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Introduction. Mikusiiski [3] has defined a new type of functions,
namely operational functions as mappings from the field R of real numbers
to the field @ of operators of Mikusinski. His definition of continuity
and differentiability in this class of operational functions has a defect,
for there are continuous operational functions that are not differentiable.
So it is desirable to construct a new class of functions which contains
all continuous operational functions and in which the derivative is defined
in such a way that every element of this new class has derivatives of all
orders. Following Mikusifiski and Sikorski [4], we construct and study
one such class, called generalized operaiional fumctions.

In section 1 we deal with the definition of a generalized operational
function and discuss a few elementary properties of those functions.
In section 2 we define the value of generalized operational functions
and prove an existence theorem.

1. We begin with some definitions.

Definition 1.1 [3]. An operational funclion is a function f which
assigns an operator f(#) to each non-negative real number 6.

Definition 1.2 [3]. An operational function f is said to be a para-
metric operational function if each value f(0) is itself an operator of a special
kind, namely a function of the real variable, say ¢.

Definition 1.3 [3]. An operational function f is called continuous
i 0< 0 < oo, if it can be represented in [0, co) as a ratio f((8)fa (1),
of o parametric operational function f,(6) = {f1(0,?)} and an operator
o equal to a continuous function {a (i)}, 0 < ¢ << oo, where the function
a(t) is not identically equal to zero, such that the function f,(6, ) is con-
tinuous in the domain D(0 < § < o0, 0 <t < 00).

Definition 1.4. Two continuous operational functions f and g are
said to be related — in symbols f ~ g — where f(8) = {f(0, ©)} ${a(®)} (?)
and ¢(0) = {g(0, )} %{d()} if and only it f(6,%)*b(!) = g(8,¢)*a(?).

() % stands for convolution quotient.

(%) For the sake of typographical convenience we omit the braces hereafter.
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The relation ~ can be seen to be an equivalence relation which
divides the class of all continuous operational functions into mutually
disjoint classes.

Hereafter, whenever we say a continuous operational funetion f, we
mean an equivalence class of elements of the form f(0)%a representing
the function.

Remark 1.5. Obviously, all continuous operational functions form
a real veetor space with the usual addition and multiplication by real
scalars.

Definition 1.6. A sequence f, of continuous operational functions
is said to converge to o continuous operational function f if there exist a se-
quence of parametric operational functions f,(0, 1), a parametric opera-
tional funetion f(6,?) and a continuous function a(t) such that f,(0)
= fo(0,1) 3a(2), f(0) = f(0,1)fa(t) and f.(6,t) converges almost wuni-
formly to f(8, 1), i.e. converges uniformly over every bounded rectangle
in the domain D. . -

As in the case of continuous functions, we say that a continuous
operational function f has the continuous operational function g as o deri-
vative it (vaf—f)[h tends to g as & tends to zero, where 7,f(6) = f(0- h).
It is easy to see that there exist continuous operational functions which
are not differentiable. To meet this situation, we construct generalized
operational funections.

Definition 1.7: A sequence f, of continuous operational funections
is said to be fundamental if and only there exist a non-negative integer
k and a sequence F, of continuous operational functions such that

(i) £u(8) = F0(0);

(ii) Fn(0) converges in the sense of definition 1.6; or, equi-
valently,
Py
() £al6) =~ Fu(6, 1) 2a(0);

(ii) Fn(6, ) converges almost uniformly.

The following are immediate consequences of the above defi-
nition.

1. For & =0 all convergent sequences of continuous operational
functions are fundamental.

2. For £ =0 and ¢ = 1, all almost uniformly convergent sequences
of continuous funetions in the variables 6 and # are fundamental.

3. I f, has a continuous m-th derivative and if f, is fundamental,
then the m-th derivative of 7, is also_fundamental,

4. The order % can be rgyﬁéé’&”ﬂg\a‘ny greater order m.
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Indeed,
] ]
Gul6) = [ .o [Fa(6yas
0

0
(m— L) times

also satisfies (i) and (ii) of definition 1.7 if 7, does.

