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determined by 4, and let Z, and (ZoQ™), denote the singular integral
and tame singular integrals determined by 4. For f in L”(H),

1Z0()—(Z0Q™ (Nl
< N2 (1) =2 Db+ 125 (1) — (Zo @ 5Nl + 1 Z0 Q5 (N—(Z0Q™ ) (-

As has been shown in [1], the first and third terms on the right are
each dominated by a constant multiple of |4 —4,],. So for ¢ > 0 there
is an integer N such that for # > N, the first and third terms on the right
of this inequality are each < &/3. Fix > N. By the above argument
we know that the second term on the right converges to zero as € tends
strongly to the identity through #. Thus Z, is the strong limit of the
net {(ZoQY), [ «F} when A(y) is an absolutely integrable odd function.
A similar argument completes the proof for even r-power integrable
(v = 1) tame functions 4 (y) with E(4) = 0.

]
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Some remarks on the multiple Weierstrass transform
and Abel summability of multiple Fourier-Hermite series
by
CALIXTO P. CALDERON (San Luis)

INTRODUCTION

The purpose of this paper is to extend to the m-dimensional case
some theorems given in [2], [3] and [4] concerning the inversion formula
of the Weierstrass Transform and the Abel summapbility of Fourier-Hermite
series. The theorems of the present paper are referred to the measure

)

m
-3z
1

s

2
g_]‘z! de = e dﬁl...d-r7n,

case which is not included in [2], [3], [4] and [6]; on the other hand,
we also give maximal theorems with respect to Abel Summability of
multiple Fourier-Flermite series and to the inversion formula for the mul-
tiple Weierstrass Transform.

The first part of the paper is devoted to the study of theorems of
general character concerning differentiation of multiple integrals which
have to be used in the second part, the specific problem.

T would like to thank Prof. A. Gonzélez Dominguez who proposed the
problem to me and to Prof. A. P. Calderén for many helpful suggestions.

NOTATION

1. By « we denote a point (@, ..., ) of the Euclidean m-dimensional
space :

m

ij2

ol = 3 8)"
i=1

2. If 4 is an elementary measure defined on R™, it is an additive
funetion of the subsets of R™ which are finite union of m-dimensional
intervals. The variation W of 4 on a cube @ < R™ is defined in the following
way:

1 1
W@ = sup X (8, S=US8, 8in=0 i#i#j,
Scein =1
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where the sup is taken over all the possible elementary sets contained
in Q. If the measure y is completely additive we shall call it o-additive.

3. If >0 is o-additive on the Borel subsets of R™, we shall use
the following classes of u-measurable functions:

a) L)(R™) is the set of functions such that
( [ifrap)” =
Rm

b) L,(log™ L)’

[flpn < 00,  p=1.

ig the set of functions such that
[171(og* 1) du < oo,
Rm
If dup =6 i dw, we shall use the notation LZ(R™), Le(log*Lg)’
for a) and b) respectively.

Finally, we shall use an auxiliary class of functions I,(R™), 0 < y < 1,
the class of measurable functions such that

[fe o < oo

nm

s >0.

and I_l,z(R"‘) will denote the clags of functions or measures such that
z)dw < oo, fe’“‘zlzdw< oo,

2
f ool g
R’m

where dw denotes the variation of .
4. B(A,f), f=0, will denote the set of points where f> 1

u{B (A f)}, G{E(A,f)} and |E(4,f)| denote the p-measure of H(4,f),

. [e A "“ dx and the Lebesgue measure of (1, f), respectively.
*

1. PREVIOUS LEMMAS

1.1. We shall denote by I(t, h, f)

(#) an operator of restrictive deriva-
tion defined on R™, ie

(11.1) It H) = o [ )y,
”2;74](5) Q(h.‘t,:c)

where the %(t), j =1, ..., m, are continuous functions of ¢ 0 strictly
increasing to +oco and 0 at ¢ = 0; Q(h, t, ) is an m-dimensional rectangle,
centered at the point », with edges of length 2k;(t) parallel to the coordinate
axes. (The edge of length 27,(t) being parallel to the axis ;).

By f we denote a measurable function, loeally integrable, defined
on R™. We can also define the operator over measures defined on R™.

icm°®
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1.2. Tt is well known that the following inequality holds:

B {*, 1} <~ j dw,

Rm

sup I(t, b, p){x)!

o<i<ee

p(2) =

and ux is an additive measure defined on the elementary subsets of R™
(finite union of intervals), having bounded variation there, and denoting
by dw its variation.

The constant ' of (1.2.1) depends neither on the measure g nor on
the funetions h;(t) of the operator (see [8], Vol II, p. 309 and 310). An
important consequence of inequality (1.2.1) is that the limit

(1.2.2) Yim I(t, b, p)(x)
>0
exists a.e. and it is a.e. equal to the density funetion associated to u-

1.3. Levma. Let K,(u)(z) be a family of sublinear operators defined
on the space of the elementary measures (in the sense of 1.2) defined on R™
such that

(a) Ka(w)(@)) < 3 oI, m)@),  bez0,6>0,
0

(b) Db < oe,

where for each &k >0, ™, uw){(x) is an operafor of restrictive derivation.
Under the preceding assumplions we have

. Cy
(0) 1B ), 21 < = ,,[dw’

where K*(u) denotes sup K (@)(x)l, and dw denctes the variation of the

[(ES24-]
measure u. Cy does not depend on .
(ily If p is singular we have

lim K, (p) (@) =0

-0

a.e. in R™.

Proof. Without loss of generality we may assume that ,u >0, and

Z‘b}f =1.

0
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Let X, be the set of points where

sup Yb Heur 1% (¢,

o<ci<oo 57 )

u)(@) > 1
and XPthe set of points where

sup BY2I® (¢, w)(w) > A.

0<ti<oo
Thus we have

(1.3.1) X, e ()X
k=0

and so, according to (1.2.1) we obtain

oo
X, < ‘ X < bl fdw
k=0
which proves part (i).
Now let x>0 be singulal and ¢ > 0, then there exists an integer
number N > 0, such that 2 bi* < &. If we denote by X7 the set of points

where

(1.3.2) s biPBYEI™ (¢ ; ;
' D\i\poekz‘ ® ul@ )>£’
it is clear that
(1.3.3) x¥ e U

EZN g/gbllz

and so from (1.2.1) again, we have

(1.3.4) XY < Y|X"’ Ll \”O‘[Zbyz]'zb;*ﬂ fclw
Ic N !/2 I € N k=N Rr™
<60 fdw.
R’m
8o in R™—XY we have
s N
lim |, <lim Y b, 1% G
fim. |17, (1) (2) w;MWW)HSRZhWMW

Since |X7| <0 [dw, part (i) follows.
R‘nl )

icm°®
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1.4. Definition. Let Fj(x),j =1,2,..., m, be real functions of
the single variable x defined on the real line and belonging to LYR).
Then we can form with them the kernel

m

(1.4.1) n 1

=1

O F;[ns(t)ay] = K¢, 2),

where the functions 1/n;(f) play the same role as h;(#) of 1.1, that is, the |
1/n;(t) are continwous functions of ¢ 0, strietly increasing to -+ oc and 0
at t = 0.

