Hypoelliptic and entire elliptic convolution equations
in subspaces of the space of distributions (II)

by

Z. ZIELĘŃSKI (Wrocław)

In part I of this work (see [5]) we showed how to define in a general
manner hypoelliptic and entire elliptic convolution operators in sub-
spaces of the space of distributions. We also characterized hypoelliptic
and entire elliptic convolution operators in the space \(\mathcal{S}' \) of tempered
distributions.

The purpose of this paper is to study hypoelliptic convolution opera-
tors in the space \(\mathcal{E}'(\mathcal{K}'; \mathcal{K}) \) of distributions of exponential growth
introduced by Sebastião e Silva [4] and Hasumi [1].

The space \(\mathcal{E}'(\mathcal{K}'; \mathcal{K}) \) of convolution operators in \(\mathcal{K}' \) (which is
a space of distributions) was characterized in [1] and its topological
properties were investigated in [6].

Using the notation of [5] we define \(\mathcal{E}'(\mathcal{K}'; \mathcal{K}) \) to be the set of all \(C^\alpha \)-func-
tions \(f \in \mathcal{K}' \) such that, for every \(S \in C^\alpha(\mathcal{K}'; \mathcal{K}) \), the convolution \(S \ast f \)
is a \(C^\alpha \)-function and \(S \ast \delta \) is a continuous mapping from \(C^\alpha(\mathcal{K}'; \mathcal{K}) \)
into the space \(\mathcal{E}'(\mathcal{K}'; \mathcal{K}) \) of distributions. Then a distribution \(\delta \ast \mathcal{E}'(\mathcal{K}'; \mathcal{K}) \)
is said to be hypoelliptic in \(\mathcal{K}' \), if every solution \(U \in \mathcal{K}' \) of the con-
volution equation

\[
S \ast U = F
\]

(1)

is in \(\mathcal{E}'(\mathcal{K}'; \mathcal{K}) \), when \(F \in \mathcal{E}'(\mathcal{K}'; \mathcal{K}) \); in that case equation (1) is also called hypoe-
lliptic in \(\mathcal{K}' \).

As a supplement of the standard notation (see [3] and [5]) we use \(\mathbb{R}^n \) as the set of all points in \(\mathbb{R}^n \), whose coordinates are non-negative integers; we write \(N \) and \(E \) instead of \(\mathbb{N} \) and \(\mathbb{R} \) respectively. Further-
more, we denote by \(P^n(Q^n) \) resp. the set of all points \(p = (p_1, \ldots, p_n) \)
\((q = (q_1, \ldots, q_n) \) resp.) such that \(p_1 = 1 \) or \(-1 \) (\(q_1 = 1 \) or \(0 \) resp.). In
particular, \(Q^n \) contains the points \(l = (1, 1, \ldots, 1) \) and \(0 = (0, 0, \ldots, 0) \).

For a point \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) we sometimes write \(x = (x', x_n) \),
where \(x' = (x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1} \). Also, for \(x = (a_1, \ldots, a_n) \) and \(\xi = (\xi_1, \ldots, \xi_n) \) in \(\mathbb{R}^n \) we use the product \(x \xi = (a_1 \xi_1, \ldots, a_n \xi_n) \) beside the scalar
product \(x \cdot z = x_1 z_1 + \ldots + x_n z_n \). The same notation applies to points in \(C^a \), which are denoted by \(z = x + iy \) or \(z = x + iy, x, y, z \in \mathbb{R}^a \).

Given an \(a \in R_1, a > 0, I_a \) stands for the open cube in \(\mathbb{K} \) with center at the origine and side \(2a \), i.e.

\[
I_a = \{ z = (x_1, \ldots, x_n) \in \mathbb{K}^a : |x_j| < a, j = 1, \ldots, n \}.
\]

\(\bar{I}_a \) is the closure of \(I_a \).

A horizontal strip in \(C^a \), width \(b > 0 \) is defined as

\[
Y_b = \{ z = (z_1, \ldots, z_n) \in C^a : |z_j| < b, j = 1, \ldots, n \}.
\]

We constantly make use of the function

\[
s_b(z) = \sum_{j=0}^{b} + \prod_{j=0}^{n} (e^{x_j} + e^{-x_j}),
\]

where \(z = (z_1, \ldots, z_n) \in C^a \) and \(b \in R \).