Levma 1.8. For any two fundamental sequences f, and g,, the following
statements are equivalent:

(1) f1s 915 Fos 42y -
* @
(ii) fa(6) = T gn(8) = —BFG”(B’ tyfa(t) and

Fo(6,1) S Gu(0,1) (where X 3= means converging almost wiiformly to
the same limit);

s fundamental;
Y3
Fu(6, 1) 3a(1),

v v

0
(i) £2(0) = 25z Fal0, 0200, 4a(0) = =5

Fo(0,8)*b(2) 232G, (0, t)*a(t).
Proof. (i) = (ii). Indeed, by hypothesis f,, g1, fos gs, ... is funda-
mental. This asserts that we can find a sequence F, (6, 1), &1 (0, 1), Fy(0, t),

G (0,8)%b(t) and

@:(0,1),... of continuous operational functions, a continuous funetion
a(t) and a non-negative integer % such that
6k i
10) = 5 o0, 013000, 0a(6) = oz 6206, D ¥a(t), ...

and Fy(0,1), G(9, 1), Fo(0,1),Gs(0, 1), ...
which is precisely (ii).
(ii) = (iii) by putting a(f) = b(f) in the representation of g,(8).
(iii) = (i). Assuming (iii) we have

converges almost uniformly,

%

0
f'n,(g) = —55},'1(11:,(07 '[’):a(t)

ak
= (b(t) * 5w In(0 i)) % (a()*b(2)

alc
= (W (Fn(8, 1) b(t))) HUORIO)

* - .
_ (W’ (0, t))*e(t),
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where F, = b*F,, 6= a*b, and
'

T

ga () Ga(6,1)30(?)

3
_ [a(t)* (0, t)]i[a(t)*b(i)}
ak

= W(G‘n(@, 1) *a(t)) $a(t) *b(1)

>
= (5 &0, 1) 2000,
where G, = Gn*a and G, T F,. This is precisely the definition of
f1s 915 f2, Gy ... being fundamental.

Definition 1.9. We say that two fundamental sequences f, and g,
are related — in symbols f, ~ g, — if one of the three conditions of the
above lemma holds.

It is easy to see that the relation ~ is an equivalence relation dividing
the class of all fundamental sequences of continuous operational functions
into mutually disjoint classes.

Definition 1.10. A generalized operational function is a clags of
equivalent fundamental sequences of eontinuous operational functions
and in symbol we write f = [f,].

Remark 1.11. Every continuous operational function fean be viewed
a8 a generalized operational function since f = [f,] where fo =1

Lmvowa 1.12. If two fundamental sequences f, and g, have continuous
m-th derivatives and if fn ~ gn, then fI™ ~ g™,

Proof. If f, and g, satisfy one of the equivalent conditions of Lemma
1.8, say condition (ii); then f{"™ and g™ satisfy that condition by replacing
k by E-+-m.

Algebraic operations on generalized operational functions.

Definition 1.18. Multiplication by an operator a:

@) If fu 4s fundamental, so is of,.

By this property we can extend this operation onto arbitrary gener-
alized operational functions f = [f2] by assuming af = [af,].

(i) This representation is independent of the choice of f,.

Indeed, if f, ~ g,, then of, ~ afn, Since, taking into account that

J1381, fay 92, ... i3 fundamental, we find that of1y oy, afs, 0oy ... 18
also fundamental by (i).
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Definition 1.14. Addition of two generalized functions:

(@) If fu and g, are fundamental, so 8 fn-+ gn.

Indeed, f.(0) = (0" F,(0,1)/06%) ta(t) and F,(0,t) converges almost
uniformly; g.(8) = (9" @ (0, 1)/06™) £b(2) and G, (8,1t) converges almost
uniformly.

We can assume % = m since each of the orders % and m can be arbi-
trarily enlarged. Then

2
Tu(6) + g (6) 2(5657?{-5171.(97 1) *b (1) +Gn (8, t)*a(t)}) a®)*b()

and Fn*b+@,*a converges almost uniformly.

