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1. Introduction. Eberlein [4] has shown that the space of almost
periodic functions on a locally compact abelian group is a eomplemented
subspace of the space of all weakly almost periodic functions. In this
paper we specialize to the case of the real line and show that neither
of the above two spaces is complemented when considered as a subspace
of the bounded uniformly continuous functions. It is interesting that
in both of our proofs we are able to employ a well known lemma of R.
§. Phillips. The author is grateful to W. G. Bade for suggesting this in-
vestigation.

2. Preliminaries. The bounded finitely additive measures on a dis-
crete set S will be denoted by ba(8).

LeMMA 2.1 (Phillips [6]). Let {u,}eba(S). Suppose

lmpu,(E) =0 for all B = 8.
"
Then
lim D {fe(s)] = 0.

b oseS

Remark. Grothendieck [5] has used this to show that every con-
tinuous linear map from m, the space of bounded sequences, to a sepa-
rable space is weakly compact.

Definition 2.2. Let G be a locally compact group. A funetion
feBC(G), the bounded continuous functions on @, is said to be weakly
almost periodic (WAP) provided {f(z-+1)|teG} is a relatively weakly
compact subset of BC(@); f is said to be almost periodic (AP) provided
{f(x+1) | teG} is a relatively compact subset of BC(@).

Thus any AP function is WAP. A WAP function is bounded and

. uniformly continuous. The sum, product, and sealar multiples of WAP
(AP) functions are WAP (AP). Furthermore, the uniform limit of a sequence
of WAP (AP) functions is a WAP (AP) function. Consequently, both
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WAP(G) and AP(G) are closed subalgebras of BUC(G). A discussion
of these facts for WAP functions may be found in Eberlein [3], and
for AP functions in Bohr [2].

We now specialize to the case of G = E.

LemMA 2.3 (Eberlein [3]). The limit

81
lim oo f foyd = M(f)
8.

4
ewists for each feWAP(R) independently of s and wniformly in s.

3. TuxoveM 3.1. There is no bounded projection from BUC(R) onto
WAP(R).

TEROREM 3.2. There is no bounded projection from BUC(R) onto
AP(R).

Theorem 3.1 is directly within the grasp of Phillips’ lemna due
to the fact that if f is a continuous function vanishing at infinity, then f
is a WAP function (see [3], p. 233), and M (f) = 0. However, no non-
zero function vanishing at infinity is AP, and it seems necessary to
resort to some harmonic analysis for the proof of Theorem 3.2. The
proofs of both theorems may be generalized to give the same results for
metrizable non-compact locally compact groups.

Proof of Theorem 3.1. Congider the mean value

s
1
M(f) = lim 2 f fat.

We may find an increasing sequence {s,} of real numbers such that

o Suga
lim -2

n Sy

(e.g. s, = n"). Then it is easy to verify that

) 1 n
lim —— f F)ds = M(f)
fisoa Sp—8n_1 St :
for each fe WAP(R).
‘We now define for each # a continuous function g, having the fol-
lowing properties:
1) lgallee =135

(2) suppgn < [$n-1, 8ul;
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1 1
@ [ ma> 3

Sp— 8n_1 Spe1
n—

(4) Y gn is uniformly continuous for each subset E of positive
nel}

integers.
For each fe WAP(R) define

! f“f(t)dt.

Sp—S8n_1
Sp—1

Note that limg,(f) = 0 for each fe WAP(R).

ea(f) = M(f)—

Assume to the contrary that P is a bounded projection from BUC(R)
onto WAP(R). For each subset E of positive integers define

) = a7 4.
ieE
TFor each n,, is a bounded finitely additive measure on the pos-
itive integers, and for each subset B of positive integers limy, (E) = 0.
However, "

1
(1 (n)] = lpu(Pgall = lpnlgn)l > Ch

This contradicts Lemma 2.1, q.e.d.

We require a preliminary discussion before “proceeding to the proof
of Theorem 3.2. When possible we use the notation of Rudin [8].

Tet @ be a locally compact group and let I" be its dual. Let (2, y)
denote (), where yel” and we@. If fis a function on @, then f denotes
its Fourier transform.

Alternatively to Definition 2.2, AP(@) is defined as the uniform
closure of all trigonometric polynomials on &, i.e. of all finite sums of

the form
7w

fla) = D) af@, ),

p=1

ze@,

where «, are complex numbers. Let @ denote the Bolhr compactification
of G defined as the group dual to [’ with the discrete topology. Then
AP (G) may be identified with c(@).

If feC(@), the spectrum of.f, denoted by sp f, is defined to be {yel'|
y) % 0}. If Y is an invariant subspace of ¢(&), letting sp ¥ denote
spf, the spectral synthesis theorem (see [9], p. 17) says that

Y = {fe0(G) | sp f< p¥Y}.