1. The basic spaces. For the convenience of the reader we characterize briefly the basic spaces used in this paper.

\(\mathfrak{X}_k \) is the space of all \(C^a \)-functions \(\psi \) in \(\mathbb{K}^a \) such that \(s_b(x) \mathfrak{D}^k \psi(x) \) is bounded in \(\mathbb{K}^a \), for every \(k \in \mathbb{N} \) and \(r \in \mathbb{N} \). The topology in \(\mathfrak{X}_k \) is defined by the system of semi-norms

\[
v_k(x) = \sup_{x \in B^a, \mu \in \mathbb{N}} s_b(x) \mathfrak{D}^k \psi(x), \quad k = 0, 1, \ldots
\]

Then \(\mathfrak{X}_k \) is a Frechet nuclear space [11, proposition 1].

The dual \(\mathfrak{X}_k' \) of \(\mathfrak{X}_k \) is the space of distributions of exponential growth. A distribution \(T \) in \(\mathfrak{X}_k \) if and only if \(T \) can be represented in the form

\[
T = \mathfrak{D} [s_b(x) \psi(x)],
\]

where \(r \in \mathbb{N} \), \(\mu \in \mathbb{N} \) and \(f \) is a bounded, continuous function on \(\mathbb{K}^a \) [11, proposition 3]. Under the strong topology \(\mathfrak{X}_k \) is a complete Montel space.

The space \(\mathfrak{E}_k(\mathfrak{X}_k' ; \mathfrak{X}_k') \) of convolution operators in \(\mathfrak{X}_k \) can be characterized as follows [11, proposition 9]. A distribution \(S \) in \(\mathfrak{E}_k(\mathfrak{X}_k' ; \mathfrak{X}_k') \) if and only if, for every \(k \in \mathbb{N} \), \(S \) can be represented as a finite sum of derivatives of continuous functions, whose products with \(s_b(x) \) are bounded in \(\mathbb{K}^a \). The topology of \(\mathfrak{E}_k(\mathfrak{X}_k' ; \mathfrak{X}_k') \) is that induced in \(\mathfrak{E}_k(\mathfrak{X}_k' ; \mathfrak{X}_k') \) by the space \(\mathfrak{K}_k(\mathfrak{X}_k' ; \mathfrak{X}_k') \); it makes \(\mathfrak{E}_k(\mathfrak{X}_k' ; \mathfrak{X}_k') \) into a complete Montel space (see [6]).

Note that the convolution \(S \ast T \) can be defined even if neither \(S \) nor \(T \) is in \(\mathfrak{E}_k(\mathfrak{X}_k' ; \mathfrak{X}_k') \). If e.g. for \(\mu < \mu, s_b \) and \(s_b - T \) are bounded distributions, then one can find continuous functions \(F_\mu, r \in \mathbb{N}, |r| < k \), and \(G \) such that

\[
S = \sum_{|r| < k} \mathfrak{D}^r F_\mu, \quad T = \mathfrak{D}^r G
\]

and the convolutions \(F_\mu \ast G \) exist in the usual sense. Then we set

\[
S \ast T = \sum_{|r| < k} \mathfrak{D}^r (F_\mu \ast G).
\]

One can show that the convolution \(S \ast T \) so defined does not depend on the representation (2).

The set \(\mathfrak{E}_k(\mathfrak{X}_k' ; \mathfrak{X}_k') \) can be identified with the dual \(\mathfrak{L}_k(\mathfrak{X}_k; \mathfrak{X}_k') \) of \(\mathfrak{L}_k(\mathfrak{X}_k; \mathfrak{X}_k) \) similarly as in the case of the set \(\mathfrak{L}^k \) (see [3], p. 322). Thus \(\mathfrak{E}_k(\mathfrak{X}_k' ; \mathfrak{X}_k') \) consists of all \(\mathfrak{C}^a \)-functions \(f \) such that one can find a \(k \in \mathbb{N} \) satisfying the condition

\[
\mathfrak{D}^k f(x) = O(s_b(x))
\]

as \(|x| \to \infty \), for all \(r \in \mathbb{N} \) ([6], theorem 10).

