On Nikaidō's proof of the invariant mean-value theorem

by

B. J. PETTIS (Chapel Hill)

Dedicated to Professor S. Mazur
and Professor W. Orlicz

The proof [4] mentioned in the title is actually a proof of what might be called "almost a fixed-point theorem", in this case one that asserts that for a semigroup \(\Phi \) of continuous affine maps in a compact convex set \(K \) there will be, under certain circumstances, some \(\bar{\varphi} \) in \(\Phi \) and some \(\bar{z} \) in \(K \) such that \(\bar{\varphi}(\varphi(z)) = \bar{\varphi}(\bar{z}) \) for every \(\varphi \) in \(\Phi \). Such theorems were established earlier by Peck [5] and Klee [3]; after Nikaidō, Cohen and Collins [2] were the first to observe that his proof established a theorem of the above sort. Here, using the same proof, we present a slightly more general version, Theorem 0 below [6], from which follow the above theorems as well as some others, including Kakutani's on equicontinuous groups.

Throughout, except in Theorem 0, \(K \) is a compact convex set in a real linear topological space \(E \) that is separated by its dual \(E' \), \(K^E \) is the set of all functions on \(K \) to \(K \) and has the product topology, \(\Phi \) is a subsemigroup of \(K^E \) and has all its elements affine, and \(\mathcal{V} \) is the closure of \(\Phi \) in \(K^E \). We recall that under these circumstances \(\mathcal{V} \) is compact, has its elements affine, and as a set of maps in \(K \) has the same fixed points as \(\Phi \). If \(\Phi \) is equicontinuous, then so is \(\mathcal{V} \), and hence the elements of \(\mathcal{V} \) are continuous and affine, \(\mathcal{V} \) is a subsemigroup of \(K^E \), and the maps \((\varphi, x) \to \varphi(x) \) and \((\varphi, \varphi') \to \varphi(\varphi') \) are continuous on \(\mathcal{V} \times K \) to \(K \) and on \(\mathcal{V} \times \mathcal{V} \) to \(\mathcal{V} \); in particular, \(\mathcal{V} \) is a compact topological subsemigroup of \(K^E \).

Theorem 1. If \(\Phi \) is equicontinuous there exist \(\bar{\varphi} \) in \(\mathcal{V} \) and \(\bar{z} \) in \(K \) such that \(\bar{\varphi}(\varphi(z)) = \bar{\varphi}(\bar{z}) \) for every \(\varphi \) in \(\mathcal{V} \).

From this there follow these fixed point results.

Corollary 1. If \(\Phi \) is equicontinuous and if given \(x \) in \(K \), \(\varphi \) and \(\varphi' \) in \(\Phi \), and \(U \) a nucleus in \(E \) there is some \(\varphi'' \) in \(\Phi \) such that \(\varphi''(\varphi(\varphi(x))) \to \varphi(x) \ast U \) and \(\varphi''(\varphi'(\varphi(x))) \to x \ast U \), then \(\Phi \) has a fixed point.
Kakutani's theorem that Φ has a fixed point if it is an equicontinuous group follows immediately.

Corollary 2. If Φ is equicontinuous and if given x in K, φ and φ' in Φ, and U any nucleus in E there is some φ'' in Φ such that $\varphi'\varphi''(x)$ $=$ $-\varphi'(\varphi''(x))$ $= U$, then Φ has a fixed point.

Corollary 2 is a variant of the Markoff-Kakutani theorem; commutativity has been replaced by equicontinuity plus a weak form of commutativity. It implies I.2.13 of [1].

To obtain these from Theorem 1 we use the following, the proof of which is postponed to the end of this section:

Lemma. If Φ satisfies the hypotheses of Corollary 1 or of Corollary 2, then so does Ψ.

Thus under the conditions of Corollary 1 we know from Theorem 1 that there are x and φ such that $\varphi(x) = \varphi'(\varphi''(x))$ for every φ in Ψ, and from the lemma that given any y in Ψ and any nucleus U in E there is some φ' in Ψ such that $\varphi'(\varphi''(x)) = y U$. Thus $\varphi(x) = \varphi'(\varphi''(x))$ for every φ in Ψ.

Theorem 3. In view of the remarks preceding it, will clearly result from the following:

Theorem 0. Let K be a compact convex set in a real linear topological space E having in its dual subset K^* that separates points of K. Let Ψ be a semigroup of continuous affine maps of K into K and suppose Ψ has a compact topology such that $f(\varphi)$ is, for each f in K^*, continuous on $K \times K$. Then there exist Ψ in Ψ and x in K such that $\varphi(x) = \varphi'(\varphi''(x))$ for every φ in Ψ.

For each finite set y in K^* and each finite set δ in Ψ let

$$\mathcal{A}(\gamma, \delta) = \left\{ \varphi(x) : f(\varphi(x)) = f(\varphi'(\varphi''(x))) \right\}$$

for every φ in Ψ. Define $\mathcal{A}(\gamma, \delta)$ as the set of all $\varphi(x)$ for which there exists a φ' in Ψ such that $f(\varphi'(\varphi''(x))) = f(\varphi(x))$ for every φ in Ψ.

