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Conversely, if 1< liminfp; and limsupp; < oo, then lemma 2- shows
us that I(p:) =2 1{(p:)*™* and, since this isomorphism is the natural imbed-

ding, 1(p;) is reflexive.
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Boundedness in certain topological linear spaces
by

B. A, BARNES* and A. K. ROY (Bombay)

1. Introduction. Throughout this paper we assume that {pr} is
a sequence of real numbers such that 0 < p, << 1 for all k> 1. We also
write this sequence as {p(k)} when this is convenient. Several authors
have considered the topological linear space [(pz) of complex sequences
{bx} with the property that

o({Br}) = X ™™ < oo,
k=1

where the funetion o defines an invariant metric on I(pz) by d({bs}, {az})
= o({bx— az}) (see [4] and the references of [4]). I(px) is & complete metric
linear space with this metric by [4], Lemma 1, p. 423. Most of the interest
in the spaces I(pz) has been confined to the cases where inf pr > 0. Then
l(px) is a locally bounded topological linear spaee in its metric topology
by [4], Theorem 6, p. 430. Also in this case a set is bounded if and only
if it is bounded in metrie by the same theorem. The space I(p;) has quite
different topological properties when inf pz = 0. In this paper we in-
vestigate the bounded sets of I(pz) in the case limp; = 0 and the weakly
bounded sets in I(p;) with a slightly strenger assumption on {p;}. Our
results contrast sharply with those concerning houndedness and weak
boundedness in the case inf p;. > 0. We prove in Section 2 that if limp, = 0,
then a bounded set in I(pz) is always totally bounded. In Section 3, with
a slightly stronger hypothesis on {px}, we prove that a weakly bounded
set in I(pr) is always totally weakly bounded. The last section is devoted
to the consideration of questions concerning boundedness with respect
to k-psendometrics.

After this paper was sent for publication, we learnt that S. Rolewicz
had considered some of the matter presented herein an earlier paper [2].

* The research for this paper was done while this author was a visiting fellow
at Tata Institute of Fundamental Research, Bombay.
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2, Bounded sets. In this section we assume that limp, = 0. As
we note following Theorem 2.2, this assumption is necessary for the con-
clusions of this section to hold. Given any non-empty set B in I(ps),
define

My(B) = sup |b"®.
PpeB

We shall always assume that the sets B we discuss in this paper
are non-empty so that My(B) is always defined. Now we characterize
the bounded sets in I(py).

THEOREM 2.1. Assume that limpy = 0. Then a set B is bounded in
l(p,,) if and only if

(1) My(B) < oo for all £ >1.

+00
(2) Given any & > 0, there ewists an integer N such that I'Z B5"® < &
=Y

for all {br}eB.

Proof. First assume that B is bounded. Then B is bounded in the
metric of I(pr). (1) follows immediately from this remark. Suppose now
that (2) does not hold. Then there exists a number & >0, a sequence
of positive integers {m(j)}, and a sequence of elements {H{} = B such
that m(j) - 4+co a8 j ~ +oo and

D) PR > for all j>1.
k=m(j)

Let U be the open set {bel(py)|o(b) < &/2}. Since B iy topologically
bounded, there exists a non-zero number A such that AB < U. Since
limpy = ¢, we can choose K §o large that % > K implies M|”<k) =1/2.
Choose j such that m(j) > K. Then

ol = ' APERPPO > g2,
k=m(f)

This contradiction proves that (2) must hold.

Conversely assume that (1) and (2) hold for the set B. Given any
8>0, let U ={bel(px)|o(b) < 8}. We shall choose a >0 such that
aB = U. First by (2) we can choose N so large that IZN|bh|p " < /2

i

for all {bx}eB. Next by (1) we can choose a number M > M (B) for
1<k<X¥. Let p =min(p,, ps,...,»n). Finally choose a such that
0<a<1l and ¢ < §/2NM. Then for any {b;}¢B,

N N
ol{abid) = Y iabil"®+ 3 abuP® < 3 a”br+ 3 (b,
k=1 k>N k=1 k>N

< 8)2+5[2 = 6.
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When infpy >0, Simons has shown ([3], Theorem 6, p. 430) that
a set in I{py) is bounded if and only if it is bounded in metric. Tn particular,
the open balls

{02} sl(pk)lg’ Bl = o({Ba}) < ¢}

are always bounded in this case. In contrast when limp; = 0, every
bounded set in I(p;) is nowhere dense. For assume that B is a closed and
bounded set and B has a non-empty interior. Then there is an & >0
and {ax}eB such that the open ball

{8} elpi)| e{ar—bi}) < ¢} = B.

