

Formulae of Fredholm type for solutions of linear equations with generalized Fredholm operator

bν

A. BURACZEWSKI (Warszawa)

1. Introduction. Sikorski [3] gave formulae of Fredholm type for solutions of a Fredholm linear equation

$$(I+T)x = x_0$$

in a Banach space X, and for the adjoint equation

$$\omega(I+T)=\omega_0$$

in a conjugate space Ω in case T is a quasi-nuclear operator. Later I proved the same formulae in a more general case by an algebraic argument [2].

The purpose of this paper is to give a further generalization of Sikorski's formulae to a larger class of linear equations

$$(U+T)x = x_0$$

in a linear space X, and for the adjoint equation

$$\omega(U+T)=\omega_0$$

in a conjugate space Ω , where U is a generalized identity and T is any operator such that U+T is a generalized Fredholm operator of finite defect [1]. The formulae obtained are abstract analogues of the original Fredholm formulae for solutions of inhomogeneous integral equations with a continuous kernel in the space $C_{[a,b]}$.

2. Terminology and notation. Ω and X denote two fixed linear spaces over the real or complex field F. The letters ω , ξ , η will always denote elements of Ω and the letters x, y, z — elements of X. Every mapping into F will be called a *functional*.

We assume that Ω and X are conjugate in the sense that there is a bilinear functional ωx defined on $\Omega \times X$ such that

- (a) if $\omega x = 0$ for every $\omega \in \Omega$, then x = 0;
- (a') if $\omega x = 0$ for every $x \in X$, then $\omega = 0$.

Let A be a bilinear functional defined on $\Omega \times X$. The value of A at a point (ω, x) will be denoted by $\omega A \omega$.

In the following ${\mathfrak A}$ will denote the class of all bilinear functionals on ${\mathcal Q}\times X$ such that

(b) for every fixed $x \in X$, there exists a $y \in X$ such that $\omega Ax = \omega y$ for every $\omega \in \Omega$ (this unique element y will be denoted by Ax);

(b') for every fixed $\omega \in \Omega$ there exists an $\eta \in \Omega$ such that $\omega Ax = \eta x$ for every $x \in X$ (this unique element η will be denoted by ωA).

Thus every bilinear functional $A \in \mathfrak{A}$ can simultaneously be interpreted as an endomorphism y = Ax in X or as an endomorphism $\eta = \omega A$ in Ω . The three possible interpretations of A will systematically be used throughout the paper and the elements $A \in \mathfrak{A}$ will simply be called *operators*.

If ω_0 and x_0 are fixed non-zero elements, then the bilinear function K defined by the formula

$$\omega Kx = \omega x_0 \cdot \omega_0 x$$

will be called a one-dimensional operator and will be denoted by $x_0 \cdot \omega_0$. Every finite sum of one-dimensional operators will be called a *finite dimensional operator*.

Let $U \in \mathfrak{A}$ be a fixed generalized Fredholm operator [1] of order r(U) = 0 and defect d(U) = -d where d > 0. There exists a quasi-inverse $S \in \mathfrak{A}$ of U such that r(S) = 0 and d(S) = d, i.e.

$$SUS = S$$
, $USU = U$.

Clearly

(1)
$$SU = I$$
 and $US = I - \sum_{i=1}^{d} s_i \cdot \varepsilon_i$,

where $\varepsilon_1, \ldots, \varepsilon_d$ and s_1, \ldots, s_d are complete systems of solutions of the equations $\omega U = 0$ and Sx = 0, respectively such that $\varepsilon_i s_j = \delta_{i,j}$ for $i, j = 1, \ldots, d$.

Suppose that $T \in \mathfrak{A}$ is any fixed operator such that U+T is a generalized Fredholm operator of order r and defect -d. The operator U+T has a determinant system D_0, D_1, \ldots also of order r and defect -d, D_n being a multilinear functional on $\Omega^n \times X^{n+d}$ whose value at a point $(\omega_1, \ldots, \omega_n, x_1, \ldots, x_{n+d})$ is

$$D_n \begin{pmatrix} \omega_1, \ldots, \omega_n \\ x_1, \ldots, x_{n+d} \end{pmatrix}$$
.

Since r is the order of the determinant system, $D_r \neq 0$ but all D_i with i < r vanish identically.