For a function \(\varphi \in \mathfrak{X}_k \), its Fourier transform

\[
\hat{\varphi} \xi = \int_{\mathbb{R}^a} e^{2\pi i x \cdot \xi} \hat{\varphi}(\xi) d\xi
\]

can be extended over \(\mathbb{R}^a \) as an entire function such that

\[
|\hat{\varphi}(\xi)| = O(1 + |\xi|^k)\hat{\varphi}(\xi) < \infty, \quad k = 1, 2, \ldots
\]

The space \(\mathfrak{K}_k \) of all entire functions with the latter property corresponds to \(\mathfrak{X}_k \) under the Fourier transform. If the topology in \(\mathfrak{X}_k \) is defined by the system of semi-norms \(s_b(x) \), \(k = 1, 2, \ldots \), then the Fourier transform is a topological isomorphism of \(\mathfrak{X}_k \) onto \(\mathfrak{K}_k \) ([11], proposition 4).

The dual \(\mathfrak{L}_k \) of \(\mathfrak{K}_k \) is the space of Fourier transforms of distributions from \(\mathfrak{X}_k \). For a distribution \(T \in \mathfrak{X}_k \), its Fourier transform \(\hat{T} \) is defined by the Parseval equation

\[
\hat{T} \varphi(\xi) = T \varphi(-\xi),
\]

\(\mathfrak{K}_k \) is provided with the strong topology. Then the Fourier transform is a topological isomorphism of \(\mathfrak{X}_k \) onto \(\mathfrak{K}_k \).

The Fourier transform \(\mathfrak{S} \) of a distribution \(\mathfrak{S} \in \mathfrak{L}_k(\mathfrak{X}_k' ; \mathfrak{X}_k') \) is a \(\mathfrak{C}^a \) -function extendable over \(\mathbb{R}^a \) as an entire function; moreover, for every \(k \in \mathbb{N} \) there exists an \(k \) in \(\mathbb{N} \) such that

\[
\sup_{(1 + |\xi|^k)} s_b(x) < \infty
\]
(see [13], propositions 8 and 9, or [6], theorem 3). Also, for \(\hat{S} \ast \phi(\mathcal{X}_1 : \mathcal{X}_f) \) and \(T \in \mathcal{X}_1 \) we have the formula

\[
\hat{S} \ast T = \hat{S} \ast T,
\]

where the product on the right-hand side is well defined in \(K_1 \).

2. Hypoelliptic operators in \(\mathcal{X}_1 \). Necessary condition. We prove a necessary condition for a convolution operator \(S \ast \phi(\mathcal{X}_1 : \mathcal{X}_f) \) to be hypoelliptic in \(\mathcal{X}_1 \). The proof is based on an idea similar to that used in [5] for convolution operators in \(\mathcal{X}_1 \). We begin with a lemma.

Lemma 1. Let \(T \) be a distribution, whose Fourier transform \(\hat{T} \) is of the form

\[
\hat{T} = \sum_{j \in \mathbb{Z}} a_j \delta_{|\zeta|^{2j}},
\]

where the \(\zeta = \xi + i\eta \ast \phi^{(n)} \) satisfy conditions

\[
|\zeta| > 2|\zeta| > 2^j, \quad |\eta| \leq B,
\]

and \(a_j \) are complex numbers such that

\[
a_j = O(|\zeta|^{-j}),
\]

for some \(\mu \in \mathbb{N} \); then the series in (3) converges in \(K_1 \). We assert that \(T \in \mathcal{E}_1 \), if and only if

\[
a_j = o(|\zeta|^{-j}),
\]

for every \(\zeta \in \mathcal{X}_1 \).

Proof. By virtue of equality (3) and condition (5),

\[
T = \sum_{j = -\infty}^{\infty} a_j e^{i\zeta \omega_j},
\]

where the series converges in \(\mathcal{X}_1 \). If the coefficients \(a_j \) satisfy condition (6), then the last series and all its term-by-term derivatives converge uniformly in \(B^n \) on dividing by \(\phi^{(n)} \). Consequently, \(T \) is in \(\mathcal{E}_1 \).

Conversely, assume that \(T \) is a function from \(\mathcal{E}_1 \). Then, for every \(\zeta \in \mathcal{X}_1 \),

\[
\sqrt{\zeta} e^{i\zeta \omega_j} A T \phi(\zeta) \rightarrow 0,
\]

as \(|u| \rightarrow \infty, u \in \phi^{(n)}, |\mathcal{X}| \leq B \); \(A \) is the iterated Laplace operator. Hence, passing to the Fourier transform, we see that

\[
T_n(\zeta) \ast \hat{\phi}(\zeta) = \sum_{j = -\infty}^{\infty} a_j e^{i\zeta \omega_j} \hat{\phi}(\zeta - u) \rightarrow 0,
\]

as \(|u| \rightarrow \infty, u \in \phi^{(n)}, |\mathcal{X}| \leq B \). We fix a function \(\phi \in \mathcal{X}_1 \) such that

\[
|\phi(0)| \geq 1.
\]