We shall impose to the Fy(r) the following conditions:

a) the Fj(z), j = 1,2,..., m, are symmetric and non-increasing on
il 0;

D) there exists ¢ >0 and 1 > § >0, sueh that

W [ B e < oo, j=1,2, 00 m
[ry<e

(ii) [1F; (@) fdr < 00, j=1,2,...,m.
;x(>e

1.5. LEMMA. If the functions of the kernel (1.4.1) have the propemes
a) and b), and if p is an additive function of the elementary subsets of R™
(finite union of intervals), and with bounded variation there, then the operaior
sup [Ky*pl = o

o<t<oo

(1.5.1) sup |

p<t<on!

[E(t,2—y)duly) =

R™

has the following property:

— C ) . .
1) |E(u, L)‘<7 [ dw(p), where G does not depend on p, and W (w)
v R)il
denotes the variation of the measure u on R", and, furthermore, the operators
K+u have the property:
2) lim Ky*p = 0 ae. if g is smgular

10

Proof. From properties a) and D) of (1.4) we have for |yl > e

(15.2) sup [y Fiy)' < [ Fiy)''dy
v —
s0, if [yl > e,
Ply) < A
75 (%
i\ e TAETE) 0

where 4 depends on the bound of [ Fj~’dy and on & >0, On the other
—0
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hand, for |y| < ¢ we have

(1.5.3) sup y| By (y)' ' < [ By(y)'*ay,
v -6

Fi(y) < if lyl<e,

B
i
where B depends on & > 0 and on the value of f Fit'dy. From. the form

of the F; it is easy to see that we can take ¢ = 1. Now calling @, (y) to
the characteristic function of the interval [‘7k 2 +I], and P,—-x(Yy ) to the
ehma.ctenstw function of the interval [27(+¥ 9- "] then from (1.5.2)

and (1.5.3) we have the following estimate fo1 Y= '
(1.5.4) ()"o MO0 gy +k2 QU+NI+0) .-(y)).
=0

TFinally, if we call ¥} to the characteristic function of the interval
[—2%1, 2] and ¥, to the chavacteristic function of the interval
[—27%,27"] we have again

(S‘szl(l olgj )+ yz(H—k)/ CER'E (_/))

k=0 k=-0

Fiy) <

and

455 mOB0y) < o2 }7 3-00-0-5 0., 0y D+
IA

+2 22‘76(1“1/(1”))”:'(t)2k+1‘1’~k[‘”o‘(t)yi]}‘
Ie=0
Setting @, = 27"¢1=01 and g_; = 27¥0-YE+D 4nd according to
(1.5.5) and (1.4.1) we have

0

(=]
K(t, y)<8"0F 2 . Z“kl'"“’%;:,D’-u-u’fm(t’ Y,

—00 -0

(1.5.6)

where Dy, .1, (t, ») are functions which generate each one of them an
operator of restrictive derivation; and since

oo ©0

12 1/2
S < oo,
— 00 -0

from the lemma (1.3) the parts 1) and 2) of the thesis follow.

1.6. CorROLLARY. In the preceding lemma it is easy to see that if in the
place of the n;(t) we lake functions of the form an (j=1,...,m), where

icm
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the a; are fiwed constants and the n's run over lhe non-negalive integers,
then the: same conclusions hold.

1.7. Definition. Let y; >0, j =1, 2,..., m, be non-negative and
o-additive measures defined on the Borel subsets of R™. We say that
the integral [ fdu, where du is the product measure dy,...dp, and f is

7

a g-measurable and u-locally integrable function, is strongly differentiable
at the point &, = (By, ..., o), & e B™, if the limit
. 1
. lim TwTT f fd,ul cee d/.(m
% m % i
Q) - x Q)]0 HI #Q( %)} dy v @mE
i=

exists and is finite.

A[QM(@,) X... XQ™(#,)] denotes the diameter of Q') X ... X Q™ (Bm),
and each Qj(sovi) denotes an n’-dimensional cube with sides parallel to
the ecoordinate axes and centered at the point fs;.

1.8. TororeM. Under the conditions of (1.7) if f is p-measurable and
if |fl(log™ IfY"" is locally integrable, then the integral jf fdu is strongly

differentiable a. e. with respect to the measure g = foy... fim-
" Furthermore, setting

B} | 1

Fay = osup g fag|
QXY > QM) | I‘l ﬂ](Q’(l})) Ql(ll)x...;.Qm(-’fm) I
J=
we have
o [ wraT<ew( [ iraw)” e>1

RMAt--tnm RMLT - m

where the constant C(p) depends only on p and m.
ii) If A is an elementary subset of R™F7"m having bounded measure
we %ave

@  [Fdu<Bi{p(4) m}+[ JIfit+log™ 11" du| Bofs(4), m},
4

(0) [ (F)du< Ca{u(4), m, a}+Cofu(4), my a} [ 1f1(1+1og | 7)™ dps,
A A
where 0 < a << 1.
The proof follows very closely that of the correlative result of Jessen-
Marcinkiewicz-Zygmund and therefore we are going to sketch it only.

First we shall prove some auxiliary lemmas of very well known type.
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1.9. If for each point x of & bounded set 8 = R™ there is given a cube
Q () (with sides parallel to the coordinate axes), it is possible to select a’sequence
{Q(2n } of these cubes such that:

y S < U Q(2;);
(i) eaeh point of R™ belongs at most to 4™ different cubes of the family
{@ (=)}
For the proof see [1], p. 125-128.

Remark. The same conclusion holds if we consider an open subset
of R™ as space.

1.10. LevMA. If » = 0 is an additive elementary measure defined on
R™ such that v(R™) < oo, and if p = 0 is a o-additive measure defined on
the Borel subsets of R™, then the operation.

