq N_p(T) \), and this inclusion is in general a proper one. However, the following theorems will tell us that in certain important situations we actually have equality in (5).

Theorem 4. If \(S : E \rightarrow F \) is weakly compact and \(T : F \rightarrow G \) is \(p \)-integral (\(1 \leq p < \infty \)), then the composed mapping \(TS : E \rightarrow G \) is \(p \)-nuclear and \(\|N_p(TS)\| \leq \|I_p(T)\|^\epsilon \|G\| \).

Proof. Let
\[
\begin{align*}
E & \subseteq C(V^\nu) \subseteq L^p_r(V^\nu) \subseteq G \\
&\subseteq G
\end{align*}
\]
be a factorization of \(T \) with \(|P| \leq 1 \), \(|Q| \leq 1 \) and \(\mu(V^\nu)^{\frac{1}{p}} \leq \mu(T) + \epsilon \), where \(\epsilon > 0 \) is given in advance. We first consider the weakly compact mapping \(R = PS \) of \(E \) into \(C(V^\nu) \). If, for any \(x \in V^\nu \), the Dirac measure on \(V^\nu \) with support in \(x \) is denoted by \(\delta_x \), then the identity
\[
\langle Ru(x), \delta_y \rangle = \langle R\delta_u, \delta_y \rangle = \langle u, E\delta_y \rangle
\]
shows that the function \(\Phi(x) = E\delta_x \) is continuous in the weak topology \(\sigma(E', E) \) and generates a representation of the form (2) of \(R \). We shall prove that there exists a \(\mu \)-measurable function \(\Psi \) on \(V^\nu \) with values in \(E' \) such that
\[
\langle u, \Psi(x) \rangle = \langle u, \Phi(x) \rangle = \langle Ru, \delta_x \rangle \quad \forall u \in E.
\]
For this purpose we note that, since \(R \) is a weakly compact mapping, so is the transposed mapping \(E^* \) of \(E \) (cf. [3], ch. VI). In particular, \(\Phi \) takes its values in a \(c(E', E') \)-compact subset, and consequently the weak integral \(\int \Phi(f(x))d\mu(x) \) is in \(E' \) for all \(f \in L^p_r(V^\nu) \) (cf. [1], p. 1). Since
\[
\langle u, \int \Phi(f(x))d\mu(x) \rangle = \langle u, \Phi(f) \rangle = \langle Ru, f \rangle, \quad u \in E,
\]
the operator \(E^* \) defined by \(f \mapsto \int \Phi(f(x))d\mu(x) \) is the composition of the natural isometric embedding of \(L^p_r(V^\nu) \) into \(C(V^\nu) \) and the weakly compact mapping \(E \), and hence \(E^* \) is weakly compact. According to a sharp form of the Dunford-Pettis theorem (cf. e.g. [1], p. 215, Exercices) it therefore exists a strongly \(\mu \)-measurable function \(\Psi \) on \(V^\nu \) such that \(\|\Psi(x)\| \leq \|E^*\| \) everywhere in \(V^\nu \) and
\[
\int \Phi(f(x))d\mu(x) = \int \Psi(f(x))d\mu(x), \quad f \in L^p_r(V^\nu).
\]
Equality (6) follows immediately from this, and hence the construction of \(\Psi \) is complete.

Applying the second inclusion in Theorem 1 we now obtain that \(L_E : E \rightarrow L^p_r(V^\nu) \) is \(p \)-nuclear with
\[
N_p(L_E) \leq \left(\int \|\Psi(x)\|^p d\mu(x) \right)^{\frac{1}{p}} \leq \|V^\nu\|^{\frac{1}{p}} \|\mu\|^{\frac{1}{p}} \|\Psi(x)\|_{L^p_r(V^\nu)} \leq \|I_p(T) + \epsilon\|^\epsilon \|G\|.
\]

Hence, by an easily verified property of \(p \)-nuclear operators, \(T_{S+}N_p(E, G) \) and
\[
N_p(TS) \leq (I_p(T) + \epsilon)^{\epsilon} \|G\|.
\]
Since \(\epsilon > 0 \) is arbitrary, this concludes the proof of the theorem.

Corollary 1. If \(E \) is reflexive, then, for \(1 \leq p < \infty \), \(N_p(E, F) = I_p(E, F) \) with equality of the corresponding norms.

Theorem 5. If \(E \) has a strongly separable dual \(E' \), then, for \(1 \leq p < \infty \), \(N_p(E, F) = I_p(E, F) \) with equality of the corresponding norms.