Suppose now that condition (6) is not satisfied. Then there is a \(\eta > 0 \) and a \(\nu \in \mathbb{N} \) such that

\[
|\zeta|^{2\nu}|a_j| \geq \eta
\]

for a subsequence of \(\{a_j\} \), which we may take as the whole sequence without loss of generality. Also, since \(\phi \ast K_1 \),

\[
\hat{\phi}(\zeta) = O(|\zeta|^{-2\nu - 1}),
\]

as \(|\zeta| \rightarrow \infty, \zeta = \xi + i\eta \ast \phi^{(n)}, |\eta| \leq B \).

We set now \(\bar{\mu} = \zeta \).

Making use of (4), (5) and (10) we obtain the estimation

\[
\sum_{j \in \mathbb{N}} a_j |\zeta|^{2\nu} |\phi(\zeta - u)| = O(2^{-\mu}).
\]

On the other hand, conditions (8) and (9) imply that, for sufficiently large \(\mu \),

\[
|a_j||\zeta|^{2\nu} |\phi(\zeta)| \geq \frac{\eta}{2}.
\]

This contradicts the convergence (7). Our assertion is thus established.

Remark. The above lemma is a generalization of lemma 1 in [5], which can be obtained by setting \(B = 0 \).

Theorem 1. If a distribution \(S \in \mathcal{E}_1(\mathcal{X}_1 : \mathcal{X}_f) \) is hypoelliptic in \(\mathcal{X}_1 \), then for every \(B \geq 0 \) there are constants \(A \) and \(A \) such that the Fourier transform \(\hat{S} \) of \(S \) satisfies the condition

\[
|\hat{S}(\zeta)| \geq |\zeta|^{-A}, \quad \zeta = \xi + i\eta \ast \phi^{(n)}, |\eta| \leq B, |\xi| > A.
\]

Proof. Suppose that condition (11) is not satisfied. Then there exists a \(B \geq 0 \) and a sequence of points \(\zeta = \xi + i\eta \ast \phi^{(n)} \), defined as in lemma 1, such that

\[
|\hat{S}(\zeta)| \leq |\zeta|^{-A}.
\]

The series

\[
\sum_{j = -\infty}^{\infty} |a_j| \psi(\zeta)
\]

converges in \(K_1 \) to \(\hat{U} \), say. Hence \(U \in \mathcal{X}_1 \), and, by lemma 1, \(U \) is not in \(\mathcal{E}_1 \). But the convolution \(\hat{S} \ast U \) can be transformed according to the formula

\[
\hat{S} \ast U = \hat{S} \ast U = \sum_{j = -\infty}^{\infty} |a_j| \psi(\zeta).
\]
Applying now inequality (12) and once more lemma 1 we conclude that $S \ast U$ is in \mathcal{E}'_1. Thus S is not hypoelliptic in \mathcal{E}'_1, q.e.d.

If a partial differential operator with constant coefficients, i.e. an operator of the form

$$S = P(D)\delta,$$

where $P(D)$ denotes a polynomial of derivation and δ the Dirac measure, is hypoelliptic in \mathcal{E}'_1, then it is hypoelliptic in \mathcal{D}'. This follows from theorem 1 and a theorem of Hörmander ([2], p. 99, theorem 4.1.3).

3. Two lemmas. The following two lemmas are necessary for our investigations in the next section.

Lemma 2. Let $\gamma(\zeta)$ be a function defined in the horizontal strip V_n as

$$\gamma(\zeta) = \begin{cases} 0 & \text{for } \zeta = \Re \zeta e^{i\eta}, \\ 1 & \text{otherwise.} \end{cases}$$

Then, for every $p \in \mathcal{P}$,

$$\int_{t_p} \gamma(\zeta) e^{\xi(\zeta)x} d\zeta = \int_{t_p} \frac{1 - e^{-2\pi i \rho p}}{(2\pi i)^n} \int_{t_1}^{t_n} (e^{\xi(\zeta)x} - e^{-\xi(\zeta)x}) d\zeta,$$

where $t_p = t_1 \times t_2 \times \ldots \times t_n$ and t_1 consists of three line segments: from $-a$ to $-a+i\beta_1$, from $-a+i\beta_1$ to $a+i\beta_2$, and from $a+i\beta_2$ to a.