This operation can be extended onto the class of generalized opera-
tional funetions in virtue of this property by assuming f-g = [fo-+gnl,
where f = [fu], g = [ga].

(ii) This representation is independent of the choice of fy and gn by (i).

Definition 1.15. Multiplication of two generalized operational func-
tions:

(@) If fo and g, are two fundamental sequences, $0 18 fngn.

Indeed,
) ak ™ .
Fu002(0) = (355 Fa(0, 0% 5000, ) a0 22(0)
ak+m
= (5w (0, 9%60(6, 1) 3 ath#010)

and F,+*@, converges almost uniformly.

This operator can be extended onto arbitrary generalized operational
functions by assuming fg = [fuga], where f = [fu], g = [gn].

That this representation is independent of f, and g, can be proved
by (i)

Definition 1.16. By the translation of a generalized operational
function f = [f,] through a distance % we mean the generalized operational

function v.f = [afa]. Bt

Luvma 1.17. 4 sequence of polynomials 3 ay;(t)6' of degreekle.fs than
7=0 = .
a positive integer L converges almost uniformly to « polynomial on a; ()¢

of degree less than ¥ if and only if the sequence of continuous functions
{an; ()} comverges almost wuniformily.

The proof follows from the well-known Weierstrass approximation
theorem, where the constants arve replaced by functions and the con-
vergence of the coefficients is taken to be the almost uniform convergence.
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Definition 1.17. A continuous operational function p is called
a polynomial operational function of degree less than k, where

E-1
p(0) =p(6,0)ia(t), i p(0,1) =f_2 ()0,
=0

where the coefficients a;(f) are continuous functions of the variable t,
is a polynomial of degree less than Z.

THEOREM 1.18. A sequence p, of polynomial operational functions
8 fundamental if and only if it converges in the sense of definition 1.6,

Proof. By definition 1.7 (1), the sufficiency follows. To prove the
necessity, since p, is fundamental, we have

+ - dk

_’pn(ﬁ) = f‘j;'Pn(oi t) iw(t)
a0

and p,(0,1) converges almost uniformly.

‘By Lemma 1.17, the coefficients of P,(8,t) converge almost uni-
forn_]ly. Therefore, the coefficients of 9P, (0, 1)/6" converge almost
uniformly, i.e. p, converges in the sense of definition 1.6.

TeEOREM 1.19. Bvery fundamental sequence of continuous operational
Junctions has an equivalent fundamental sequence of smooth (differentiable
any number of times) operational functions.

Proof. Sinee f, is fundamental, we have

k

) .
Fal6) = oz Fu (8, ) 2a(t)

and F,(0, ) converges almost uniformly to F(0,1). Let p,(0,1) be a se-
quence of polynomials in §,¢, converging almost uniformly to (6, 1).
Then
%
Pu(0) = an(ey 1) %a(t)

is the required sequence of smooth operational functions.

By Theorem 1.19, we find that every generalized operational funetion
J can be represented by [p,], where Dn are equivalent fundamental se-
quences of smooth operational functions.

. As in the case of functions, the derivative 7' of a generalized opera-
tional function f could be defined as

= ,
AN )
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and we notice that

T PR s 3}

[NCIE s h
h P 0,1 —] n
=Lt(T’pL( H ) P (ﬂ,t))ia,(i)
h0 h

d
= “.:pn(ﬁs t)ia(t)

a6
wf—f
h

Therefore f' == Lt = [pn]. Hence we have
0

THEOREM 1.20. Hvery generalized operational function f has o deri-
vative f' represented by [pn]. :

LeymA 1.21. If a sequence of continuous operational functions Fp -
converges to I in the sense of Definition 1.6, then F = [F,]. :

Indeed, since ¥ is a continuous operational function and F, and F
satisfy Lemma 1.8 (ii) with k¥ = 0, the lemma follows.

THEOREM 1.22. Bvery generalized operational function is the derivative
of some order of a continuous operational function.