_ Define for each j>1,d = a, k =4,bP = a;—(e/2)*D. Then
(BP1eB, j = 1,2,... Now given any positive integer N, then whenever
j=¥,

(=] o0
D PO > ef2— 3] jay®.
k=N k=N

Since 3 a" 0 as N > 4o, this contradicts Theorem 2.1 (2).
=N

Now we prove that bounded sets are always totally bounded when
limp, = 0.
THEOREM 2.2. Assume that impy = 0. Then if B < I(pg) is bounded,
B is totally bounded.
Proof. Assume that B is a bounded set in I(px), and & > 0 is given.
By Theorem 2.1 we can choose N so large that ;,Z [0?® < g/4 for all
A

{bx}eB. Let = be the projection of I(p;) onto N-dimensional compléx
Euclidean space 0~ given by a({bx}) = {by, bs, ..., by}. Then the metrie
determined by

N
Qo({bly ey bN}) = Z !bk]p(k)
k=1

is equivalent to the usual Euclidean metric on ¢. Therefore m(B) is
a totally bounded set in 0V and we can choose ay, dy, ..., Gy ex(B) such
that whenever bem(B), then pg,(b—a;)<ef2 for some j,1<j< n.
Choose a sequence {b{}en*(a;) ~ B for each j, 1<<j< n.

Now assume that {bs}eB. Choose j such that g,(m({bs})—a;) < £/2.
Then

N ,
o (=0 = D bp— PO+ 3T p— BP0 < oj2+ (c/4+2/4) = .

=1 K=

This completes the proof.
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COROLLARY 2.83. Assume limp;; = 0. Then a set B < I(pz) is compact
if and only if B is bounded and closed.

Proof. I(py) is a complete metric space by [4], Lemma 1, p. 423.
Then if B is closed and bounded, B is totally bounded and complete.
Hausdorff’s Theorem on Total Boundedness ([1], Theorem 7.6, p. 61)
implies that B is compact. The converse is immediate.

We remark that Theorem 2.2 and Corollary 2.3 do not hold when
limsuppy, > 0. For assume limsupp; > 0. Then there exists a sequence
of distinet positive integers {m (%)} and a number & > 0 such that pug > e
for all k> 1. Let 5™ be the sequence which is 1 in the m (k)-th place
and 0 everywhere else. Let B = {b‘k’lk;],}. Given any number A

|A| < 1, then (4b®™) = [AP(™®) < [A|* for all & > 1. Therefore B is bounded -

in I(pz). Also B is closed in I(pz). But (8™ —b™) = 2 whenever n == m,
so that B is not compact. Thus B is also not totally bounded.

3. Weakly bounded sets. The space of continuous linear functionals
on I(pz) can be identified in the natural way with the set of all complex
sequences {@} such that sup|Py["® < +oo; see [4], Section 3. This

k

space is denoted by m(ps). Now we characterize weak houndedness in
U(px). To prove the first part of the characterization only the condition
limp; = 0is required. The converse is proved assuming a stronger condition
which is discussed following the proof of the next theorem.

TEEOREM 3.1. Assume that imp, = 0. If B is a weakly bounded
subset of 1(py), then My(B) is finite for all k> 1 and limM;(B) = 0.

Proof. Assume that B is a weakly bounded subset of I(py). Then
it is obvious that My (B) is finite for all & > 1. Suppose there is a number &
with 0 < & < 1 such that My (B) > ¢ for an infinite number of k. In this
case we shall prove by induction that there exists an infinite sequence
{4} = B and a stictly increasing sequence of positive integers {g(j)}
such that for every m > 1:

@) (BHPE™ > e,
m—1

) D) My (BYPEIN(1 et < g=imtaom) iy
j=1

and

(3) [Bily] (L]0 < (1 [2)F g imiady

for all j, % such that j < k < m.

First since My (B) > & for some %, we can choose {b{'}eB and ¢(1)
2 positive integer such that [B{)[P“ >¢. Now assume that {1}, ...
< (B and g(1),..., g(m) have been chosen satistying (1)-(3). For
any {bx}el(pr), Lim|be|(1/e)*® = 0. Therefore there exists M = 0 such
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that whenever & > M, then [B{)](1/e)¥?® < (1 [2y"™+! g~ Yp@d) g0 1 <j< m.