Proof. We use the contours $l_1 = l_1 \times \ldots \times l_n$ and $t_p = l_1 \times \ldots \times l_n$, where l_1 is the line segment from $-a$ to $-a+i\beta_1$ to $a+i\beta_2$ and l_n consists of two line segments from $-a$ to $-a+i\beta_2$ and from $a+i\beta_2$ to a.

The lemma will be proved by induction on the number of variables n. For $n = 1$, let γ_1 be the function of one variable, which corresponds to γ. Then we have

$$\int_{t_1} \gamma(\zeta) e^{\xi(\zeta)x} d\zeta = 0$$

and

$$\int_{t_1} \gamma(\zeta) e^{\xi(\zeta)x} d\zeta = \frac{1 - e^{-2\pi i \rho p}}{(2\pi i)^n} (e^{\xi(\zeta)x} - e^{-\xi(\zeta)x}),$$

where $p = 1$ or -1. Thus equality (13) is satisfied in case of one variable.

In order to perform the induction step we use the points x', x'', x''', x''' as defined in the introduction. We also write e.g. $l_p = l_1 \times l_2 \times l_3 \times l_4 \times l_{n-1}$ and denote by γ_{n-1} the function of $n-1$ variables corresponding to γ. Then one can easily verify that, for every $p \in \mathcal{P}$,

$$\int_{t_p} \gamma(\zeta) e^{\xi(\zeta)x} d\zeta = \int_{t_p} \gamma_{n-1}(\zeta) e^{\xi(\zeta)x} d\zeta = \int_{t_p} \gamma_{n-1}(\zeta) e^{\xi(\zeta)x} d\zeta,$$

Assume now that equality (13) is true for $n-1$ variables, i.e.

$$\int_{t_p} \gamma_{n-1}(\zeta) e^{\xi(\zeta)x} d\zeta = \frac{1 - e^{-2\pi i \rho p}}{(2\pi i)^{n-1}(\xi)^p} \int_{t_1}^{t_{n-1}} (e^{\xi(\zeta)x} - e^{-\xi(\zeta)x}).$$

Then the right-hand side of (14) can be transformed into the form

$$\int_{t_p} \gamma_{n-1}(\zeta) e^{\xi(\zeta)x} d\zeta = \frac{1 - e^{-2\pi i \rho p}}{(2\pi i)^{n-1}(\xi)^p} \int_{t_1}^{t_{n-1}} (e^{\xi(\zeta)x} - e^{-\xi(\zeta)x}),$$

which shows that equality (13) holds also for n variables, q.e.d.

Lemma 3. Let $f(\zeta)$ be a function defined for $\zeta = x + iy \in V_n$, which is analytic for $\xi \in \mathcal{D}' \setminus I_2$, continuous for $\xi \in \mathcal{D}' \setminus I_1$ and vanishes for $\xi \in I_1$. Furthermore, let $l_p, p \in \mathcal{P}$, be the contours from lemma 2. Then consider the function

$$v(x, t) = \sum_{p \in \mathcal{P}} \left[\frac{e^{\theta p (x - t)}}{\sigma_{2n}(x - t)} - \frac{e^{\theta p t}}{\sigma_{2n}(t)} \right] \int_{t_p} f(\zeta) e^{\xi(\zeta)x} d\zeta,$$

which is analytic for $x \in V_1, c < 1/4b$, and $t \in \mathbb{R}^n$. We assert that

$$v(x, t) = \frac{1}{\sigma_{2n}(x)} \sum_{p \in \mathcal{P}} \sum_{\phi \in \mathcal{O}_n} \phi(\theta p) \times \left[e^{\theta p (x - t)} - e^{\theta p t} \right] \int_{l_p} f(\zeta + iy \phi) e^{\xi(\zeta)x} d\zeta.$$
where $b_{0j} = b_{0j_1} \times \cdots \times b_{0j_n}$ and b_{ij} is either b_i or the segment of the x_i-axis from $-a$ to a, depending on whether $q_i = 0$ or $q_i = 1$.

Proof. Let d_i denote the segment of the x_i-axis from $-a$ to a and $d = d_1 \times \cdots \times d_n$. We also write $d' = d_1 \times \cdots \times d_{n-1} \times b_{i_n} \times b_{ij}$, etc.