(1.10.1) PE) = SUp et
Qs i[9 ()]

(where the Q (x) are cubes centered at x) has the property

)  w{E@, < _41, f dy.
RHL

(ily If feLL(R™), » >1, then
Y yp 1
( [fan)"<0,( [ 157an)”.
R™ R™
(i) If A is an elementary subset of bounded u-measwre, we have

(a) [fap<puay+o’ Jiniasttogtisas,

(v) JUraus 0wty r0r [inids, 0<a<t,

(iv) If f is locally u-mtegmble, then

lim
Q@)+ #{Q f fap =

@(“)
a. 6. with respect to u.
Proof. Let § be a bounded elementary set on R™ and consider

E{3, 2} ~ 8. From (1.10.1) for each point @ of B{», A} ~ § there exists
a cube @(z) such that

(1.10.2) Au[@(@)] < »[Q(@)]

From 1.9 we can select a sequence of such cubes verifying (i) and (i)
of 1.9.
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Let us take a finite number of such cubes, @(z,), ..., @{¥x), and
denote by ¢;(x),j =1, ..., k, the corresponding characteristic functions;
then

k
(1.10.3) #{UQ mp< [N gile)du < 5‘ fdy
1 1 Qxp
k %
1 r 4 m
)

The last inequality holds since Eq,-(;z) < 4™ everywhere. Then
i

qm

k 4
(1.10.4) M{QQ(@)} s—z—v(R’")

and sinee k is arbitrary, we have
"

. o 4 "
w{B(v, 1) ~ 8} < /L{UQ(I;)} < **V(R )

Finally, letting § tend to the whole R™ we have part (i) of the thesia
Part (ii) immediately follows combining inequality (i) with || f oo

< |iflo and using the well known theorem of Marcinkiewicz on interpola-
tion of sublinear operators. ’

Now let us consider f>> 0, z-measurable and such that flog®f is
u-locally integrable and let us take an open neighborhood A as space,
provided that u(4)< co. Putting f = F+ fun, where

(1.10.5) A =f it flz)<2/2 and 0 otherwise,
(1.10.5) fie=F i f(@>242 and 0 otherwise,

we obtain

(1.10.6)  p{B(A, ")} < p{BIA2, FPVN+u{BlA2, (fi) ]}
but w{B[A)2, (F)*]} = 0 since ||l < gl .

Using the estimate (i) of the thesis and (1.10.8), we have

(1.10.7) ff*dy= f;z{E(wl,f*)}dlgy(A : J 24‘7“ di ffalqd,u
4 [}
2f
— iy [ gaef S

A~ff>1y2) 1
<pa)+2-4" [ fll+logtfap
4

and the part (iii), (a), holds.
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Now we can suppose f=> 0 is locally integrable:

(1108) [ (f)V'dp = o[ p{BO, 0

A

< ap(d)+a-2-4™ [ 1720 [ fadp
1 A

of
<ap(d)+a24™ [ fap [ 1
Anff>1/2) 1

ap(4)+0(a) [ fiu
A

which proves (iii), (b).

Finally, (iv)is verified if f is a step funetion.

Let us take a general f, locally integrable; then we can find a step
function f for each & >0 such that

(1.10.9) f}f—f’[(l,u< e,
A

where 4 is a bounded open set such that u(4)< ec.
Now, by inequality (i) of the thesis we have

2 ’ 2-4" , )
EE =) < [ 17— ldp < 247
A

and then

ITE ffd,u ffd‘uJ > 2612
Q(”’) Q)
only in a set of g-measure smaller than 2-4™g%2,

L11. Tevwva. If >0 and » =0 are o-additive bounded measures
defined on the Borel subsets of R™, then:

) (.?g;f(’} 1@ @)1/»[Q(2)] ewists and is finile a.e. with respect lo the
measure v. .

(ii) Q(gir:m}{y[Q (@)1/v[Q(x)]}~" exists and is finite a.e. with respect to
the measure u.

Proof. We may consider only (i), since (i) is symmetric. The well
known theorem on decomposition gives

(1.11.1) v(4) = fgd.‘u—i—v(N ~ 4),

where v(N ~ A) is the singular part and u(N) = 0, and 4 rung over all
the Borel subsets of R™.
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Setting »(N ~ 4) = » (4), it is sufficient to prove the differentia-
bility of », since the differentiability of [gdu holds from the preceding
A
lemma.
For each £ >0 we can find an open set G such that »(G) <e and
#(G*) < e, where G* denotes the complementary set. Setting now
v, = 2+, where

nA) =n(d n@), (4 =nd~6),

for each point we@ there is a eube Q(x) such that Q(x) ~ G = ¢, then
in @
m "1‘{0(‘1')) — 1im ";LQ(I }
Gty BAQE)] et 41Q ()}
Now using inequality (i) of lemma 1.10, we have
; —im
‘u{E[em, ») )];< ’ vy, < 4™V
R]Tl
then
e Kl G
Qi B{Q(2)}

" ¢l? g, Thus the lemma

except in a set of y-measure at most equal to 4
is proved.

Remark. The extension of the preceding lemma to the case p(R™)
= oo or »(R") = co or u(R™) = oc and »(R™) = co is mot difficult,
therefore we are not going to state it here explieitly.

1.12. Let y; be measures in the conditions of [1.7], j=1,...,m, and
let us consider the operators

(1121)  M(f)@) = sup —

o =] o
‘—_0— ‘f(*”17-~~7-°-”’i75fi+1: -~-;Wm)dl‘i‘7
Qj(%) =& /‘J[QJ('”J |

Qj(zp)
where f is locally w,...un integrable; then the operator is well defined
a.e. in the measure g = /4. fhm.

Tf f> 0 is a u-measurable, locally integrable function and ¢(u) is
a eonvex non-decreasing function, we have the following easy to prove
inequalities:

(a) f mJI’m 1+ Ml (f)
(1.12.2) ®) eH<elf), #=0,
(@ @M< Mlp()), J=1,...,m;

Studia Mathematica XXXIL2 9
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( )~ denotes the maximal operator associated to the strong differentation
in the hypotesis of Theorem 1.8. Let us observe that the operator IM;
acting on the variable z; is the operator * of lemma 1.10.

