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Extreme points in subalgebras
of functions vanishing at infinity

by

ROBERT WHITLEY (Irvine)

Throughout, let S he a locally compact Hausdorff space which is
not compact and let ((S) be the space of all continuous secalar-valued
functions which vanish at infinity, taken with the supremum norm.
An important geometrical property of this Banach space is that its unit
sphere contains no extreme points. We consider the civeumstances under
which subalgebras of Cy(S) inherit this property and, to that extent at
least, so resemble the algebra in which they are embedded. Tt is interest-
ing that the conditions under which this oceurs differ for the two scalar
fields, i.e. for the space C,(S,R) of real-valued continuous functions
vanishing at infinity and the space Cy(S,C) of complex-valued con-
tinuous functions vanishing at infinity. For example, if § is connected,
then Cy(8, ) contains a closed subalgebra whose unit sphere has an
extreme point, while Cy(8, R) does not.

As in the case of real-valued functions, we call a subspace 3 of the
complex space Cy(S8, C) a linear sublattice if the absolute value of each
tunction in A is also in M. Before considering subalgebras, we first show
that, except for discrete S, not even linear sublattices inherit the prop-
erty of having no extreme points on their unit sphere. Of course, since
any finite-dimensional subspace of C,(8) has a compact unit sphere
which then has an extreme point by the Krein-Milman theorem, we may
consider only infinite-dimensional subspaces. The result in Theorem 1
for § discrete is due to Garling [3].

Turorem 1. If 8 is discrete, then cvery infinite-dimensional subspace
of Cy(8, R) and Cy(8, C) has a unit sphere with no extreme points. If S is
not discrele, then there is a closed infinite-dimensional linear sublattice of
Cy(8, R) or Cy(8, O) whose unit sphere coniains an extreme point.

Proof. If M is an infinite-dimensional subspace of Cy(S) with §
discrete and f an element of norm 1, then the set {s: |f(s)] > 4} is compact
and so is a finite set {s,,..., s,}. Then there is a non-zero g in M with
g(s1) = ... = g(s,) = 0, else the map h—(h(s)),...,k(s,)) is a one-
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to-one map of M into E". For this g, If4-¢/(2lgl)ll = 1 and f is not
extreme in the unit sphere of M.

Suppose that § is not discrete and let K be an infinite compact subset
of 8. First assume that K contains a non-void perfect set. Then by the
main theorem in [4], which we will have occasion to use again, there
is a continuous mayp of K onto [0, 1] which, by the Tietze extension theo-
rem, can be extended to a continuous map ¢ of all of § onto [0, 1]. Define
the linear operator 7' taking C[0, 1] into BC(S), the bounded continuous
functions on 8, by Tf = fop. The map T is a linear isometry with 7'|f|

"= |Tf| and so the image B = T(C[0,1]) is a closed infinite-dimensional
sublattice of BCO(S) which containg 1 and has the following property:

(%) gl = sup{lg(s)}: sin K} for g in B.

Since K is compact, there is a continnous funection f vanishing at
infinity with 0 < f(s) <1 for all s and f(s) = 1 for s in K. Liet A = {fy:
¢ in B}. From

gl = 1filgll = gl = sup|f(s)g(s)|: sinK} = |lg|l,

we see that the map g ~ fg is a linear isometry which preserves absolute
value and so see that A is a closed infinite-dimensional linear sublattice
of 0,(8). The function f is an extreme point in the unit sphere of 4, for
if |f4+hll <1 with % in 4, then [14h(s)] <1 for s in K, which implies
that k(s) = 0 and so by property (x) h must be zero. Second, suppose
that K confains no non-void perfect set. Then there is a sequence {s;}
of distinet isolated points of K. The map ¢ defined by ¢(s;) = 1/i and
¢(s) = 0 for s not in {s;} i3 a continnous map of § onto {0, 1, },%,...}
which takes K onto the same set. As above, when the image space was
[0, 1], this will give rise to an infinite-dimensional closed linear sublattice
of C,(8) which has a unit sphere with an extreme point.