The lemma will be proved again by induction on n. In case $n = 1$ we obtain

$$u(z, t) = \frac{1}{\sigma_{0a}(z) \sigma_{0a}(z - t)} \sum_{p, \mu} \left[e^{-\mu \rho^p_{0a}z} - e^{-\mu \rho^p_{0a}z} \right] \int f(z) e^{\mu \rho^p_{0a}z_\mu} \, dz_\mu,$$

which is the desired formula (13), since $q = 0$.

For the general case of n variables we first observe that

$$u(z, t) = \frac{1}{\sigma_{0a}(z) \sigma_{0a}(z - t)} \times \sum_{p, \mu} \left[e^{\mu \rho^p_{0a}z} \left(\frac{\sigma_{0a}(z')}{\sigma_{0a}(z)} - \frac{\sigma_{0a}(z')}{\sigma_{0a}(z - t)} \right) \right] \times \times \int f(z') e^{\mu \rho^p_{0a}z_\mu} \, dz_\mu \times \times \left(e^{-\mu \rho^p_{0a}z} - e^{-\mu \rho^p_{0a}z} \right) \int f(z) e^{\mu \rho^p_{0a}z_\mu} \, dz_\mu,$$

identically in z and t. Hence we infer that

$$\sum_{p, \mu} \left[\frac{\sigma_{0a}(z')}{\sigma_{0a}(z)} - \frac{\sigma_{0a}(z')}{\sigma_{0a}(z - t)} \right] \times \times \int f(z') e^{\mu \rho^p_{0a}z_\mu} \, dz_\mu = 0,$$

and consequently

$$\sum_{p, \mu} \left[e^{\mu \rho^p_{0a}z} \left(\frac{\sigma_{0a}(z')}{\sigma_{0a}(z)} - \frac{\sigma_{0a}(z')}{\sigma_{0a}(z - t)} \right) \right] \times \times \int f(z') e^{\mu \rho^p_{0a}z_\mu} \, dz_\mu = 0.$$

Formula (16) follows immediately by application of the latter equality.

Suppose now that equality (15) is true for $n - 1$ variables. Then we obtain

$$\sum_{p, \mu} \left[e^{\mu \rho^p_{0a}z} \left(\frac{\sigma_{0a}(z')}{\sigma_{0a}(z)} - \frac{\sigma_{0a}(z')}{\sigma_{0a}(z - t)} \right) \right] \times \times \int f(z') e^{\mu \rho^p_{0a}z_\mu} \, dz_\mu = 0,$$

and therefore

$$\sum_{p, \mu} \left[e^{-\mu \rho^p_{0a}z} \left(\frac{\sigma_{0a}(z')}{\sigma_{0a}(z)} - \frac{\sigma_{0a}(z')}{\sigma_{0a}(z - t)} \right) \right] \times \times \int f(z') e^{-\mu \rho^p_{0a}z_\mu} \, dz_\mu = 0.$$

Combining (16) with (17) and (18) we conclude that equality (15) holds also for n variables, q.e.d.

Corollary. For every $r, s \in \mathbb{N}^n, c, (s, t)$ satisfies the growth condition

$$\sup_{z \in V, \epsilon} \frac{\sigma_{0a}(z) D_0 D_1 e^{(z, c)}}{\sigma_{0a}(z)} < \infty,$$

where the supremum is taken over all $z \in V$, $\epsilon < 1/|b|$ and $1 \epsilon^c$.
Condition (19) can be proved by estimating the derivatives of each term of the sum in (15). For example, if \(r = s = 0 \), it is sufficient to show that
\[
\frac{1}{\sigma_{n+1}(r - q^2 - q^2)} \int_{\{z\}} f(z + ibp) e^{i\alpha(z - \alpha)} d\zeta
\]
is bounded for every \(p \in \mathbb{P} \), \(q \in \mathbb{Q} \), and to apply the inequality
\[
\left| \frac{e^{i\alpha(z - \alpha)}}{\sigma_{n+1}(r - q^2)} \right| \leq \sigma_{n+1}(q).
\]

The same argument can be used for arbitrary \(r, s \in \mathbb{N} \). We omit the details of the proof.

4. Hypoelliptic operators in \(\mathcal{X} \). Sufficient condition. We now prove that condition (11) of theorem 1 is also sufficient for a distribution \(S \in \mathcal{C}^{\prime}_{\varepsilon}(\mathcal{X}'; \mathcal{X}') \) to be hypoelliptic in \(\mathcal{X} \). For this purpose we need an appropriate family of parametrix for \(\mathcal{S} \) which we define as follows. Given any \(b > 0 \), we say that \(\mathcal{P} \) is a \(\beta \)-parametrix for \(\mathcal{S} \), if the product \(\sigma_{n+1}\mathcal{P} \) is a bounded distribution and
\[
\mathcal{S} \ast \mathcal{P} = \delta - \mathcal{W},
\]
where \(\mathcal{W} \) is a \(\mathcal{C}^{\mathbb{N}} \)-function such that
\[
\sup_{x \in \mathbb{R}^{n}} \sigma_{n+1}(x)|\mathcal{W}(x)| < \infty
\]
for all \(r \in \mathbb{N} \).