1.13. LeMMA. If s 2= 1 and M(f) = f* is the operator defined in lem-
me 1.10, then

() [ M(H[+log* M () < w(4)+s 4"+ [£(1+1ogh )" dp,
4 : . A

where > 0, and A is an open set of bounded p-measure.
Proof. Observing that
u (14 logtu)

is positive inereasing and convex on w >0 with s> 1, we have

(L13.1) [ M(H(A+logt M (NN fM{f (1 +log*f)*}dps,
A

(113.2) [ M{f(1+log*f)'}dp
A
< u(A)+2-4" [ f(1+4log* ' [1+og* {f(1-+-log* f)*}dp.
A

On the other hand, we have

(118.3) logt [f(1+1log*f)"] < log™f+ slog™ (1+log™f)
< s{log*f+log™ (1 +log*f)} < 2slog™f.
Then
1+logt[f(1-+1log™tf)’] < 28(1+logtf).

Combining this last inequality with (1.13.2) we have the desired
result.

1.14. Now to finish the proof of theorem 1.8 we may take m = 2,
a case entirely typical.

Let f = 0 belong to L, (R"*™), p > 1. According to inequality (ii)
of lemma 1.10, we have

(114.1) [ (MM (PP dp < C@) [ (Mo ()P dpsr-
rM P!

The same argument gives
[ [ (MM(NPdu < Op) [ dpa [ [M(HP dpy
r™ 2" b S

ff TPap, s

g2
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Now, using (1.12.2), (a), we obtain

(1.14.2)
JI GFamag< [ DIALNPandp < 0(p) [] fapdp
7111‘—112 Rﬂ 14 R’l 1t N2

which gives (i) of 1.8.
Let A be a set of the form @, %@,, where the Q;<R" (i = 1,2) are
cubes, and let f>.0 be a u-measurable function, such that

f flog* fdu < oo.
Using inequality (iii), (b) of lemma 1.10, we have

(L143) (LA < 05 pa(Q0) +05" [ Ma(f)dps.
@ Q1

Integrating this inequality with respeet to du, and using (iii), (a) of
lemma 1.10 we obtain

(L) [ (LM dpdpss
Q% Qy

< 0L i(A)+0. p(@2) 00" [ [ F(1+10g" ) dppydpss

1%Qq

which gives (ii), (b) of theorem 1.8.
Now if we impose [f(1-+log™ fdu< oo, as in the preceding case,
A

we have from (iii), (a) of lemma 1.10

(L145) [ Mo (f)dpy < u(Qn)+0 [ Mo (f) 1+ log" Mo ()1dps,.-
Q1 Q@

Integrating with respect to du, and using lemma 1.13 we obtain
(1.14.6)

S Ao Apr sy < p(A4) 0" ia(Qu)+ 470" [ (L 1og" .

Q1% Qs A
which gives (ii), (a) of theorem 1.8.

Remark. If i;(RY) < oo (j = 1,...,m), we can take 4 = R "m
and the same conclusions hold.

Finally, since we have pointwise convergence for a dense set (step
functions), the corresponding pointwise convergence result follows from
the maximal inequality proved in (1.11.4).

1.15. Leanva. Let Ic,,].(xj, ) =0 (j=1,...,m), aed; be a family
of real-valued functions with the properties

(i) [Hle, mamly) < 4, j=1,2,...,m,
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where du; is a o-additive and non-negative measure defined on the real line;
the bound A does mot depend on the parameters j, o;, o; (%; runs over the
real line).

(ii) For each (j, z;, o;), kf;j(mj, y;) 18 a non-increasing function of y;
for y; > m; ond non-decreasing for y; < .

Under the two preceding conditions the operator

(1.15.1) fla) =sup| [ (Hk (5, 99) T () A 9)]

aed " pm G=1
verifies all the inequalities proved for F (with other constants);
a = (Ogy.eey tm), d=2d;X. . XAy, du=dug...dy.

Proof. We shall only show that f(z) < Cf(x) for f > 0, where f(2)
denotes the maximal function of the strong differentiation associated to f.

Given £ > 0 and fixed « and © = (24, ..., &) We can find an auxiliary
function k&' (yy1, ..., Ym) =0 with the following properties:

&) K (Y1 ooy Ym) = 2 Cogy..ostg Py (Y1) -+ Py, (Yin)
BlaeensTom

where @, (y;) are characteristic functions of 1-dimensional intervals I,
centered at the point «;

(i) B (a5 eees Ym) = | [Hyloy, 92);

j=1

(iif) fk Y1y ooy Ym) A < e+ f(nzu ”J,Jy))dM(J) A" e,

M J=

An eagy examination of the form of the kiy.(ae,-, y;) shows the existence
of the function %'(y,, ..., ¥m). Then, we have

(1.15.3) f (r K, .L,,yj) f ¥ @)f () d (y)

[
1\
sQ
“ﬂ
&H

BgseensPm XI'nm
S Oyl tin () ja
= Ny, evyty B2 ) oo e L ) f 7
e, ™ ™ /‘l(Inl)---Ml(Inm) Iy x.5oxln,

<( [F@ainm)ie) < ame.
Rm
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Sinee ¢ > 0 is arbitrary we have:
m
(1.15.4) ST ] %t 99) F)anty) < 47F@).
™ i=1

This last bound does not depend on a, therefore we get

*

(1.15.5) fla) < A™ ()
which is the desired result.

2. MULTIPLE WEIERSTRASS TRANSFORMATION AND ABEL SUMMABILITY
OF THE MULTIPLE FOURIER-HERMITE SERIES

2.1. Let u be an elementary measure defined on R™, and w« its varia-
tion, which is well defined on the elementary subsets of R™; then if

f’exp{ z./ 25— )2}§dw<oo
j=1 '
for all 2= (2, ..., 2u) helonging to C™, we shall define the multiple
Weierstrass transform I,(2) as follows:

m
1
Iﬂ(z) = 2 ’ EXP{ v(”—t)} -
K IS
™ i=1

2.2. We shall denote by Hy(z), where n = (i, ..., Ny), the set of

orthonormal functions in Li(R™) defined in the following way:
m

1 1
Hy(r) = —g l l S ) H,, (25),
= ! ;!

=

where
dn 'v
7
H'nj (1‘]) 6 d.T ' {8 }
is the n;-th Hermite polynomial on the single variable a;.

2.3. From a formula due to Mehler (see [3], p. 439) we have

1
an * . v Jy ki, ’
PHU ) = Y A i X

s H')bl (":1) s H'nm(-rm) ‘ Hnl(yl) ves Hnm (?;/m)

2 (2% ‘2._9
— _ 1 A 1_27}(‘”} Yi) T’;TzJJ} 0<"1<1'

3
[ (1— ¥ =1 i
j=1
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We shall call the last member of the equality a mulliple singular
kernel of Abel-Hermite and we shall use for it the notation

m

K¥(r,z,y) = HKJ-(TJ', Tyy Yi)s
7=1

where the K; are the single kernels.
2.4, If feLE(R™), p >1, its H.S. is well defined; in fact

(2.4.1) Cw= [fHi(z) o1 g
R.’I)l
and
1Chl =4 ffﬂﬁ(m)a"”%w

R

< ”f”h,(r’ : ”Ii:;.“p‘,(l < oo,

where 1/p--1/p’ = 1.