Let η_1, \ldots, η_r and y_1, \ldots, y_{r+d} be points such that

$$\delta_r = D_r \begin{pmatrix} \eta_1 & \dots & \eta_r \\ y_1 & \dots & y_{r+d} \end{pmatrix} \neq 0.$$

(2)
$$\xi_i x = \frac{1}{\delta_r} D_r \begin{pmatrix} \eta_1, \dots, \eta_r \\ (y_1, \dots, y_{i-1}, x, y_{i+1}, \dots, y_{r+d}) \end{pmatrix}$$
 for every $x \in X$

and the complete system z_1, \ldots, z_r of solutions of (U+T)z=0 is given by

(3)
$$\omega z_j = \frac{1}{\delta_r} D_r \begin{pmatrix} \eta_1, \dots, \eta_{j-1}, & \omega, & \eta_{j+1}, \dots, \eta_r \\ y_1, \dots, y_{r+d} \end{pmatrix}$$
 for every $\omega \in \Omega$,

where $\xi_i y_j = \delta_{ij}$ (i, j = 1, ..., r + d) and $\omega_i z_j = \delta_{ij}$ (i, j = 1, ..., r). The operator B defined by the formula

(4)
$$\omega B x = \frac{1}{\delta_r} D_{r+1} \begin{pmatrix} \omega, \eta_1, \dots, \eta_r \\ x, y_1, \dots, y_{r+d} \end{pmatrix}$$

is a quasi-inverse of U+T.

Moreover, using properties of the determinant system for U+T, it can be shown that

(5)
$$(U+T)B = I - \sum_{i=1}^{r+d} y_i \cdot \xi_i, \quad B(U+T) = I - \sum_{i=1}^{r} z_i \cdot \eta_i.$$

Having (5) we easily obtain the formula

(6)
$$STB - \sum_{i=1}^{r} z_i \cdot \eta_i S = B(US + TS - I) - \sum_{i=1}^{r+d} Sy_i \cdot \xi_i.$$

Since the determinant system D_0, D_1, \ldots for U+T is determined by T up to a scalar factor $\neq 0$, we may assume [1] that this system is of the form

(7)
$$D_n = 0$$
 for $n = 0, ..., r-1$,

$$(8) D_r \begin{pmatrix} \omega_1, \dots, \omega_r \\ x_1, \dots, x_{r+d} \end{pmatrix} = \begin{vmatrix} \omega_1 z_1, \dots, \omega_1 z_r \\ \vdots \\ \omega_r z_1, \dots, \omega_r z_r \end{vmatrix} \cdot \begin{vmatrix} \xi_1 x_1, \dots, \xi_1 x_{r+d} \\ \vdots \\ \xi_{r+d} x_{r+d}, \dots, \xi_{r+d} x_{r+d} \end{vmatrix},$$

and for $k = 1, 2, \dots$

$$(9) \qquad D_{r+k}\binom{\omega_1,\ldots,\omega_{r+k}}{x_1,\ldots,x_{r+d+k}} = \sum_{p,q} \operatorname{sgn} p \operatorname{sgn} q \begin{vmatrix} \omega_{p_1}Bx_{q_1},\ldots,\omega_{p_1}Bx_{q_k} \\ \vdots \\ \omega_{p_k}Bx_{q_1},\ldots,\omega_{p_k}Bx_{q_k} \end{vmatrix} \times$$

$$imes D_r inom{\omega_{p_{k+1}}, \ldots, \omega_{p_{k+r}}}{x_{q_{k+1}}, \ldots, x_{q_{k+r+d}}},$$

where $\sum\limits_{p,q}$ is extended over all permutations $p=(p_1,\ldots,p_{k+r})$ and $q=(q_1,\ldots,q_{r+d+k})$ of the integers $1,\ldots,r+k$ and $1,\ldots,r+d+k$, respectively such that

(10)
$$p_1 < p_2 < \ldots < p_k, \quad p_{k+1} < p_{k+2} < \ldots < p_{k+r},$$

$$q_1 < q_2 < \ldots < q_k, \quad q_{k+1} < q_{k+2} < \ldots < q_{k+r+d}$$

2. Formulae of Fredholm type. We precede the proof of these formulae by the proof of the following theorem:

Theorem 1. If D_0, D_1, \ldots is a determinant system for U+T of order rand defect -d < 0, then

(11)
$$D_{n}\begin{pmatrix} \omega_{1}ST, \dots, \omega_{n}ST \\ x_{1}, \dots, x_{n+d} \end{pmatrix}$$

$$= (-1)^{d} D_{n}\begin{pmatrix} \omega_{1}, \dots, \omega_{n} \\ (US + TS - I)x_{1}, \dots, (US + TS - I)x_{n+d} \end{pmatrix}$$

for n = 0, 1, ...