Since pr — 0 and & < 1, there existy ¥ >0 such that whenever # > N,
then

m

7 Mgy (BYPO (1 fgypintady - o—1upim) 4. i
=1

Let XK = max(¥, M, g(m)+1). By hypothesis we can choose
{bx}eB and # > K such that [5,"™ > ¢. Let {5} = (b} and g(m-+-1)
=n. By this choice obviously [bpi["®™+) = ;. Also since g(m-+1)
>E> N,

m
D My (B)P09) (1 5)2ipach) - g=im(am-+1) /4.
J=1

Thisiverifies (1) and (2) for m4-1. Now (3) holds by the induction
1'1ypothes1s whenever j << k <\ m. Therefore it remains to prove (3) when
J<k=m-+1. In this case ¢(m+1)> K > M, so that

]bng ' (1 /8)2/p(q<m+1)) < (1 /2)m+1 &= Un(ac)

whenever 1 < j < m. Thig completes the induetion. .
We define an element {@}em(p;) by Dygy = (L[e)P0M for j =1
and @ = 0 for all other values of k. Then for any m >1,

l:§;b$9¢51=:|;§?bggdgﬁd

m
> by Dugml— D 1657 P
j#m

> &M — 3R Bg), by (1)
i=m
- 1 _
> e _ e N pmanl, by (@2)
J=m+1
3 1y
;z_a—l/zz(a(mn_ Z (E) E—l/p(qmm’ by (3)
J=m41
1
> Z P 1/n(aem) .
Therefore
\ s
]ZIbgn)@nl—»—l—oo as m > +oo.
N=1

This contradicts the assumption that B is weakly bounded. Therefore
the theorem follows.
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Since 0 < py < 1 for all & > 1, then ¢ = 1/(14px) has_the property
0 < gy <1 for all k> 1. Therefore it makes sense 0 cons1de%' Al<q")' In
order to prove a converse of Theorem 3.1, a st.ronger condition than
Limp; = 0 is necessary. This condition is the requivement that I(g;) = I,
where I, is the space of absolutely convergent sequences. By [41, Theorem 3,
p. 426, a necessary and sufficient condition that I(gx) = I; is that there

[e2]
exists an integer N >1, such that 3 N ) « 4 oo where 1fmp-+1 /g, = 1.
=

1/mp+1)gp = 1 if and only if 1/m+ (1+ i) = 1 or @, = —1/p. Therefore
I1/(1+ps)) = & if and only if there exists an integer N >1 such that

;’N*”"(") < -oo. In particular, note that if I(g:) = li, then limp, = 0.
o
k=1 3 X
Sufficient conditions on {gx} such that I(g:) = I, arve given in [4], Corol-
laries 1 and 2, p. 427. Now we prove a converse of Theorem 3.1.
THEOREM 3.2. Assume that U1/(1+px) =lh. If B is a subset of
(pz) such that My(B) is finite for all k> 1 and UmMy(B) =0, then B
48 weakly bounded.
Proof. Let {@D;}em(ps) and ¢ >0 be given. We shall prove that
there exists a non-zero number i such that

9‘;”@ I byteB.
17%1 e k‘<e whenever {bg}e

Since {y}em(py), there exists M >0 such that |@,"") < M for
all ¥ > 1. Also by the remarks preceding this theorem, there exists a pos-

itive integer N such that 3 ¥N~'"® < 4 oco. Choose 6 such that ¢ <8 <1
k=1

and 6 < 1/N. Since My(B) — 0, we can choose K so large that & > K
implies that My(B)< 6. Then whenever {b;}eB and A is any number,

o K

| ) M| <14 D) uBal+ 121 D) (920
=1 k=1 KSK

K‘ 0

< (Y (nBuprO 4 3 -)

k=1 =1
clearly we can choose A small enough so the right hand side of this ine-
quality is less than ¢ whenever {bi}eB.