Proof. We have f = [f,], where

Ak

0" '
fu(0) = 507&.(9, H3a(t)

and F,(0,t) converges almost uniformly to F(0,t). In other words,
f= Fﬁ,k’ and F, converges to ¥ in the sense of definition 1.6.

By Lemma 1.21, F = [F,]. Therefore, f = [F#] = [F,]® = F®,

Definition 1.23. A sequence f of generalized operational functions
is said to converge to a generalized operational function f if and only if there
exist a non-negative integer k and a sequence F,, of continuous operational
functions and a continuous operational function F such that f = P,
f =F® and F, converges to ¥ in the sense of definition 1.6.

The convergence defined in the class of generalized operational
functions is o Hausdorff convergence. In other words, if f, converges
to f and also to g, then f =g.

Indeed,

Pi o
fn(()) =3ﬁI’1L(0at)$a(t)a f(@) =—56,;F(B,t)§a(t)
and 1,0, t) converges almost uniformly to F(0,t). Also
0% Vi3

$al8) = 5w Gal0, D 2B(D),  9(6) = 5 G0, D 3B

and @,(0,t) converges almost uniformly to G (0, ).
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Let m > k. On account of definition 1.7 (4), there exist F,(6) and
F(0) such that

Y:2 a m

Fa(6) =%ml”n(9,t)i’m(t), J(6) = 0—07,717(9, i) e ()

and F,(0,1) converges almost uniformly to F(0,t). Since

7%

" = * 4 * —
[ 55 Fx0.02a00] =[5 6at0,03000] =,

Mo

1 .
we have F,*b—Gy+*a, which is a polynomial 3 a.;(1)¢° of degree less
7=0

than m. By Lemma 1.17, its limit is also a polynomial of degree less
than m. Therefore
k-1

Frb—@ra= D a0,
7=0

So (F*b)"™ —(G+a)™ = ¢ and hence f = g.

The following are immediate consequences of definition 1.23.

1. If a sequence of continuous operational functions converges in
the sense of definition 1.6, it also converges in the generalized sense.

2. For &k = 0 and a = 1, all almost uniformly convergent sequences
of continuous functions in the variable 9, ¢ are convergent in the generali-
zed sense.

3. If f, converges to f and g, converges to g, then

(i) fatgn converges to f-+g,

(i) fo-gn converges to f-g.

2. Now we introduce the notion of the value of a generalized oper-
ational funetion.

Definition 2.1. A generalized operational function f is said o have

a value at 0y if Lt f(af4 6,) exists. If the limit exists, then it is an op-
erator. a0

Leywa 2.2. Let f be a continuous operational Junction defined in the
neighbourhood of zero, and suppose that

1 JED = 0@ —a@ 00— .. —a s (0 _
a0 o

(recall that the convergence is as given in definition 1.6) and the coefficients
a:(a) are continuous operational functions defined for o > 0. Then the a;(a)
will converge for a —> 0 and we have ai(a) = a;+0(c™") and in CONSEqUENce
F(6) = @yt 0+...+ap_y 0" 4-0(0") for 0 tending to zero.
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Proof. Let

1 F(a8)—ag(a)—.. - n_1(a)(fa)"

a

tend to zero as a tends to zero.
Now f(ab), ag(a), ..., ay_,(a) can all be written as

F(af, 1) 2bo(1), ao(a, 8) £b,(8), ...y Bn_1(a, 1) 2D, (3).
Without loss of generality we can assume b;(f) = b(t).
(I) means that

(I1) ai(f(ue, U —y(ay ) — ..o — ay_y (e, 1)(0a)" )

converges to zero almost uniformly, i.e.
If(al, ) —ag(a, t)—...— @n_s(a, ) ()"} < &(a)d”,

where £(a) is an increasing function of a such that £(a) converges to zero
as o tends to zero.