THrOREM 2. The space Cy(S, R) contains an infinite-dimensional sub-
algebra whose unit spheve has an extreme point if and only if 8 contains
an infinite compact open set.

Proof. Let 4 Dbe an infinite-dimensional subalgebra of C,(8, R)
and let f be an extreme point of the unit sphere of A. By a result of
Phelp’s ([5], corollary 3.2, p. 271), % and f* arve also extreme points in the
unit sphere of A. Since ||f* 4 (f*—f*)|| <1 and f* is extreme, f*=f* Hence
f* takes on only the values 0 and 1 and the set K = {s: f*(s) = 1} is a
compact open set in §. Any function ¢ in 4 must vanish off K, for if g(s,)
# 0 and s, is not in K, then g—f*g = h is' a non-zero element of A
vanishing on K. But then [[f4-h/|A|| =1 and f is not extreme. Thus
the open compact set K must be infinite as A is infinite-dimensional.
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Conversely, if § contains an infinite compact open set K, then the
set of all f vanishing on §— K is an infinite-dimensional closed subal-
gebra of Cy(S, R) whose unit sphere contains the characteristic funetion
of K as an extreme point,

If 4 is a finite-dimensional subalgebra of €)(S s B) or Cy(8, 0) and f
isin 4, then the range of f must consist of only a finite number of sealars,
for if not, the functions f, f% f°, ... in 4 are linearly independent. So the
inverse image under f of each non-zero point in its range is an open com-
pact set in 8. Then it is not hard to see that 4 is the span of a finite
number of characteristic funections of compaet open subsets of &. In
particular, when 8 is connected, C,(S, R) can contain no subalgebra
whose unit sphere has an extreme point, for it contains no such infinite-
dimensional subalgebras by theorem 2 and contains no finite-dimen-
sional subalgebras.

That the subalgebra 4 of theorem 2 need not be closed, raises the
question of the relation of the extreme points of the unit sphere of A
to the closure of 4. As we will see, this relation differs for subalgebras
of Cy(8, R) and CGy(8, 0).

TaeoreM 3. If A is a subalgebra or a linear sudlattice of Cy(S, R)
and f is an extreme point of the unit sphere of A, then f is an exireme poini
of the unit sphere of the closure of A. If S is not discrete there is a subspace
M of C\(8, R) (o Cy(S, ()} and a point f extreme in the unit sphere of M
but not extreme in the unit sphere of the closure of M.

Proof. Let 4 be a subalgebra of ¢4(S, R) and f an extreme point
in the unit sphere of A. As we saw in theorem 2, K = f~'(1) u f~}(—1)
is a compact open set in § and each funetion in 4 vanishes on S—K.
Hence each function in the closure of 4 also vanishes on §—K and from
this it follows that f is extreme in the unit sphere of the closure of A.

Let 4 be a linear sublattice of Cy(§, B) and f an extreme point in
the unit sphere of A. If |[f]d¢ll <1 for g in A4, then [f4g]] <1 and
g = 0. So |f| is extreme in the unit sphere of A. Let g in 4 have |jg|| <1
and set & = max([f|, |¢]), an element of 4. From the inequality

AL E—D] <l <1

and the fact that |f| is extreme, we see that h = |f|. Consequently, |g(s)]
<< |f(s)] for each g in A with |jg|| <1, and from this it follows that when-
ever a non-zero funection in 4 attains its norm at a point s,, the points s,
must be in the compact set ' = {s:|f(s)] = 1}. Assume that g, is a func-
tion in the closure of A with {f+g,/ <1. There is a sequence {g,} of
functions in 4 converging to ¢,. Since |[f4=gull = 1, ¢u(s) — 0 uniformly
for s in I. As each g, attains its norm on the set I, flg,ll— 0 and g,
must be 0. Hence f is an extreme point of the unit sphere of the
closure of 4.
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When § is discrete, from theorem 1 we see that we cannot eonstruet
an example of a subspace whose unit sphere hag an extreme point but
which is not extreme for the closure. Supposing that § is not discrete,
there is a point with compact neighborhood K whose intervior is infinite.
We can find an infinite collection {U,} of disjoint open subsets of K
with points s, in U,. By Tietze’s theorem there are continuous functions
fn, 0 < fu(8) <1 for all s, fu(s,) =1 and fu(s) = 0 for ¢ not in U, and
there is a continuous function ¢ in Cy(8, R) with 0 < g(s) =T 1 for all ¢
and g(s) = 1 for s in K. For each element {a;} in the Banach space ¢ of
covergent sequences of scalars, define