2.5. If f~ 3 C.H(z) and if Y s"C,H (1) is absolutely convergent
for 0< <1, j=1,...,m, then we eall Abel sum of D0 H () to
the limit

lim Nt CHNe) (A1 =1,2
(rlw“rm)q(l,.d)“1 Collp(x)  (ry #1;5=1,2,...,m).
) 2.6. The set Hy(z) is not a set of uniformly bounded functions as
in the case of trigonometrical functions; nevertheless, they are uniformely
bounded over each compact subset of R™ (see [3], p. 436) and we have
the estimates

a9
b

(2.6.1) (L, (@) < B 272 (1) 267

where the constant K >0 does not depend on the pair (n;, 7;); conse-
quently, we have

(2.6.2) [Hp ()] < B =0 g2,

2.7. LEMMA. If FeI&(R™), p>1, then I, is an analytic function
of (21 .., #m) on the whole complex m-plane C™. If u balongs to the class
Jyy v # 1, we have the same conclusion.

Proof. If felf,p >1, we shall show that feJ, for some y = 1.
In fact, Holder’s inequality gives

(2.7.1) flfl e~ gy ||f\|p,a( fe"’""’Ze““gdt)l’”',
RrR™ el '
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where 1/p+1/p’ = 1 and ¢ >0 iy submitted to the condition ep'<C 1.
Now let u>>0 be an elementary measure and observe that

m
(2.7.2) ‘ fexp{—-z (z,-—t,-)g} dp
™ 1
<jexsp{— Y5 [esp{e X i) exp{— it} du
1 Rm 1
='exp{— Y&} [exp{2 ¥ i5t1) exp{— (1 i exp{—yti}dp.
1 Bm 1

Now observing that
m
sup [exp {2 31z 51} expl— (1—3)%] < Ay 215 00s 2m),y
ieR™ 1 ’
we have for every finite value of 2 = (21, ..., 2m)
m
2.73)  [exp{2 Y Iz} exp{— 1} du
R™ 1
m
= [espf2 ¥ iz ti}esp{— (1—y)itesp{—yitI}du
R}"' 1
SA(y, 21y eeny2m) [exp{—y [t} dp< oo.
Rm
Finally, from Beppo-Levi’'s theorem we obtain

m
@74)  [exple ¥ il exp{—tP}dn
B™ T

-21»1-}-...-;nm {‘ R

= ; i ' n, X B n, —|t

Ly TS EF RO L ) I 8! Lot ™e 1 du.
K “ea B Rm

f exp ‘12 E zjtj} exp{— lti®}du
1

in the whole m-plane C™ follows sinee its formal MeLaurin series is major-
ized by the series of the second member of (2.7.4); this completes the
proof.
If we have a signed measure u, making the classical decomposition
W = fi,—ihs, Where pu; >0, ¢ =1, 2, the same conclusion holds.
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Remark. If we make a restriction on the variables 2, for instance
taking # = t;, where the ¢; are real, we can define Weierstrass Transform
of functions of Ij(R™) and also for measures belonging to J,(R™) with

=1, as functions of the variables t;.

2.8. Let y;, w; be real variables, j = 1, ..., m, and the s; real parame-
ters such that 0 < &;< 1; I,(2, ..., 2,) denotes the Weierstrass transform
of a measure w. The integral

1 [
o | e

™

d

N . o . . .
(2.8.1) A;\.J (W"f‘l‘l’/f)“} L@y -5 T8mYm) dy
will give an inversion formula for the Weierstrass transform when the
s; = 1. Knowing the result for the 1-dimensional case (see [31, p. 453,
and [4]), the validity of the inversion formula (2.8.1) holds for a dense
subset of Li(R™), p > 1, for instance the set formed by functions of the
form

-
2_/ Onl,u.,nm jnl(ml)' . -V’n,n(mm>;

LOTRNN
'

where the sum has a finite number of terms, the C, oy, re constants
and the on;(2;) are indefinitely d1ffe1en‘r1able and compact supported
functions defmed. on the real line.
An easy calculation as in the 1- dlmenblonal case also gives (see [3],
m

p. 453)
1 ) .
nm/ﬂ fexp 2 bwl _l—y) 2 13 (”11/13 ey W ﬁ’/m) dy
RM 1

(2.8.2)

fK*(S: w, Ll/)eﬁmzdl-h
Rm
where K*(s,w, ) denotw the multiple Abel-Hermite kernel.

2.9. LeMmA. Let k(r, .1, y) be the 1-dimensional Abel-Hermite ker nel;
then, there emists a kernel h(r,m,y) which has the following properties:

(i) h(’": @y ‘!/) = k()', Z, ?/)7 I<r< ly —oo e ‘[’C’Oy —oo <Y< “I“m§
oo
(ii) f hir, 2,y )e"’zrly < A, where A does not depend on the pair (v, x);

(iii)  for each pair (r, ), h(r,
decreasing on y < x.
Proof. Let us fix the pair (z, ) in k(r

of %(r, »,y) we may suppose z > 0.

@, Y) is non-increasing on y > & and non-

» @, %), From the symmetry

icm
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Differentiating partially with respect to y we have

ok
gy~ 1—

(2.9.1) {2ry —2r2} ki (7, 2, ),

consequently,
.0k .
—— = gign {z/r—y}.
sign - = sig {olr—y}

Then k(r, 2, y) is strictly decreasing for y > #/r and strictly increas-
ing for y < afr.
We define h(r, 2, %) in the following way:
(2.9.2)
1 1 f

7 (a:“»y )—‘)MJ
»7( &, y) = k(r,z, y) = T

expl——f Fi
it ye(m, z/r);
T 1 1 22
hr, z,y) = Ek{r, o) = (T_We

if ye(w, 2/r).

Conditions (i) and (iii) of the thesis are satisfied by the kernel
h(r,x,y); it remains to show that condition (ii) is also satisfied.
Since
o
fk(ryw:y)e_yzdy:ly —ooL < oo, 0Cr<l,

we must only prove the uniformly boundedness of

x|
w2 /

é a2
T |
E

Fixed 4 >0, we have three cases for & > 0:
1°0<r<o.
@jr +co o0 N , @
f e ay < [ ey < _5_;0‘(”*")‘ < e“”%?e’"z
x T N=

Consequently, we have

pr oo

o) | rus TR ga)
x

2

6:22
o (1

(2.9.3)
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2° d<r< 1 and w]/l—rgl.