Theorem 2. If \(\mathcal{S} \in \mathcal{C}^{\prime}_{\varepsilon}(\mathcal{X}'; \mathcal{X}') \) satisfies condition (11), then for every \(b > 0 \) there exists a \(\beta \)-parametrix for \(\mathcal{S} \).

Proof. By assumption, for every \(b > 0 \) there is an \(a > 0 \) and an \(\alpha \in \mathbb{R} \) such that
\[
|S(\zeta)| \geq |\zeta|^\alpha,
\]
when \(\zeta = \xi + i\eta \in \mathcal{V} \) and \(\xi \in \mathbb{R}^n \setminus I_\alpha \). We define the function \(f \) in \(\mathcal{V} \) by the formula
\[
f(\zeta) = \begin{cases}
0 & \text{for } \xi \in I_\alpha, \\
1 & \text{for } \xi \in \mathbb{R}^n \setminus I_\alpha,
\end{cases}
\]
where \(\mu \in \mathbb{N} \) is chosen so large that
\[
|f(\zeta)| \leq M|\zeta|^{-\mu-1}
\]
for some constant \(M \). Condition (22) guarantees that such a \(\mu \) exists. Then the function
\[
\tilde{g}(\xi) = \sum_{\mathbb{P}} f(\xi + ibp)
\]
is integrable over \(\mathbb{R}^n \). Its inverse Fourier transform \(\tilde{g}(x) \) is given by the formula
\[
\tilde{g}(x) = \sum_{\mathbb{P}} \int_{\mathbb{R}^n} f(\zeta) e^{i\alpha(x - \alpha)} d\zeta;
\]
\(\tilde{g}(x) \) is continuous and bounded in \(\mathbb{R}^n \).

But \(f(\zeta) \) is analytic for \(\xi \in \mathbb{R}^n \setminus I_\alpha \), continuous for \(\xi \in \mathbb{R}^n \setminus I_\alpha \) and satisfies condition (24). Therefore, by repeated application of Cauchy's integral theorem, integration in (23) along the lines \(\xi + ibp, \xi \neq \xi_j \in \mathbb{R}^n \setminus I_\alpha \), can be replaced by integration along the real lines and the quadrangles with vertices at \(-a, a \) and \(a + ibp, a \) in the indicated direction. It also has to be observed that, except for the integral over \(\mathbb{R}^n \), integration along a real line can be reduced to the segment from \(-a \) to \(a \), again by Cauchy's integral theorem. This procedure leads to the formula
\[
\frac{\tilde{g}(x)}{\sigma_{n+1}(x)} = \int_{\mathbb{R}^n} f(\zeta) e^{i\alpha(x - \alpha)} d\zeta + \sum_{\mathbb{P}} \frac{\sigma_{n+1}(x)}{\sigma_{n+1}(\xi)} \int_{\mathbb{R}^n} f(\zeta) e^{i\alpha(x - \alpha)} d\zeta,
\]
where the contours \(\mathbb{P} \) are those defined in lemma 2.

We assert that
\[
P = \left(-\frac{d}{4\pi^2} \right)^{\gamma} \tilde{g}(x)
\]
is a \(\beta \)-parametrix for \(\mathcal{S} \). In fact, \(P \) satisfies the growth condition for a \(\beta \)-parametrix, i.e. \(\sigma_{n+1}P \) is a bounded distribution. Furthermore, by virtue of (26), \(P \) is a sum of the distribution

\[
P_1 = \left(-\frac{d}{4\pi^2} \right)^{\gamma} \tilde{f},
\]
where \(\tilde{f} \) is the inverse Fourier transform of \(f \), and the function
\[
P_1(x) = \left(-\frac{d}{4\pi^2} \right)^{\gamma} \int_{\mathbb{R}^n} \frac{\sigma_{n+1}(x)}{\sigma_{n+1}(\xi)} \int_{\mathbb{R}^n} f(\zeta) e^{i\alpha(x - \alpha)} d\zeta,
\]
which belongs to \(\mathcal{S} \mathcal{X} \).