T{a} = E(ai—lillla,).f;—{— lima;yg.
=1

It is easy to see that T is a linear isometry of ¢ into Cy(8). In this
way we see that C,(S8) contains a subspace isometric to ¢. To complete
the proof, it will then be enough to give an example of a subspace I
of ¢ with a point # extreme in the unit sphere of M but not extreme in
the unit sphere of the closure of M. To do this, regard ¢ as a collection
of functions defined on ¥ = {1, 2, 3,...} and let {N,;} be a sequence of
subsets of N with the following properties:

(a) 1 is in N, for all 4 and 2 is in N—N; for all i,

(b) N; properly contains N,

(ey if p #1 is in N, then p > 1.

Let y; be the product Cy;(1, §, §,...), where Cy, is the characteristic
function of the set N;, let # = (},1,1,1,...), and let I De the sub-
space of ¢ spanned by x, 9y, ¥, ... To show that x is extreme in the unit
sphere of M suppose that

l[% = (ao i+ Sja,,vy,r}
1

Evaluating this sequence at 2, |14 4a,| < 1 and a, must be 0. Then succes-
sively evaluating at the points n; in N;—N;., for i=1,2,...,p, we
get ay = ... = a, = 0. But 2 is not extreme in the unit spherve of the
closure of M, for

f::l.

llz 4= ($)limy;)| = 1.

We now consider the case of complex-valued functions. First we
show that we may restrict our attention to closed subalgebras which
are not self-adjoint. Recall that a subalgebra is self-adjoint if it contains
the complex conjugate of each of its functions.

TeROREM 4. If 8 is not discrete, then Cy(8, C) contains an infinite-
dimenstonal subalgebra (which is not necessarily closed) whose wnit sphere
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has an extreme point. The space Cy(S, C) coniains an infinite-dimensional
self-adjoint sudalgebra whose unit sphere contains an extreme point if and
only if S contains an infinile compact open set.

Proof. Suppose that S is not discrete and let the funetions {f,}
and g he as in the proof of theorem 3. For the scalars a, = exp(2=i/n),
the funetion

Do

= (an—1)fu-t-g

e

-

is in (8, C) and has f(s,) = a,. The subalgebra A == span(f, f*, f%...)
spanned by the powers of f is infinite-dimensional since the range of f
contains infinitely many scalars. We claim that f is an extreme point
of the unit sphere of 4. For suppose that

»
f: _,\?bnfng = 1;

=1
then, evaluating this function at the point s;,
P
4+ Nt <
j Iz f_’l bn "; = 1
i=

which, since «; is a scalar of modulus 1, implies that

P2
i_;'b”a}L =0.
=1

As this is true for the p non-zero distinct values ay, a,, ..., ay, by
=by=...=b,=0.

Suppose that A4 is an infinite-dimensional self-adjoint subalgebra
of Cy(8, C) whose unit sphere contains the extreme point f. The function
h = ff = |f'| is in the unit sphere of A. To show that it is extreme there,
suppose that [h4-gi <1 with g in 4. Then, as noted in [5] (lemma 3.1,
P. 271), -+ |(g/4)? < 1 and so {f24(g/4)% < 1. The function f* is extreme
in the unit sphere of 4 ([5], corollary 3.2, p. 271) which implies that
g = 0. Because 4 is a self-adjoint subalgebra, the set ReA of real-valued
functions in 4, forms a subalgebra of €y (S, R), which is infinite-dimen-
sional since A is, whose sphere contains the extreme point 2. By theo-
rem 2, § contains an infinite compact open set.