2 xjr zjr
(2.94) oy fe—"d ! = f
T Ry VS Gy e ) ¥
1 1 @
= ey Ty TS

3° f<r<1and aV1l—r>1.
In this case m(l—r)>l/l—~r and also m(l—r)/r>l/1—r gince
0<r<1. Now

22 xr
€ 9
2.95) f -1y
@99 A ! dy
2 EHyi=T 2 xjr
1 ¢ 2 & 2
= YAy + e Vayl.
= (L4} [ 1—n)'? f ¢ 1—r)
We b L= (L =
€ have
2.9 o T e
(2.9.6) i f iy < 1.

On the other hand, we get

22 ir

(2.9.7) (—l—j;),— [ o Pay
L+ Y17
BEZ @x
S gy oXP {—lo+ 1 —)""T} [;‘ —(o+ (1—7‘)“2}]
ex
< P(i_;)q,m }exp{ 22(1 )‘/”}[1 — (w4 (14)"2)]
< oy P20 (1= (1)

1
< e — 1]
<33 sgpe 2] .

Consequently, we get from (2.9.5), (2.9.6) and (2.9.7):

g:t:z zjr 1
A f Yay < [ ]

For o= 0, we have h(r, 0,y) =k(r,0,y), but k(r,0,y) has
the required form; then this case does not offer difficulty. Finally,

(2.9.8)

icm°®
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collecting the estimates (2.9.8), (2.9.4) and (2.9.3) we have part (ii) of
the thesis.

2.10. If we call

fle) = sp | [, @, f)e " dy,

TLestm g

the operator ( )* has the same properties as that of the strong dif-
ferentiation; more precisely

2.11. THEOREM. If T.(
only on z =1y;, j =1,

Y is @ Weierstrass Transform, possibly defined
,'m where the y; are real, and calling f(s, z) to

[ (s, 2, )f ) dy,

r™

we have the following estimates for the operator f*(x):

(2.11.1)
. 1 ) m )
F@) = sup | [exp[— 3 timy|Iinngs, s i) &y
Sy | T s
R j=1
= sup fIL s, @, 9)f)e """ {ZJl
814nsfiy

i) If p>1 and feIG(R™) we have
(@) I @l < Clp
(b) If(s, m)—F (=)

it) If If)(log™ If1)" eL&(R™) we have

W@y,
Sm) = (1, ..., 1).

o =0  with (Sgy...y

(a) [ Haje™ " aw < Ap+Bp [ If1(1+1og* |f)"e Vo,
RT)L Rm :
(b) If(s, &) —F(@)lhe >0 with (81, ...y $m) = (L, ..oy 1)

(iif) If |f] Qog* If)" e L&(R™) we have for 0 < a<1:
@) [ (@) an < Cuot-Dua [ fi(14log" )" e da,

B RrR™

) [Ifts,@)—

R™

(@)[%e~"dz >0 with (1, ..y $u) = (Ly o0y 1).

(iv) In the cases (i), (ii) and (iil), f(s, ®) also converges pointwise a.e.;
if condition (iii) is verified only locally we have pointwise convergence .e.
in this neighborhood and i is the best possible result.
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(v) If m =1 we have for a non-negative o-additive measure p = 0:

. o 7
(a) 6B, N <+ fe”zdt,
(b) w(s, ) converges a.e. with & — 1.
o0 N , oo B 9
(e) [ {w@)y e < 0040, [ oy,

Proof. From lemma 2.9 we have

n

K(s,w,9) < [ sy, ay, y) = 0¥(s, @, ).

7=1

(2.11.2)

On the other hand, 2*(s,x,y) is a particular case of lemma 1.15,

I da;; then, parts (a) of (i), (i) and (i) follow.

Since we have pointwise convergence for a dense subset of IE(R™),
# =1, using the maximal inequality (iii), (a), we have pointwise con-
vergence in the class Lg(log*Lg)"~' and also for the classes I%,p >1,
and Lg(logtLg)® with s > m—1.

The parts (b) of (i), (ii) and (iii) follow since we have pointwise
convergence which is also dominated (from the corresponding (a) maximal
inequalities).

It f Delongs locally to Lg{logtLg)"!, its strong differentiation
maximal operator with respect to the measure ¢~"'dn behaves in the
same way as that of the classical operator of Jessen-Marcinkiewicz-
-Zyygmund, which shows that (iv) is the best possible result.

Finally, if we consider in lemma 1.15, m = 1, we see that the estimates
of this case are of the same type as those of lemma 1.10; then (v) follows.

2.12. TurorREM. The following fwo conditions are equivalent:

(i) The function I(z, ..., %n), defined in the whole complex m-plane
", is a Weierstrass tmazsform of a function of the class LE(R™), p > 1.

(i) The function I(z, ...
O™, has the properties:

(2) [ tisyy, ...
R?)L
if 0<s <l (f=01,...,m);

taking du; = 6

) @m)y analytic in the whole complex m-plane

] '?"Sw,bg?/er)l@*'”‘zd?/ < oo

K3

M) [| [exp{= 3 (w4915, ...,
2

Rr™ RM

. R
‘Zsmym) JJ/ [4 11 dw < .A‘,

where the s;, w;, y; are real and A does not depend on the 8.

icm°®
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Proof. From lemma 2.7 and part (i), (a), of Theorem 2.11 it follows
that (i) implies (ii).

Now, let I(z;,...,2,) be in the conditions of (ii) and for the sake
of simplicity, let us put
(2.12.1)  f(s, w)

m
1 . Py
=z fexp {_ 2 (fw;+ -y,-)‘}»l(zslyl,

RBrM j=1

s WSmYm) Y .