We remark that the condition I(1/(L+4p4)) =1, is necessary for

Theorem 3.2 to hold. For suppose that I(L/(1+pk)) # I,. Then by the

o

remarks preceding Theorem 3.2, the series 3 (1/n)**® diverges for every
k=1
positive integer ». Then it is obvious that we can choose a strictly increas-

m(n)
ing sequemce of positive integers {m(n)} such that 3  (1/n)"®

k>m(r-1)
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= n for all # > 1. Given any n > 1, define (" = 0, when k < m(n—1),
W) = (1/n)""™, when m(n—1) < &k < m(n), and b — 0, when k >m(n).
For every n >1, {bel(py). Let B = {86} 1n >1}. Then dearly
M (B) = 1/n whenever m(n—1)< k< m(n). Therefore My(B) -0 as
k —co. Now let {®y}em(py) be defined by &, =1 for all k& >1. Then

DD, =
k=1 k>m(n—1)
Thus the set' B is not weakly bounded.
Also we note here that these results concerning weak boundedness
are in sharp contrast to the results which hold in the case where inf P> 0.
For if inf p; >0, then the open balls {{bi} <l (ps)]o({Br}) < e} are always
weakly bounded. This follows easily from the fact that the topological
dual of I(py) in this case is the space of all bounded sequences; see [4],
Theorem 9, p. 434. But an argument similar to the one following Theorem
2.1, proves that when lim p; = 0, then every weakly bounded set is nowhere
dense. In particular, the open balls given above are not weakly bounded.
Now we prove that every weakly hounded set is totally weakly
bounded when I(1/(1+4py)) = ;.
TerorEM 3.3. Assume I(1]/(1+pr) =1, Then if a set B < I(py) is
weakly bounded, B is totally weakly bounded.
Proof. Assume that B is a weakly bounded set in I(ps). Suppose
e>0, and {OP}em(pr), 1 <j< n, are given. First there exists M > 0
such that |OPP® < M whenever k>1 and 1<j<n. Next since

m(n)

L) >0 for all m >1.

1(1/(1+pz)) = I, we can choose a positive integer N such tha;bkz N-UPE
=1

< +co. Since B is weakly bounded, there exists A > 0 such that k> K

implies My(B) < 1/NM. Then choose and fix a positive integer L such

that L > K and ) N~""® < ¢/4. By an argument similar to part of the
KL

proof of Theorem 2.2, we can choose {5}, ..., {b{™}eB with the prop-
erty that given any {bi}eB, there exists 4, 1 < ¢ < m, such that

s
JZ(bk-—bsﬁ)qﬁg’)] <ef2 for 1<i<n.
k=1

Then given any {b:}<B, we choose {by)} with the property above, and
then for 1 <<j<n,
[S) L
| D = b0 < | 3 t— b)) |+ 3 230, (B) 0 are0
=1 E=1 E>L )

<sf242 D NTUPH

E>L
< ef24¢el2 = ..
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This proves that B is totally weakly bounded.

COROLLARY 3.4, Assume L(1[(1+pe) =l Then a set B < 1(py) is
weakly compact if and only if B is weakly bounded and weakly complete.

This Corollary follows directly from Theorem 3.3 and [1], Theorem
7.6, p. 61.

4. Sets bounded with respect to k-pseudometrics. We take the following
definitions from Simons’ paper [3]: Let X be a real or complex linear
space. Then a function d:X —R* (the non-negative real numbers)
is an invariant pseudomeiric if d is not identically zero on X and d(0) = 0,
d(—o) = d(z) for all z<X, and d{z+y) <d(2)+d(y) for all &,yeX.
A function d as above is called a k-pseudomeiric, where 0 < k <1, if @
is an invariant psendometric and d(ix) = W’cd(m) for all weX and all
scalars A. Finally, a topological linear space is an upper bound space if
there is a family {d,} of continuous k-pseudometrics on X which define
(in the usual manner) the topology of X. When inf p; >0, the space
1(px) is an upper bound space by [4], Theorem. 6, p. 430, and [3], Theo.rer.n },
p. 170. In any upper bound space a set is bounded if and onmly if it is
bounded with respect to every k-pseudometric; see [3], Theorem 6, p. 179.
When inf p; = 0, it can be shown that I(p;) is not an upper bound
space. When I(1/(1+ pr) =1y, not only is I(px) not an upper bound
space, but we have the following result (compare with the remarks
above).

THEOREM 4.1. Assume l(l/(1+pk)) =1,. A set B < l(px) is weakly
bounded if and only if B is bounded with respect to every continuous k-pseudo-
metrie (0 <k <1) on I(pz).

Proof. Given {®i}em(py), then

ad) = | 3 v

is a continuous 1-pseudometric on I(py). Thus if B is bounded with respect
to every continuous k-pseudometric, then B is weakly bounded. Now
we prove the converse. Let d be a continuous k-pseudometric on I(py).
Let e, be the sequence with 1 at the n-th place and 0 everywhere else.
Then

(¥)  There emists M >0 such that d(e,) < M**™ for all n > 1.

