

On symmetric Schauder bases in a Fréchet space

by

NGUYEN-PHUONG-CÁC (Iowa City, Iowa)

1. Let a Fréchet space E be given. A sequence $\{x_i\}$ of elements of E is called a *Schauder basis* for E if there exists a sequence $\{f_i\}$ of elements of the dual E^* of E such that $f_i(x_j) = \delta^{ij}$, the Kronecker delta and such that every x of E could be written as

$$x = \sum t_i x_i, \quad t_i = f_i(x),$$

in a unique way. Our summations are always from 1 to ∞ unless other limits of summation are expressly indicated. The Schauder basis $\{x_i\}$ is called *symmetric* if for each permutation π of the positive integers, the sequence $\{x_{\pi(i)}\}$ is also a Schauder basis and there exists a topological isomorphism T_{π} of E onto itself such that $T_{\pi}(x_i) = x_{\pi(i)}$ for each i. Hence the bases $\{x_i\}$ and $\{x_{\pi(i)}\}$ are similar in the sense of [1].

If E is a Banach space, then it is proved in [6] that $\{x_i\}$ is symmetric if and only if

$$\sup_{\pi \widehat{\mathscr{O}}} \sup_{|a_i| \leqslant 1, 1 \leqslant n} \Big\| \sum_{i=1}^{i-1} a_i f_i(x) x_{\pi(i)} \Big\| < \infty, \quad x \in E,$$

where ${\mathscr P}$ is the collection of all permutations of the positive integers.

Recently Ruckle [5] extends this result to Fréchet spaces. He shows that if the topology of the Fréchet space E is determined by the sequence of seminorms $\{p_1, p_2, \ldots\}$, then $\{x_i\}$ is symmetric if and only if for each p_k

(1)
$$\sup_{n \in \mathscr{P}} \sup_{|a_j| \leq 1, 1 \leq n} p_k \left(\sum_{i=1}^{i=n} a_i f_i(x) x_{\pi(i)} \right) < \infty, \quad x \in E.$$

It seems to us that this is not true for all Fréchet spaces. In fact, consider the topological product $\prod C$ of countably many 1-dimensional spaces, each of which equipped with the natural topology. This is a Fréchet space and its topology can be determined by the sequence of seminorms $\{p_k\}$ defined by

$$p_k(t) = \sup_{1 \leq i \leq k} |t_i|, \quad t = (t_i) \in \prod C.$$

It is not difficult to see that $\mathscr{E}=\{e_1,e_2,\ldots\}$, where e_i has 1 in its i-th coordinate and 0 elsewhere, is a Schauder basis and, in fact, a symmetric one for $\prod C$ (see Proposition 1 further down). However $\sup_{\pi \in \mathscr{S}} p_1((t_{\pi(i)}))$,

where $(t_i) = (i)$ is not finite and therefore (1) does not hold for this space.

In this short note we prove among other things that if the Fréchet space E is not isomorphic to $\prod C$, then a basis $\{x_i\}$ of it is symmetric if and only if (1) holds. It seems to us that our approach is different from that of [5].

2. The collection of all sequences $(f_i(x))$, $i = 1, 2, ..., x \in E$, equipped with the topology transferred from E is the FK-space S associated with E and its basis $\{x_i\}$ ([7], p. 208). S is isomorphic to E. It is not difficult to see that the dual S^* of S consists of all sequences (s_i) such that $\sum s_i t_i$ converges for each $(t_i) \in S$. If the basis $\{x_i\}$ is symmetric, then the coordinate spaces associated with $\{x_i\}$ and $\{x_{n(i)}\}$ are the same for each permutation π of the positive integers [1] and if $(t_i) \in S$, then $(t_{n(i)}) \in S$. This shows that for each $f \in E^*$ and each π the series $\sum f_i(x) f(x_{n(i)})$ converges unconditionally and hence absolutely, $\sum |f_i(x) f(x_{n(i)})| < \infty$.

LEMMA 1. If E is a Fréchet space with a symmetric basis $\{x_i\}$, then for each $f \in E^*$ the sequence $\{f(x_i)\}$ is bounded.

Proof. Suppose that $(f(x_i))$ is not bounded. Since $\sum |f_i(x)f(x_{\pi(i)})| < \infty$ for each permutation π , it is not difficult to see that $f_i(x) = 0$ except for a finite number of i for each x. The dual of S is then the space of all sequences. If we denote by $\sum \oplus C$ the topological direct sum of countably many 1-dimensional spaces, each of which equipped with the usual topology ([2], p. 214), then the dual of $\sum \oplus C$ is the space of all sequences. $S = \sum \oplus C$ (algebraically) and they have the same dual. The topologies of S and of $\sum \oplus C$ are their strong topologies, therefore they should coincide and the topology of $\sum \oplus C$ were metrizable which is not the case.

IEMMA 2. If E is a Fréchet space with a symmetric basis $\{x_i\}$ and if for an $x \in E$ the sequence $(f_i(x))$ is not bounded, then the FK-space S associated with E and $\{x_i\}$ is equal (algebraically and topologically) to $\prod C$, the topological product of a sequence of 1-dimensional spaces.

Proof. This Lemma is the "dual" of the last one.

Since $\sum |f_i(x)f(x_{n(i)})| < \infty$, $f \in E^*$, it is not difficult to see that $f(x_i) = 0$ except for a finite number of i. The dual of S is then the space of all finite sequences, i.e. the duals of S and of $\prod C$ are the same. S is a subset of $\prod C$ and since S is total on the dual of $\prod C$, S is dense in $\prod C$. Moreover, the topology induced on S by $\prod C$ is metrizable, hence it is the Mackey topology ([2], p. 264) and therefore coincides with the own topology of S. It is then not difficult to see that $S = \prod C$.