From condition (d) we have

(2.12.2) [15(s, w)Pe ™ aw < 4.
Rm
Now, using the weak compacity of the spheres in L5 (R™), we can

select a sequence F(s,,w), s, = (s, ..., s%) satisfying the following

conditions:
(1) [ f(5a,w “aw [ f(w)g(w)e" dw
R77'L R’m
for s, = (8{?, ..., s = (1,...,1),0< s < 1,
(2.12.3) and j =1,...,m; and for all function g belonging to
L&(R™), 1jp+1p’ =1;

(2) ¢

Developing formula (2.12.1) for s,, we obtain

w)lpo < AV,

(2.12.4)  f(s0,w) = ,,L,zepf w,}f <> =W (i, y) dy

On the other hand, we have

m

1
(2.125) f exp {— Z (iy;——wy-)z}f(sm w) dw
R™ F=1
m
exp{ Y v;) \
= _m1/2 f eV (s, w)e” ™ dw.,
T
Rﬂl

Consequently, from (2.12.4), (2.12.5) and the unicity of the Fourier

transform we get
m

e [exo{= 3 w—w}is., wiaw.

R™ j=1

(212.6)  I(isay) =
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Now letting s, tend to (1,...,1) in (2.12.6) and using the fact that
¢~% 0 helongs to L5(R™), one ean obtain the following equality:
wm

Ym) = -}l‘, fexp {« S‘ (‘z'_t/j—@n,-)ﬁ}f(w)dw‘

Iy, ...y =

(2.12.7)
Rm J=

According to lemma 2.7 the second member of (2.12.7) is an analytic

function in the whole m- plfme 0"‘; sinee I is also analytic and both are

identical on the lines iy, j =1, . , they must be identical in the

whole ¢™.
2.13. Let us set
flry o) = " CLHN@), 0<n<1;j=1,2,..,m,

nw
where the C, are the Fourier-Hermite coefficients of f.

We also eall f(r, ) an Abel approximating associated to the Fourier-
Hermite series of f.

A Tourier-Hermite series of a function belonging to a class L&(R™)
with p > 1 is well defined ; nevertheless, if 1 < p < 2 we shall need further
conditions to ensure the absolute convergence of its Abel approximation
(some of them are given in [3], p. 450, in the 1-dimensional case).

2.14. TuEOREM. The operators

flr, @) = 7" O Hon ()

(O TR
and

sup [f(r, @)1,

flo) =
TLaenip

verify the following conditions:
(i) If feL@(R™), p > 2, then

o<my<l;j=1,2,...,m,

(a) Iflhne < € (@) 1l
(b) If ¢ry 2)—f (@) llp,e — 0 as (T vy Pm) = (15000, 1),
(e) flryz) > f(@) ae.

(ii) If feL&(R™) ~ Jyu(R™), p > 1, then we have the same conclusion
as in (i).

(iii) If flf] 1+10<r+ )™ e " aw < oo and also feJy(R™), then

(a) jfe Bldn < Ap-Ba f|f| -+log* }f{)"’c“‘”'z(lw,
R’TL
(b} ”.f 7y @) —f(@lhe >0 as (7, ..., 70) > (1,...,1),

(¢) flr, o) —f(z) a..

icm°®
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(@v) If [.1fi(L+log* [fI)y*e"™ dw < co and also feJy,(R™), then for
Rm

0< a<<1 we have

(a) S e e < At Bua 1511 +1log* f)" e am,
Rﬂl R?Yb

(b) [1fr, o) —flx)e”Fdw >0 as (r1y ey tm) > (1,05 1),
Rm

(@) fir,a) > fl@)  ae.

(v) If f verifies locally the condition
S 110+ og* )™ dw < oo
A4
and also fed ,(R™), we have in this neighborhood convergence a.e. of f(r,)
to f(x).
Proof. It will only be necessary to prove the following equality -
for the different cases:

(2.14.1) Mo @) = [f@) B, @, y)e~ " dy.
£ o
We shall begin with case (i).
If 'we choose a funetion f of the form D' C, H,(x), where the sum has
a finite number of terms, we have

Z O, Ha(z) = Z 7

<N}

(2.14.2) ( [1ER@)e

wi<Ny g

= [iw| > rELmE@) e ay.

R {nj <Ny}

viay) Hy(w)

Now if we denote by M the set of multi-indices for which Cpn #0
and by M’ the set of multi-indices for which C, = 0, we get

[ B VE3 (@)} o~ dy

R™

= f )| Y " Hiy) B

(2.14.3)

(w)} e‘ml_d?/"r ff(’l/){ _2 1’"’H.§(y)H:(m)} 0_“”20'[3/

neM RrM neM'
f fo{ Y " Ha@) By} oy
R e

according to the fact that for 0< <1, j=1,...,m, and fizxed

(m17 -y Tm):

*) Y " Hy(z

neM‘

YHx(y) belongs to L&(R™) as function of (yys...; ¥m)-
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Then, from (2.14.3) and Mehler’s formula (2.3) we have for every

function f of the form 3 C,Hn(z) the identity
{nj<Ng}

Z‘ﬂcnﬂ*

Now, for fixed r,0< <1, j=1,...,m, and @ = (#,...,%n),
the absolutely convergent series

¥ 7™, H(w
(**)

constitutes a linear, continuous functional on LE(E™), which has a repre-
sentation of the form (2.14.4) for a dense subset. Then, since K*(r, 2, y)
belongs to L& (R™) (for a fixed # == (@, ..., &n), 0 <71 <1 and j =1,
.., m) as function of 4 = (¥4, ..., ¥u), We have the same representzution
for all LH(R™) and consequently for all ZE(R™), p > 2.

Finally, if we prove (2.14.1) for functions of the class Jy,(R™) the
parts (if), (iii), (iv) and (v) will be established.

Using the fact that

(2.14.4) f E*(r, 2, 9)f(y)e” " dy.

) = <T7f>

’IIL)

[ (w)] < Ke™™

the following estimates will give the desired result:

(2.14.5)
KZ
f {ZIT”HZ(m)HZ(y)I} e dy < f o —k«e‘“z/zo'”'zﬂrf(gme*lwzdy
Kz mz/z .
= = [If@le iy < co.
51—71 (1—17;) mm

(%) and (**) follow from the estimate [H*(w)| < Ke™?,

2.15. Now, we are going to study the inversion formula for the
Weierstrass Transform in the case of measures.

If u is an elementary measure defined on R™ and if w denotes its
variation, then the condition:

(2.15.1) | f@"lxlzdﬂ|< [e ™ aw < oo
R™ rR™

ensures the existence of its W.T. on the lines iy; (j = 1, ..