Since $\Psi \times K$ is compact and K^* separates K, it is enough to show that each $\mathcal{A}(\gamma, \delta)$ is closed and non-void. But $\mathcal{A}(\gamma, \delta)$ is closed since $f(\varphi'(\varphi''(x)))$ is continuous in Ψ for each φ and $f(\varphi''(x))$ is continuous in Ψ for each φ.

To show that it is non-void suppose $\gamma = (\gamma_1, \ldots, \gamma_n)$ and $\delta = (\delta_1, \ldots, \delta_n)$. Let $\sigma = \frac{1}{n} \sum \gamma_i \delta_j$. Then σ is continuous and affine in K and hence has a fixed point x. Define T on Ψ to K^* by $T(\varphi) = \left\{ f(\varphi(x)) : f(\varphi'(\varphi''(x))) \right\}$; clearly, T is continuous.

Since

$$f_i(\varphi(x)) = f_i(\varphi'(\varphi''(x))) = f_i\left(\left\{ \varphi(x) \right\} \right) = \frac{1}{n} \sum_{j=1}^{n} f_i(\varphi_j(x)),$$

we have

$$T(x) = \frac{1}{n} \sum_{j=1}^{n} \left\{ \mathcal{A}(\gamma, \delta) \right\}.$$

The function $\|T(x)\|$ being continuous on compact Ψ, attains its maximum at some φ; then

$$\|T(x)\| = \frac{1}{n} \sum_{j=1}^{n} \|T(\varphi_j(x))\| \leq \frac{1}{n} \sum_{j=1}^{n} \|\mathcal{A}(\gamma, \delta)\|$$

and hence $T(x) = T(\varphi_j(x))$ for all φ_j. Thus $f_i(\varphi_j(x)) = f_i(\varphi(x))$ for all φ_j and so $\mathcal{A}(\gamma, \delta)$ is not void.

Reverting to the proof of the lemma, suppose Φ satisfies the hypotheses of Corollary 1. Then Ψ is equicontinuous; and given x in K, φ and φ' in Ψ, and any nucleus U in E, some φ'' in Φ must be such that $\varphi''(x) = \varphi'(x) U$. We may suppose U to be closed. Choose nets (φ_n) and (φ'_n) in Ψ converging to φ and φ' in K^*.

From the assumptions on Φ there is for each φ'' some φ'' in Φ such that $\varphi''(\varphi''(x)) = (\varphi''(x)) U$. Thus $\varphi''(\varphi''(x)) = (\varphi''(x)) U$. Since Ψ is compact, the net (φ'_n) converges to some φ''. From the remarks preceding Corollary 1, Ψ is a topological semigroup; hence φ'' converges to φ''. For φ'' in K^*; thus $\varphi''(\varphi''(x))$ converges to $\varphi''(\varphi''(x))$ and $\varphi''(\varphi''(x))$ to $\varphi''(\varphi''(x))$ in E, so that $\varphi''(\varphi''(x)) = \varphi''(x) U$. Since U is closed, we have $\varphi''(\varphi''(x)) = \varphi''(x) U$. It follows from this that $\varphi''(\varphi''(x)) = \varphi''(x) U$.}

A similar proof covers the case of Corollary 2.

From Theorem 0 there also follow earlier, simpler theorems due to Peck ([5], 2.13), and due to Peck ([5], 2.13) and Collins theorem (Theorem 2 of [2], and II.3.14 of [1]).

For other applications let S be a set and Φ a semigroup of transformations in S. Let E be a linear topological space of functions on S and for each x in S and each φ in Φ let $T(x) = x(\varphi)$. Suppose K is a compact convex set in E such that $T(x) = x(x)$ for every x in K. If there is a compact topology for $\mathcal{F} = \{ T : \varphi \in \Phi \}$ such that $(T, \varphi) \rightarrow (x, \varphi)$ is continuous on}

$$\|T(x)\| = \frac{1}{n} \sum_{j=1}^{n} \|T(\varphi_j(x))\| \leq \frac{1}{n} \sum_{j=1}^{n} \|\mathcal{A}(\gamma, \delta)\|$$

and hence $T(x) = T(\varphi_j(x))$ for all φ_j. Thus $f_i(\varphi_j(x)) = f_i(\varphi(x))$ for all φ_j and so $\mathcal{A}(\gamma, \delta)$ is not void.