Lemma 3. If the sequence (t_i) is neither finite nor unbounded and if the sequence (s_i) is such that for each permutation π of the positive integers $\sum |t_i s_{\pi(i)}| < \infty$, then

 $\sup_{\pi\in\mathscr{P}}\sum|t_is_{\pi(i)}|<\infty.$

Proof. See [4].

PROPOSITION 1. A Schauder basis $\{x_i\}$ of a Fréchet space E is symmetric if for each p_k of the countable family $\{p_1, p_2, ...\}$ of seminorms determining the topology of E we have

$$\sup_{n\geqslant 1}\,p_k\left(\sum_{i=1}^{i=n}f_i(x)\,x_{\pi(i)}\right)<\infty\,,\qquad x\,\epsilon\,E\,,$$

for each permutation π of the positive integers.

Proof. $\{x_{\pi(i)}\}$ is a basis for E because the sequence $\{x_{\pi(i)}\}$ is fundamental and basic ([7], p. 209). Consider the mappings $T_{\pi,n}$ of E into itself defined by

$$T_{\pi,n}(x) = \sum_{i=1}^{i=n} f_i(x) x_{\pi(i)}, \quad n = 1, 2, \dots$$

For each x the set $\{T_{\pi,n}(x)\}$ is bounded and for x belonging to the linear hull of $\{x_1,x_2,\ldots\}$ the sequence $\{T_{\pi,n}(x)\}$ converges. Therefore, by the Banach-Steinhaus theorem ([2], p. 173), the sequence $\{T_{\pi,n}(x)\}$ converges for all x and the mapping T_{π} defined by $T_{\pi}(x) = \sum f_i(x) x_{\pi(i)}$ is continuous. Moreover, $T_{\pi}(x_i) = x_{\pi(i)}$ for each i and it is not difficult to see that T_{π}^{-1} is also continuous. Thus the bases $\{x_i\}$ and $\{x_{\pi(i)}\}$ are similar.

PROPOSITION 2. If the Fréchet space E is not isomorphic to $\prod C$, then a Schauder basis $\{x_i\}$ of E is symmetric if and only if for each p_k of the countable family $\{p_1, p_2, \ldots\}$ of seminorms determining the topology of E we have

$$\sup_{\pi \theta^n} \sup_{|a_j| \leqslant 1, 1 \leqslant n} p_k \Big(\sum_{i=1}^{i=n} a_i f_i(x) x_{\pi(i)} \Big) < \infty, \quad \ x \in E.$$

Proof. Sufficiency has been proved in Proposition 1. We only need prove necessity. In the discussion preceding Lemma 1, we have seen that if $\{x_i\}$ is a symmetric Schauder basis, then $\sum |f_i(x)f(x_{\pi(i)})| < \infty$ for each $x \in E$, each $f \in E^*$ and each $\pi \in \mathscr{P}$. Therefore by Lemmas 1, 2 and 3

$$\sup_{\pi e^{\mathscr{P}}} \sup_{|a_j| \leq 1, 1 \leq n} \left| \sum_{i=1}^{i=n} a_i f_i(x) f(x_{\pi(i)}) \right| < \infty.$$

But a weakly bounded subset of a locally convex space is also bounded ([2], p. 255), hence

$$\sup_{\pi \boldsymbol{\theta}} \sup_{|a_i| \leqslant 1, 1 \leqslant n} p_k \Big(\sum_{i=1}^{i=n} a_i f_i(x) f(x_{\pi(i)}) \Big) < \infty$$

for each seminorm p_k .

98

Remarks. (1) By the corollary to Lemmas 1 and 2, we reobtain the result of Singer [6] from Proposition 2.

(2) Suppose now that E is a sequentially complete barrelled space. Because the Banach-Steinhaus theorem is valid for such a space, Proposition 1 holds. Since two Schauder bases $\{x_i\}$ and $\{y_i\}$ of a barrelled space are similar if and only if the convergence of $\sum t_i x_i$ implies and is implied by the convergence of $\sum t_i y_i$, $(t_i) \in \prod C$ (see [3]), a slightly weaker version of Proposition 2 holds.

References

- [1] M. G. Arsove, Similar bases and isomorphisms in Fréchet spaces, Math. Ann. 135 (1958), p. 283-293.
 - [2] G. Köthe, Topologische lineare Räume I, Berlin 1960.
- [3] J. R. Retherford and O. T. Jones, On similar bases in barrelled spaces, Proc. Amer. Math. Soc. 18 (1967), p. 677-680.
- [4] W. Ruckle, Symmetric coordinate spaces and symmetric bases, Canadian J. Math. 19 (1967), p. 828-838.
- [5] On the characterization of sequence spaces associated with Schauder bases, Studia Math. 28 (1967), p. 279-288.
- [6] I. Singer, Some characterizations of symmetric bases, Bull. Acad. Pol. Sci., Série sci. math., astr. et phys., 10 (1962), p. 185-192.
 - [7] A. Wilansky, Functional analysis, New York 1964.

Reçu par la Rédaction le 26. 2. 1968

STUDIA MATHEMATICA, T. XXXII. (1969)

Corrigenda to the paper "From triangular matrices to separated inductive limits"

(Studia Mathematica 31.5 (1968), p. 469-479)

ALBERT WILANSKY (Leigh)

Page,	Instead of	Read
476 ₁₀ 477 ⁸	f h	$rac{q}{h^j}$
477_{16}	complicated	${f complete}$
$\mathbf{477_{14}}$	omit the whole line	