., m). According
to (2.8.2) we need to study the integral

icm
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. 1 —EL(l vy
(2152) J e I(is,9y, ...

r™

Riﬂ

where 0 << 8;<<1,§ =1, ...

s 18mYm) dY

,m and the variables y;, w; are real.

eV dp = u(s, w)

2.16. We shall say that u(s, w) converges restrictively when (sy, ...

- (1,...,1) if the limit
lim u(s, w)
(BpeeensSm)>(1,..51)
exists submitted to the eondition 07'<
such that 0 < 0< oo and for all pair (i, j).
217, Lewma, If | <b, j=1,...
< %, then

. -t A(M b
(i) K, 2,10 " < [ ] WL exp
= L L =)
—}»—(-1—;’2)1/2 exp[—a(M, b)(

Proof. It will only be necessary to show that

©17.1) Ky, @, t)e < —5

+ = XD
™ — ¥

If |t;] << M, we have:

‘2

(2.17.2)  K(rj, a5, )e

1 1 t—a;+a; (1—
= —=—=——= XD [— {]—%t—d'- TL)*} ]
¥r V1i—r} Vi—s?

- ol
“wmre| i) el e -

1 ti—a; \*1 & -8
< i e[ - (S ) |
S (=) V1i—7}

| gMAta [ ( t—a )2] -2
ey eXp | — | === |e .
[m(1—r7)1" Vi—r}

Studia Mathematica XXXIIL.2

< (1—s:)/(1

-4
gyt P [‘{

p— 1 ] i
T R Xp[*( r

Tﬁ}a] *
o= |

1/1—- i

&y

1

2

— )2
7’) x?
—15

’ sm)

—s;) < 0 for some 6

,m, b>1, M >4b% and 1 <r,

(i)

10
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If |t;| > M, we have
3 1 [ t ——uwj}]
217.3) ——p
@118 T P T A
6Ai}l {—7?w;—r}t?+277W1t7}
- exXP
aA—mye F 17}

—2 )
e’ 7y ) MZMM.
< i |~ T s oy}

Since ;] > M, || > M > 4b% > 4b|w;l; therefore, the last term of
(2.17.3) is dominated by

exp{— 1}

LA PRI |
(2.17.4) mﬁexp{vi_r? [utj 0 tf]]

exp{—t“’} 1(b=1\_#

ST >J"°exp{”1(7“‘)1~v?}
eXp{—i]} b—1 11] %
[W 1/2 exp{_'{z( )(l/l—r, )}

Now, since |f;| > M and |oy| < b< M, we have [—ayl<Taty| for
some @, > 0; consequently,

&

2175) —ex [.__1_ (i—l) (Jm)z]
@AY A P T g Vi

12

< e’ o p[ agt (b—l)( t—a )2]
[x (A=) a b [\yize )l
which ends the proof.

2.18. THEOREM. If u is an elementary measure such that

2
fe““‘ dw < oo,
Rm

where dw denotes the variation of u, then

. 1 S . .
(G w(s,®) = —mg | exp [ (wj»I»yf)ﬂ T80 15 «vvy 18mYm) @Y
| o= 2 Gt

RrR™

converges restrictively a.e. to the density fumction of u, and furthermore, if

sup |u(s, @)

81rvees8m

fi(w) =

icm

Muliiple Weierstrass transform 147
with 0< <1, 07 < (l—s)/(1—s)<O (i,j=1,...,m) we have
(i B, D @l <22 [ o,

Rm

where Qp denotes a cube ceniered at the origin and with edges of length equal
to b>1. '

(iii) If w is an elementary measure belonging to J _x (R™), then its multiple
Fourier-Hermite series converges restrictively a.e. to the demsity function
associated to p and, furthermaore, the maximal operator associated to its Abel
approximating has the same type of (ii) without the expomential factor.

Proof. If | < b, |pe(s,x)] is dominated by

. 74, b 2=y \?
(2.18.1) { s eXDp [- (~— = +
Rz,{, Uj (@ =) Vi—1]
1 =9 VN | o
+ oy eXP| —a (M b)(—i—.) ]} e "Caw
A= )7 [ A O =

which follows according to lemma 2.17.
Now, from lemma 1.5, we have (ii), since the role of n;(f) is played '
by 1/(1—)"2.
The pointwise convergence follows from the estimate (ii) and from
the fact that we have pointwise convergence in a dense subset of Ly (R™).
Part (iii) follows from the fact that peJ_;,(R™) and, consequently,
its Abel approximation can be expressed by the Abel-Hermite singular
kernel; in faet, if geJ_,n(R™) its F-H coefficients are well defined,

Co= [Hi(@)dp and |CI<E [ Pdw< oo

rM RrR™

and, as we did in (2.14.5), one ean also show that the Abel Approximation
associated to x4 can be expressed by the integral

[E s

RM

) Au(y)

which is in modulus dominated by
Al JI b r—1 \2
U
o V1—1j

1
+ e )]/, exp[ a(M, b)(

T:Zfﬂz]}) -
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On the control of linear periedic time lag systems
by

D. PRZEWORSKA-ROLEWICZ and S. ROLEWICZ (Warszawa)

Let us consider a linear time lag system

v aq d
1) N Y Pz t—h) = 3 G()ult—ly),

k=0 j=0 7

o

where x(t) is an n-dimensional vector-function called state, %(f) is an
m-dimensional vector-function called control, Fi;(t) are = X#n matrix
funetions, G;(t) are n X m matrix functions, all of the real variable ?.

We assume that all functions u(f), Fi;(f) and G;(f) are measurable
and locally integrable on the real line. An #n-dimensional vector-function
is called a solution of (1) if there exists a (p—1)-th derivative of (1) which
is absolutely continuous and if #(f) satisfies (1) almost everywhere.

Let hy = 0 and let h; be commensurable. Then we have an r 5 0
and integers n; such that b; = n;» forj =1, 2, ..., ¢. Let us assume that
the functions Fj;(f) and G4(t) are r-periodic (). Let N be a common
multiple of numbers 4, ..., %, (R0t necessarily the smallest one) and
let @ = Nr. We shall consider system (1) in the class of w-periodie functions.

Suppose we are given the following performance functional:

2) A (u,0) = [ K[t [2()—a°(t), u(t)— w0 ()]} dt,

]

,where [r,u] is an (n {-m)-dimensional vector (@i, ..., Tn, U1y ..., Uy,

and K (t, [z, u]) for each fixed # is a non-negative quadratic form defined.
on an (n-m)-dimensional space and z°(¥), u°(t) are given funetions.
We assume that K(t, [z, «]) is an r-periodic square integrable function
with respect to 1.

The aim of this note is to minimalize the performance functional (2)
under the assumption that z(f), u(f) satisfies equation (1).

The manner in which the proposed question will be solved is based

" on the method of involution (see [3], also [5]).

(1) A periodic function with period s will be called briefly an s-periodic funcifon-
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