Let 4, 8 be such that 0 < § < B; choise v such that 0 < < 8§ < B,
where 0 < v < 1. Let (a, b) be an interval in which (II) converges uni-
formly. Fix a < 0y < 6, < ... < 0, < b. Write in (II)

=10, a=208, 6= 6;*', a=4,
1F (805, ) — ag(8, ) —...— @n_y (8, 1) (80"} < &(8) 8",
1F (805, ) — 6o (B, 1) — ... — an_1 (B, 1) (88" ] < &(B) ™.

Subtracting
(@08, D)= ao(8, D) — .= ((n-1(B, 1) — aa_s(8, 8) (36:)| < 2(B) "
and denoting by p(0;, ?) the polynomial within the modulus sign, we

can write,
a8, 1= 0405, 0] = - [Axp (05, D).~ Aup (5, ),
where Aj; ave the minors of
10,.. 001
A= By ... 057" .
1 6,...0;"
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There exists a congtant k such that
8lar(By 1) —ai(0, 1) < e(B) "
Sinee 0 < g < d < B,
a8, 1) — ai(0, 1) < ko~ e(A) "
Let 6 = o™, p =o"; then

(III)

a0, 0)— a0y D) < o e(o)o"

and for integers p and ¢ such that p < ¢

(V) Jac(0”, 1) = aa(af, 1)) < oo (o)t IIAT,

Since ¢ and /3 can be (ubitnmily small, there exist integers p and g,
p < g, such that o/< 6 < o' o < << o*7'; we have in virtue of (III)
and (IV) a eonstant ky such thaﬁu

lai(B, t)—ai(0, 1) < kov"e(B) """

The limits a; = Lt a;(5) exist. Hence the lemmua.
00

THEOREM -2.3 [1]. For « generalized operational function f to have
@ value ¢ (operator) of a point 0, it is necessary ond sufficient that f = F'®,
where F is a continuous operational function and
F(6) ¢
00y (0— 8% T
Proof. Without loss of generality we can take 6, =
tend to ¢6* (k! as o tends to zero. Since f(al) = [a""
that f(a0) tends to ¢,i.e. f(0) has a value ¢ at the point zero.

To prove the converse, let f(aB) tend to ¢ as o tends to zero. Consider
flaB) = ¢(0), where Lt g,(6) = c6"/k!
a0

= (. Let o« "7 (uf)
(«0)1®, we see

Now the generalized operational function f(0) is the derivative of
order k of the continuous operational function «*p,(0/a), i.e. there exists
a continuous operatwnal function 7,(0) sueh that f(0) = F{®(0). The
difference F,(6)— d* @q(0/a) and in consequence the dlﬂmcnce Fy(a0)—
—d®g,(0) = w,(6), where

®a(8) = @y (a)+ay(a) 0+ ...+ ap_y (a)- 0F

and a;(a ) are continnous operational functions. As « fends to zero,
(Fo(ab)— wq(0)))a” tends to c6%/k!.

Assume F(6) = Fo(0)— c6* [k!. (f(aub)— wa(0))/d" tends to zero. There-
fore, by Lemma 2.2,

F(0) = ay+...+ap_ 65 40 (6%,

Generalized operational functions 11

and assuming

F(0) = Fo(0)— @~ ...— a1 0" = c6[k!+0(0)",

we find that this #(6) satisfies the conditions of the theorem.
THEOREM 2.4 [1,2). If the generalized operational function f' has
@ value at Oy, then the generalized operational funciion f has a value at 6,.

Proof. There exist a non-negative integer & and a conﬁnuom opera-
tional funetion F such that f' = F® and Lt F(6)](8— 0,)" exists. If k=0,

D
then f' is & continuous opemtlon&l functlon as 50 is f. Therefore the theor em
is true. If % > 0, then Lt 0) /(68— 6,)~* = 0. It follows from the pre-

vious theorem that the genezahzed operational function ¥~ has a value
at 6,. The generalized operational funetion f differs from F*~Y by a constant
(operator). Therefore f has a value at 6,. This completes the proof of the
theorem.

The author wishes to express her deep sense of gratitude to Pro-
fessor M. Venkataraman for all his kind help encouragement in preparing
this article. The author also wishes to thank Professor Jan \IlLusmskl,
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