Proof. If \(T \subseteq N_p(E, F) \), let \(E \subseteq C(V^\nu) \subseteq L^p_r(V^\nu) \subseteq F \) be a factorization of \(T \) with \(|P| \leq 1 \), \(|Q| \leq 1 \) and \(\mu(V^\nu)^{\frac{1}{p}} \leq \mu(T) + \epsilon \). We have
\[
\langle Pu(x), \delta_y \rangle = \langle Pu, \delta_y \rangle = \langle u, E'\delta_y \rangle, \quad u \in E^*,
\]
and as in the proof of the preceding theorem we are through if we can prove that \(\Phi(x) = E'\delta_x \) is strongly \(\mu \)-measurable and satisfies \(\|\Phi(x)\| \leq 1 \). However, since \(E' \) is strongly separable, for each \(u \) in the unit ball of \(E' \) we can find a sequence \(u_k \in U \) such that \(\langle u_k, u \rangle \rightarrow \langle u_k, u \rangle \rightarrow \langle u_k, u \rangle \) for all \(u \in E' \). Hence the sequence consisting of the continuous functions \(\langle u_k, \Phi(x) \rangle \) converges pointwise to \(\langle u, \Phi(x) \rangle \), proving that \(\langle u, \Phi(x) \rangle \) is \(\mu \)-measurable for all \(u \in E' \). Using once more the separability of \(E' \) we conclude that \(\Phi(x) \) is strongly \(\mu \)-measurable (cf. [1], p. 1). Since obviously
\[
\|\Phi(x)\| = \sup_{p \in I} \|Pu(x)\| \leq 1,
\]
the proof is finished.

We conclude the paper by indicating a couple of applications to the general theory of \(L \)-operators. It was proved in [5], p. 4, that the composition of two operators \(S \) and \(T \), one of which is \(p \)-nuclear and hence the other one absolutely \(q \)-summing, is a mapping of type \(L \), where
\[
1 \leq \frac{1}{r} = \min \left(\frac{1}{p} + \frac{1}{q}, 1 \right).
\]
Using Theorem 4 and the methods of proof in [5] one immediately finds that \(\Phi \) is in fact an \(r \)-nuclear operator provided that \(r \) is defined by (7) and \(1 \leq p, q < \infty \). Similarly one proves using Corollary 1 and Theorem 5 that, if \(E \) is reflexive or \(E' \) strongly separable, then every absolutely \(p \)-summing operator of \(E \) into \(F \) is quasi-\(p \)-nuclear and hence in particular compact (cf. [5], § 4).

References

Ideals in group algebras

by

PASQUALE PORCELLI and H. S. COLLINS (Baton Rouge)

Throughout this paper G shall denote a locally compact abelian group. The ideal structure of $L^1(G)$ is still not fully known. For example, at a recent international symposium on functional analysis held at Sopot, Poland, the following questions were asked: (i) are there maximal non-closed ideals in $L^1(G)$ and (ii) what type of prime ideals are in $L^1(G)$? The purpose of this paper is to answer the above mentioned questions. The crux of the matter lies in the following theorem on Banach algebras:

Theorem 1. Let R be a commutative Banach algebra with bounded approximate identity and continuous involution. Then every maximal ideal of R is regular and, consequently, closed.

Proof. In as much as R has non-regular maximal ideals if, and only if $R' \subsetneq R$ (cf. [3], p. 87-88), we shall assume $R' = M \subset R$, M a non-regular maximal ideal. Hence, there exists $a \in R'$ such that $M + \{ae\} = R$ (cf. [3]). Define f such that $f(m) = 0$, $m \in M$, and $f(\alpha e) = \alpha$. f is a linear functional and, in fact, is positive since $f(\bar{a} \alpha e) = 0$, for $\alpha \in M$ for every a. Varopoulos [5] has proved that f is continuous under the hypothesis on R. Hence, if $\{e_\alpha\}$ denotes the approximate identity, then $f(\alpha e) = \lim f(e, e) = 0$ since $e_\alpha x \in M$; i.e. $f = 0$. This contradiction establishes Theorem 1.

Corollary 1. Every maximal ideal of $L^1(G)$ is regular and, therefore, closed.

Proof. $L^1(G)$ has the properties described above for the ring R.

Remark. We could have proved the Corollary by using a result of Hewitts [2] which shows $(L^1(G))^f = L^1(G)$ and applying the results cited in [3] (cf. [3], p. 96).

We shall now study the prime ideals of $L^1(G)$. Corollary 1 allows us to use spectral synthesis methods in such a study.

Research supported by AFOSR grant number AF 49 (838)-1426.