4

(12)
$$D_r \begin{pmatrix} \omega_1 ST, \dots, \omega_r ST \\ x_1, \dots, x_{r+d} \end{pmatrix} = (-1)^r D_r \begin{pmatrix} \omega_1, \dots, \omega_r \\ x_1, \dots, x_{r+d} \end{pmatrix}.$$

Since $Uz_i = -Tz_i$ for i = 1, ..., r and $-\xi_i = \xi_i(US + TS - I)$ for $j=1,\ldots,r+d$, formulae (12) and (11) for n=r follow from (8). The proof of (11) is based on the well-known formula

$$\begin{vmatrix}
a_{1,1} \dots a_{1,k+r} \\
\vdots \\
a_{k+r,1} \dots a_{k+r,k+r}
\end{vmatrix} = \sum_{p} \operatorname{sgn} p \begin{vmatrix} a_{p_{1},1} \dots a_{p_{1},k} \\
\vdots \\
a_{p_{p_{1},1}} \dots a_{p_{p_{k},k}}
\end{vmatrix} \cdot \begin{vmatrix} a_{p_{k+1},1} \dots a_{p_{k+1},k+r} \\
\vdots \\
a_{p_{k+r},1} \dots a_{p_{k+r},k+r}
\end{vmatrix},$$

where the permutation p is the same as in (10). Therefore by (8), (9), (6), (13), (12) and well-known properties of classical determinants, we obtain

$$\begin{split} D_{r \neq k} \begin{pmatrix} \omega_1 ST, & \dots, & \omega_{r+k} ST \\ x_1, & \dots, & x_{r+d+k} \end{pmatrix} \\ &= (-1)^r \sum_{p, q} \operatorname{sgn} p \cdot \operatorname{sgn} q \begin{vmatrix} \omega_{p_1} STBx_{q_1} \dots & \omega_{p_1} STBx_{q_k} \\ \dots & \dots & \dots \\ \omega_{p_k} STBx_{q_k} \dots & \omega_{p_k} STBx_{q_k} \end{vmatrix} \times \\ &\times D_r \begin{pmatrix} \omega_{p_{k+1}}, & \dots, & \omega_{p_{k+r}} \\ x_{q_{k+1}}, & \dots, & x_{q_{k+r+d}} \end{pmatrix} \end{split}$$

6

This completes the proof.

Now we are in a position to prove the formulae of Fredholm type. Theorem 2 (cf. [1], p. 152-153). For n = 0, 1, ..., let

$$D_n^*\begin{pmatrix} \omega_1, \dots, \omega_n \\ x_1, \dots, x_{n+d} \end{pmatrix} = D_n \begin{pmatrix} \omega_1 ST, \dots, \omega_n ST \\ x_1, \dots, x_{n+d} \end{pmatrix},$$

and let $\eta_1, \ldots, \eta_r, y_1, \ldots, y_{r+d}$ be fixed points such that

$$\delta^* = D_r^* inom{\eta_1, \, \ldots, \, \eta_r}{y_1, \, \ldots, \, y_{r+d}}
eq 0$$
 .

Let $\xi_i, z_i \ (i=1,\ldots,r+d,j=1,\ldots,r)$ be defined as follows:

$$\xi_{i}x = \frac{1}{\delta^{*}} D_{r}^{*} \begin{pmatrix} \eta_{1}, \dots, \eta_{r-1}, x, y_{i+1}, \dots, y_{r+d} \end{pmatrix} \quad \text{for every } x \in X,$$

$$\omega z_{j} = \frac{1}{\delta^{*}} D_{r}^{*} \begin{pmatrix} \eta_{1}, \dots, \eta_{j-1}, \omega, \eta_{j+1}, \dots, \eta_{r} \\ y_{1}, \dots, y_{r+d} \end{pmatrix} \quad \text{for every } \omega \in \Omega$$

and define an operator B* by

$$\omega B^* x = \frac{1}{\delta^*} D_{r+1}^* \begin{pmatrix} \omega, \eta_1, \dots, \eta_r \\ x, y_1, \dots, y_{r+d} \end{pmatrix}.$$