Now, in view of (23) and the definition of \(\gamma(\zeta) \) in lemma 2,
\[
(\mathcal{S} \ast P_1)(\zeta) = \mathcal{S}(\zeta + \xi) f(\xi) = \gamma(\zeta),
\]
and so

$$S \ast P = \delta - W_t,$$

where

$$W_t(x) = \int_{\mathbb{R}^n} e^{\alpha x, \zeta} d\zeta = \frac{1}{(2\pi)^{n/2}} \prod_{j=1}^{n} (e^{\omega_{-i\alpha_j}} - e^{\omega_{i\alpha_j}}).$$

Next we define the function $h(x, t)$ on \mathbb{R}^n as

$$h(x, t) = \sum_{j \in \mathbb{N}} \frac{e^{\alpha x, \zeta}}{\omega_{-i\alpha_j}} \int_{\mathbb{R}} f(\zeta) e^{\alpha \omega j - \omega x} d\zeta.$$

For any fixed $x \in \mathbb{R}^n$, $h(x, t)$ is in $\mathcal{S}'(\mathbb{R})$ as a function of t. Moreover,

$$-\frac{1}{4\pi^2} \frac{d}{dt} h(x, t) = \sum_{j \in \mathbb{N}} \frac{e^{\alpha x, \zeta}}{\omega_{-i\alpha_j}} \int_{\mathbb{R}} \gamma(\zeta) e^{\alpha \omega j - \omega x} d\zeta$$

$$= W_t(x) - \frac{1}{(2\pi)^{n/2} \omega_{-i\alpha_j}} \prod_{j=1}^{n} (e^{\omega_{-i\alpha_j}} - e^{\omega_{i\alpha_j}}),$$

by equality (23) and lemma 2.

On the other hand,

$$S \ast P(x) = \left(-\frac{1}{4\pi^2} \frac{d}{dt} h(x, t) + v(x, t) \right),$$

where $v(x, t)$ is the function from lemma 3.

But

$$W_t(x) = \left(-\frac{1}{4\pi^2} \frac{d}{dt} h(x, t) \right),$$

is a C^∞-function, which satisfies condition (21), by the corollary following lemma 3. Thus from (28), (29) and (30) we conclude that P satisfies equation (20) with the function

$$W(x) = W_t(x) - \frac{1}{(2\pi)^{n/2} \omega_{-i\alpha_j}} \prod_{j=1}^{n} (e^{\omega_{-i\alpha_j}} - e^{\omega_{i\alpha_j}}),$$

which has the desired properties.

Theorem 3. If $S \ast \epsilon_0(\mathcal{F}', \mathcal{F}')$ and, for every $b > 0$, there exists a b-parametrix for S then S is hypoelliptic in \mathcal{F}'.

Proof. Assume that U is a solution in \mathcal{F}' of the equation

$$S \ast U = U',$$

where $U \in \mathcal{S}'$. Then there exists a $k \in \mathbb{N}$ such that $\frac{1}{2\pi^k} U$ is a bounded distribution and

$$\sup_{x \in \mathbb{R}^n} \frac{1}{2\pi^k} |U(x)| < \infty$$

for every $x \in \mathbb{R}^n$.

Let now P be a b-parametrix for S, $b > h$, and W the corresponding function in (20). Note that P and W may not be in $\mathcal{S}'(\mathcal{F}', \mathcal{F}')$.

Still we can write

$$U = U \ast \delta = U \ast (S \ast P) + U \ast W,$$

where the convolutions with U on the right-hand side are well defined (see section 1). Moreover,

$$U \ast (S \ast P) = (U \ast S) \ast P = P \ast P$$

and the last term belongs to \mathcal{S}'. Also $U \ast W$ is obviously in \mathcal{S}'. Thus U is, in fact, in \mathcal{S}', q.e.d.

Combining theorem 2 and theorem 3 we obtain

Theorem 4. A distribution $S \ast \epsilon_0(\mathcal{F}', \mathcal{F}')$ satisfying condition (11)

is hypoelliptic in \mathcal{F}'.

In view of theorem 1 we can now state the following corollary:

Corollary. Condition (11) is necessary and sufficient for a distribution $S \ast \epsilon_0(\mathcal{F}', \mathcal{F}')$ to be hypoelliptic in \mathcal{F}'.

References

Reçu par la Rédaction le 5, 1, 1965.