~

~hs
EC>

3
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Suppose now that A is a subgroup of I, the diserete dual of G. Con-
sider the closure of all trigonometric polynomials

"W
flz) = 2(4,,(.75, p)  with ped.
Let this invariant subspace of AP (@) be denoted by AL, (G). The
following theorem has been communicated by H. P. Rosenthal:
TurorEM. There is a bounded projection from AP (G) onto AP (G).
Proof. By the above remarks

AP (@) = {feC(G) | spf € A},

Let A denote {we@ | (x,y) =1 for all yed}. Set H ==.1'. Then H
is a compact subgroup of @ and the orthogonality relation H L=ttt =4
holds. Let m; denote normalized Haar measure on I, then

gy (y) == f(h,y)([m"(h)
I

is the Fourier-Stieltjes transform of gy . If yed it follows that

g (y) = J (hy y)dmy (h) = j dmy(h) == 1.
i i

If y¢d, then Mg (y) = 0, since there exists an hyeH such that (g, y)
# 1 and

(hoyy) [y p)dmgg(h) = [ (bt ho, p)dmgr(h) = [ (b, y)dmy (R).
" i i
The required projection from AP (@) onto AV (¢) is given by I’
= my xf. First note that

My xf(r) = ff(w—r)d-m,,(r)
@

is a continuous function on G and that my*f(y) = myly) f (). Since
mﬂfy) =1 if y ¢/, we see that my+fe AP (G). If fe AP (G), then my *f'(y)
== f(y) for every yel', and by the uniqueness of Fourier transformns
f=mg=f, qe.d. ’

ArpricaTioN 1. Let G = R, so that I" = R and let A e the sub-
group of all rational multiples of =. Then there is a bounded projection
from AP(R) onto AP,(R).
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APPLICATION 2. Let G = Z (the integers) so that I' is the circle T.

Let . Dbe the subgroup of all points of 7' whose arguments are rational
multiples of 7. Then there is a bounded projection of AP(Z) onto AP ;(Z).
The latter space is also the closure in the supremum norm of the linear
space of periodic sequences.

Proof of Theorem 3.2. Let A be as above. It suffices fo show
that there is no bounded projection from BUC(R) onto AP, (R), since
if there were a bounded projection from BUC(R) onto AP(R), then by
composing it with the projection from AP(E) onto AP, (R) we would
have a projection from BUC(R) onto AP ;(R).

Agsunie to the contrary that there is a bounded projection P : BUC(R)
-» AP (R). Let g(r) be a continuous function with support contained in
[—1,%] and such that g(0)=1. Define g.(x) = g(x—n) for n = 0,
21, 42,

Imbed m in BUC(R) as follows:

718

{&ayem, T:{&} - Engn(@).

f=—0c0

Let @ be the map from AP, (R), @ :f— {f(n)}.

It is claimed that the composition map ®oPol is a projection from
m onto AP ;(Z). However, the latter space is separable, and any contin-
uous linear map from m to a separable space is weakly compact ([5],
p. 169). This will be the desired contradiction.

As noted before, the space of periodic sequences is dense in APz (Z).
Let {£,} be a periodic sequence; then

o0

I({Eﬂ}) = Enln

=

iy a periodic function belonging to AP (R). Thus Pol({£}) = I({&})
and @-PoI({£,}) = GcI({&,)) = {£u}. Since PoPol is continunous, we
see that if {£,}€AP7(Z), then GoPol({t)) = {&). Thus PoPol is a
projection, q.e.d.
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Hypoelliptic and entire elliptic convolution equations
in subspaces of the space of distributions (II)

by

Z. ZIRLEZNY (Wroctaw)

In part I of this work (see [5]) we showed how to define in a general
manner hypoelliptic and entire elliptic convolution operators in sub-
spaces of the space of distributions. We also characterized hypoelliptic
and entire elliptic convolution operators in the space & of tempered
distributions.

The purpose of this paper is to study hypoelliptic convolution oper-
ators in the space ' (= A,) of distributions of exponential growth
introduced by Sebastiao e Silva [4] and Hasumi 1L

The space @(#";:.47) of convolution operators in ¢ (which is
a space of distributions) was characterized in [1] and its topological
properties were investigated in [6].

Using the notation of [5] we define &7 to be the set of all C*-fune-
tions fe o) such that, for every Se@(#7:.#7), the convolution §f
is a C*-function and § — §*f is a continuous mapping from @, (4 : A7)
into the space & of all (™-functions in R™ Then a distribution Se@,(}:
A7) is said to be hypoelliptic in A7y, if every solution Ue " of the con-
volution equation

(1) SxU=F

is in &7, when Fe d#7; in that case equation (1) is also called hypo-
elliptic in 2.

As a supplement of the standard notation (see [3] and [5]) we use
N" as the set of all points in R", whose coordinates are non-negative
integers; we write ¥ and R instead of N' and R' respectively. Further-
more, we denote by P" (§" resp.) the set of all points p = (91, ..., Pn)
(¢ = (q1y..., gn) resp.) such that p; =1 or —1L (¢ =1 or 0 resp.). In
particular, Q" contains the points 1 = (1,1,...,1) and 0 = (0,0, ..., 0).

For a point @ = (2, ...,2,)eR" we sometimes write @ = (', %,),
where &' = (&, ..., ®By_1)€ R-1, Also, for @ = (y, ..., %) and & = (&g, ...
ooy &) in B™ we use the product && = (&, ..., @, £,) beside the scalar
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