If § contains an infinite compact open set I, then the set of those
functions in €,(8, C) which vanish on S—K is an infinite-dimensional
closed self-adjoint subalgebra whose unit sphere contains the character-
istic function of K as an extreme point.

We now consider closed subalgebras of Cy(8, C). As we saw in theo-
rems 2 and 3, in OyS, R) it does not matter whether the subalgebra
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under consideration is closed. That it does matter in Oy (S, C) can be
seen from theorems 4 and 5 below.

TurorEM 5. The space 0y(8, 0) contains an infinite-dimensional closed
subalgebra whose unit sphere has an ewireme point if and only if either §
contains an infinite compact open set or § contains a non-void compact
perfect set.

Proof. If § containg no compact perfect set, then for each compact
set K in 8 and f in 0y(8, 0), f(K) is countable ([6], theorem 2, p. 40).
So the range of f must be countable since f(§)—{0} = [ f(¥,), whero
K, is the compact set {s:|f(s)| = 1[n}. Arguing exactly as in the proof
of theorem 3 of [6], we see that every closed subalgebra of Co(8, () is
self-adjoint. From theorem 4, if such a subalgebra is infinite-dimensional
and has a unit sphere with an extreme point, then § contains a compact
open infinite set. This completes the first half of the proof.

Suppose that § contains a non-void compact perfect set H. By the
main theorem in [4], p. 214, there is a confinuous map of # onto [0, 1]
which in turn can be mapped onto {a: |a| = 1}. Call this composite map
fo- Passing to the ome-point compactification 8% of 8§, set f,(co0) = 0.
This mayp f, of B U {oo} into D = {a: |a| <1} can be extended to a map f
on all 8* with range still in D, since D is homeomorphlc to the unit square
and is thus an absolute retract for normal spaces. We claim that this
funetion f on § is an extreme point in the unit sphere of the closed subal-
gebra A which it generates. Suppose that g is in A with |f4-gl| < 1. There

are functions
Ny,

gn=D apf’  with llg,—gl| >0

i=1

For z = f(s) in the range of f, pu(e) = Zaye’ converges uniformly
to g(s). So the polynomials {p,} converge uniformly on f(8) which contains
the boundary 8D of D. By the maximum modulus theorem, {p,} is a Caunchy
sequence in C(D) and so converges uniformly to a function g, on D which
is analytic in the interior of D and for which g,(f(s)) = ¢(s). From the
fact that [|f4-g]| < 1, we see that ¢(s) = 0 when [f(8)] =1 and 8o ¢,(0.D)
= 0. Hence ¢,, being analytic in the interior of D, must vanish there and
¢(s) must then be zero for each s in 8.

Of course, if 8 contains a compact infinite open sot K, then the
funections vanishing on §—X form an infinite-dimensional closed subal-
gebra of A whose sphere has an extreme point.

To again contrast the case of real-valued functions with complex-
valued funections, compare theorem 3 with theorem 6.

TuworEM 6. If A is a Uinear sublattice of 0,(8, 0), then an emtreme

point of the wunit sphere of A 4s also an ewtreme point of the unit sphere of
the closure of A. There is a subalgebra A with a point extreme in the wnit
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sphere of A but not in the unit sphere of the closure of 4 if and only if S8
is not discrete.

Proof. Let A be a linear sublattice of C,(S, €) and f an extreme
point of the unit sphere of A. First note that if |||f]|+ ag| <1 for g in 4
and all scalars ¢ with |a] = 1, then |f4g|l <1 and so g = 0. For w an
element of 4 with |jw]] <1, asin the proof of theorem 3,let b = max(|f], |w]).
For each sealar a with |a| =1, ll|fl+a(h—|f])] <[k < 1 and as we
have seen this implies that & = ‘f] Thus if g is in 4 and |g(s,)| = |gli # O,
then s, belongs to the set {s:|f(s)] = 1} and this implies that f is an
extreme point in the unit sphere of the closure of 4 by arguing exactly asin
theorem 3.