Reverting to the proof of the lemma, suppose Φ satisfies the hypotheses of Corollary 1. Then Ψ is equicontinuous; and given x in K, φ and φ' in Ψ, and any nucleus U in E, some φ'' in Ψ must be such that $\varphi''(\varphi'(x)) = \varphi'(x) U$. We may suppose U to be closed. Choose nets (φ_n) and (φ'_n) in Ψ converging to φ and φ' in K^*. From the assumptions on Φ there is for each φ'' some φ'' in Φ such that $\varphi''(\varphi'(x)) = \varphi'(x) U$. Since Ψ is compact, the net (φ'_n) converges to some φ''. From the remarks preceding Corollary 1, Ψ is a topological semigroup; hence φ'' converges to φ''. For φ'' in K^*; thus $\varphi''(\varphi''(x))$ converges to $\varphi''(\varphi''(x))$ and $\varphi''(\varphi''(x))$ to $\varphi''(\varphi''(x))$ in E, so that $\varphi''(\varphi''(x)) = \varphi''(x) U$. Since U is closed, we have $\varphi''(\varphi''(x)) = \varphi''(x) U$. It follows from this that $\varphi''(\varphi''(x)) = \varphi''(x) U$.}

A similar proof covers the case of Corollary 2.

From Theorem 0 there also follow earlier, simpler theorems due to Peck ([5], 2.13), and due to Peck ([5], 2.13) and Collins theorem (Theorem 2 of [2], and II.3.14 of [1]).

For other applications let S be a set and Φ a semigroup of transformations in S. Let E be a linear topological space of functions on S and for each x in S and each φ in Φ let $T(x) = x(\varphi)$. Suppose K is a compact convex set in E such that $T(x) = x(x)$ for every x in K. If there is a compact topology for $\mathcal{F} = \{ T : \varphi \in \Phi \}$ such that $(T, \varphi) \rightarrow (x, \varphi)$ is continuous on
T \times K to K, then there are \exists in K and \varphi \in \Phi such that \exists \varphi(s) = \exists \varphi'(s') for every \varphi in \Phi and every s in S. If, moreover, given any s, s' in S there are \varphi, \varphi' in \Phi such that \varphi(s) = \varphi'(s'), then \exists \varphi is a constant element of K.

More particularly, if S is compact regular and \Phi is a semigroup of transformations in S such that \Phi has a compact regular topology such that \varphi \times s \to \varphi(s) is continuous, and if F is a complete locally convex topological space and E is the space of continuous functions on S to F topologized by uniform convergence, let \Omega_s = \{ \varphi(s) : \varphi \in \Phi \} for each s \in S and \Omega = \{ \Omega_s : s \in S \} = \Omega. Then for each \varphi in \Phi and \varphi in \Phi such that \varphi \varphi(s) \to \varphi(s) for all \varphi and s; if, moreover, given \varphi, \varphi' in \Phi such that \varphi(s) = \varphi'(s'), then for each \varphi the function \varphi_{s} is constant. For, the map \varphi \to \varphi_{s} is uniformly continuous and hence the map \varphi \to \varphi_{s} is continuous on \Phi \times \Phi to E. Clearly \Omega is then compact for each s and so therefore is \Omega since E is complete. Applying the preceding paragraph to \Omega_{s} for each \varphi yields the above conclusion [4].

References

THE UNIVERSITY OF NORTH CAROLINA, CHAPEL HILL

Reçu par la Rédaction le 5. 7. 1968

On equations with reflection

by

D. PRZEWORSKA-ROLEWICZ (Warszawa)

If an equation contains together with the unknown function \varphi(t) the value \varphi(-t), then it will be called an equation with reflection. For example, the differential equation

\begin{equation}
\frac{d\varphi(t)}{dt} + b_1 \varphi(-t) + a_1 \varphi'(t) + b_2 \varphi''(-t) = y(t)
\end{equation}

is an equation with reflection.

Let us denote the reflection by S. Since S^2 = I, where I is identity operator, S is an involution. The differentiation operator D is anticommuting with S. Indeed,

\begin{equation}
(SDx)(t) = \varphi'(-t), \quad (DS\varphi)(t) = \varphi(-t) = -\varphi'(-t) = -(SD\varphi)(t).
\end{equation}

Hence SD + DS = 0.

In this paper we shall consider a linear equation

\begin{equation}
(a_1 I + b_2 S)x + (a_1 I + b_2 S)Dx = y,
\end{equation}

where S is an involution on a linear space X, D is a linear operator acting in X and anticommuting with S, and \alpha_1, b_2, a_1, b_2 are scalars.

As examples we shall consider equation (3) and an integral equation of form (2).

1. Let X be a linear space (over complex scalars). Let S be an involution: S^2 = I on X. Let

\begin{equation}
P^+ = \frac{1}{2}(I + S), \quad P^- = \frac{1}{2}(I - S).
\end{equation}

The following properties of an involution, shown in [1] (see also [2]) will be used further:

\begin{itemize}
\item 1st The operators P^+ and P^- are disjoint projectors giving a partition of unity:
\end{itemize}

\begin{equation}
(P^+)^2 = P^+, \quad (P^-)^2 = P^-, \quad P^+ + P^- = I
\end{equation}

Moreover, P^+ = P^+, S P^+ = P^+, S P^- = -P^-.