For suppose (*) does not hold. Then there exists a strictly increasing
sequence of positive integers {m(n)} and a sequence of positive numbers
M, where M, > +co, such that d(emm) > Mp?™™ for all # > 1. Then
d((1/M,L)1’1’(”""’)em(,,,)) >1 for all »>1. But g((l/Mn)”p(m‘”’)emm) =1/M,
—> 0. This contradiets the continuity of d, and hence () must hold.
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Now assume that B is weakly bounded in I(p,). First choose an
integer N >1 such that » N~"PM< fco. Next, since B is a weakly
n=]

bounded set in I(p,), by Theorem 3.1 we can choose an integer J such
that # > J implies M, (B)*M < 1 /N . Then whenever {bn}eB,

o©

d({bn}) < 2 ]bnlkd(en)
=1
< M (B3

n

I
-

D

< M B)’f/ﬂ(") MR 2 N-lnm)

% n>J

I
—

< +oo.

This proves that B is bounded with respect to d.

An upper bound space has the property that a set is bounded in the
space if and only if it; is bounded with respect to every continuous k-pseudo-
metric by [3], Theorem 6, p. 179. To our knowledge it is an open question
whether this property characterizes upper bound spaces; see [3], p. 180.
Next we consider this general question in the special context of the spaces
Upw). If I(ps) is not an upper bound Space, we construct an example
of a set B in I(p;) which is bounded with respect to every continuous
k-pseudometric on I(py), but which is not bounded.

Assume I(pg) is not an upper bound space. Then infp, = 0. We
can choose a strictly increasing sequence of positive integers {m(k)} such

that 3 (1/2)/P0"®) < oo, Set g = Pmgy for all £>1. Then by the
“

remarks preceding Theorem 3.2, I(1/(1+gx) =1,. ¥(g:) is imbedded
isometrically in a natural way in I(ps). It is enough for us to give an
example of a set B in I(gz) which is bounded with respect to every contin-
nous k-pseudometric on 1(g:), but which is not bounded in I(g;). To this
end we define b’ = 0 for k<n, b = (1/n)"™ for n < k < 2n, and
b = 0 for % >2n. The sequence {b"}el(gy) for all n>2. Let now B —
{00} In >2}. Let N be a positive integer. Take n> N. Then

oo
S _
k=N

Thus by Theorem 2.1, B is not bounded. Furthermore, M (B)
= sup [B{""™ = 1/k for k > 2. Therefore, by Theorem 3.2, B is weakly
n

mn

D i =1.

E=n41

bounded. Finally, by Theorem 4.1, B is bounded with respect to every
continuous %-pseudometric on I(gy).
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Bases and complete systems for analytic functions
by

J. B. COOPER (Clare College, Cambridge)

It E is a topological linear space, a sequence () in F is complete
if its linear span is dense in B. It is a Schauder basis if for every ¢ in F

there is & unique sequence of scalars (&) such that z = D Ex@r, and the
k=1

maps # — & are eontinuous for each %. Perhaps the most natural example
of a space with a basis is the space of functions which are analytic on the
unit dise U = {z:[2| < 1} in the complex plane. We give this space the
topology of uniform convergence on compact subsets of U and denote
it by P(U). Then (2") is a basis for P(U).

If B is any loeally convex space we will denote by P(E; U) the space
of analytic functions from U into F again with the topology of uniform
convergence on compact subsets of U. The reader is referred to Grothen-
dieck [2] for definitions and basic properties of vector-valued analytic
functions. Then if B is complete, P(E; U) = P(U)®E the projective
topological tensor product of P(U) and E. The purpose of this paper is
to derive some theorems in bases and complete systems in tensor products
of locally convex spaces and to use them to extend known results for
P(U) to P(E; U). We will find it convenient to assume F complete and
barrelled although more general hypotheses could be nsed for some results.

Firstly we give a criterion for a sequence in a locally convex space
to be a basis. This is a generalisation of Grundblum’s well-known result
for Banach spaces.

PROPOSITION 1. Let (z.) be @ complete sequence in a barrelled locally
conver space E. Then the following are equivalent:

(1) (@) is a Schauder basis for E;

(2) (2) is a Schauder basis for (B, o(H, B')):

(3) for every continuous seminorm q on F there is & continuous semsi-
norm p on B such that for all positive integers v, s and all scalars (t1, ..., 15 s),

r 48
(4) Q{ yii$¢}< P{ tTmz}
=1 1

%
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