‘We suppose that S is not discrete.

First suppose, in addition, that 8 contains no compact perfect set
and no infinite compact open set. Then the subalgebra A defined in the
proof of theorem 4, which is spanned by f, has a unit sphere in which f
is an extreme point. Sinee S contains no compact perfect set, then, as
in the proof of theorem 5, the closure of 4 is a self-adjoint subalgebra
of C,(8, C). If f were extreme in the unit sphere of the closure of 4, then,
by theorem 4, § would contain an infinite compact open set. Thus f is
not an extreme point of the unit sphere of the closure of 4.

Second, suppose, in addition, that S contains no compact perfect
set but does contain an infinite compact open set K. Then K contains
a sequence {s,} of isolated points. Let a, = exp(2=i/n) and set

f = O{sl}+ 2 ap—

Then f is an extreme point of the unit sphere of the subalgebra A
it generates because, as in theorem 4, the range of f contains infinitely
many scalars of modulus 1. However, as in theorem 5, the closure of 4
is a self-adjoint subalgebra Which then contains |f*| = (— $)Cy,;+ (g and
thus contains —f|f*+F = () Oy, from which it is easy to see that f
is not an extreme point in the unit sphere of the closure of 4.

Third, and last, suppose that S contains a non-void perfect compact
set K. Then there is a continuous map of F onto [0, 1] ([4], p. 214) which
can be extended to a continuous map f; of the one-point compactification
8" of § which takes infinity to zero and with range [0, 1]. Then f; is
a map in ¢, (8) taking K onto [0, 1]. If f, is & continuous map of [0, 1]
onto

1) 0y, O

<o <1}

={(@,y):y=0and 0 <z <1} v {{z,y):y =V1— 1—2? and 0 <

with f,(0) = 0, then the composition f= f.f; is in Cy(8,0) and bas
range E. Let A be the algebra generated by f, i.e. the span of f, f% ...
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As we saw in the proof of theorem 4, f is an extremne point in the unit
sphere of A since the range of f contains infinitely many scalars of modulus 1.
Now we need to show that f is not an extreme point in the unit sphere
of the closure of 4. The set I does not separate the plane and has no
interior, consequently by Mergelyan’s theorem any continuous funetion
on F is the uniform limit of polynomials [1]. Given the funetion i{w, y)
=a(l—z) for y =0 and h{z,y) =0 for y # 0, there is a sequence
ga(2) = Sty 2™ converging uniformly to b on J and since A (0, 0) = 0,
we may take g,(0) = 0 for all n. Then g,(f) is & ‘auchy sequence in 4
and so converges to a function ¢ in the closure of A which is not zero.
Since

If(8) £ g(s)] = | [(s) £ (Ref(s), Imf(s)) =< 1,

If£gll <1 and f is not extreme in the unit sphere of the closure of A.
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Lebesgue and Lipschitz spaces and integrals of the Marcinkiewicz type
by

RICHARD L. WHEEDEN* (New Bruunswick, N. J.)

§ 1. Introduction. A theorem of Zygmund [16] states that for
1< p < os the L”-norm of

TR ) fPe—t)—2F (2) * dt\?

M) () = bl oL il LAl ool A Rl

e =] t )

i
satisfies
Hyf”u < Au‘.:f}in

and, if fvf(.T)d.r =0,
0

1l < ApIALS,
where

£
F(r) = ff(u,)du.
0
The integral Mf is called the (first) Marcinkiewicz integral of F and

is related in a rather natural way to the Hilbert transform of f. In fact,
proceeding formally,

[ 1o=05 =~ [ ot n—sa—n15

~d a
— [ S P+ Fla—)—2P ()]
0

I

[

B n_j(‘ﬁ(F(.;;+t)+F(;c—t)-21f’(m) a
t t
0

It was exactly this relation which led Stein in [9] to define an
n-dimensional version of the Marcinkiewicz integral (). Let £(2), zeH,,
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(1) For another generalization of 2Mf to En, see [l1].
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