Then the equation

$$(*) (U+T)x = x_0$$

has a solution x iff $\xi_i x_0 = 0$ for i = 1, ..., r+d, and the equation

$$(**) \qquad \qquad \omega(U+T) = \omega_0$$

has a solution ω iff $\omega_0 z_j = 0$ for j = 1, ..., r. The general form of the solution of (*) is given by

$$x = (S - B^*)x_0 + a_1z_1 + \ldots + a_rz_r$$

$$\omega = \omega_0(S - B^*) + \omega_1 \xi_1 + \ldots + b_{r+d} \xi_{r+d},$$

where S is a quasi-inverse of U and $a_1, ..., a_r, b_1, ..., b_{r+d}$ are arbitrary constants.

The formulae for ξ_1,\ldots,ξ_{r+d} and z_1,\ldots,z_r can be obtained immediately from (2) and (3) by application of (12), which form complete systems of solutions of $\omega(U+T)=0$ and (U+T)x=0, respectively. The formulae for solutions of (*) and (**) can be obtained by use of the identities

$$\begin{split} D_{n+1} \binom{\omega_0, \ \ldots, \ \ldots, \ \omega_n}{(U+T)x_0, x_1, \ \ldots, x_{n+d}} \\ &= \sum_{i=0}^n (-1)^i \omega_i x_0 D_n \binom{\omega_0, \ldots, \omega_{i-1}, \ \omega_{i+1}, \ldots, \ \omega_n}{x_1, \ \ldots, \ x_{n+d}}, \\ D_{n+1} \binom{\omega_0(U+T), \ \omega_1, \ldots, \ \omega_n}{x_0, x_1, \ldots, x_{n+d}} \\ &= \sum_{i=0}^{n+d} (-1)^i \omega_0 x_i D_n \binom{\omega_1, \ \ldots, \ \ldots, \ \omega_{r+d}}{x_0, \ \ldots, \ x_{i-1}, \ x_{i+1}, \ldots, \ x_{r+d}} \end{split}$$

for n = r, so that, by virtue of identity (11),

$$\begin{split} \omega B^*(U+T)x &= \omega STx - \sum_{i=1}^r \omega z_i \cdot \eta_i STx, \\ \omega(U+T)B^*x &= \omega(US+TS-I)x - \sum_{i=1}^{r+d} \omega(US+TS-I)y_i \cdot \xi_i x \end{split}$$

or equivalently

$$\begin{split} (S-B^*)(U+T) &= I + \sum_{i=1}^r z_i \cdot \eta_i ST, \\ (U+T)(S-B^*) &= I + \sum_{i=1}^{r+d} (US+TS-I)y_i \cdot \xi_i. \end{split}$$

Multiplying the first equation by ω_0 on the left, and the second equation by x_0 on the right and assuming that $\omega_0 z_i = 0$, $\xi_i x_0 = 0$ (i = 1, ..., r + d, j = 1, ..., r) we obtain

$$(U+T)(S-B^*)x_0 = x_0$$
 and $\omega_0(S-B^*)(U+T) = \omega_0$.

This completes the proof.

A. Buraczewski

8

References

[1] A. Buraczewski, Determinant theory of generalized Fredholm operators, Studia Math. 22 (1963), p. 265-307.

[2] — On a certain property of determinant systems, Coll. Math. 10 (1963), p. 325-330.

[3] R. Sikorski, Remarks on Leżański's determinants, Studia Math. 20 (1961), p. 145-161.

UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA UNIVERSITY OF CALIFORNIA, BERKELEY

Recu par la Rédaction le 5. 12. 1967

STUDIA MATHEMATICA, T. XXXII. (1969)

On functions and distributions with a vanishing derivative

by

J. MIKUSIŃSKI (Katowice)

1. The main purpose of this note is to give some existence and unicity theorems for the equation $f^{(m)} = 0$, where f is a distribution or function of q real variables, and $f^{(m)}$ denotes the mixed derivative of order $m = (\mu_1, \ldots, \mu_q)$. The results presented here are closely related to papers [3] and [4].

We shall first fix the notation. If $x=(\xi_1,\ldots,\xi_q)$ and $s=(\sigma_1,\ldots,\sigma_q)$, where ξ_j are real numbers and σ_j are non-negative integers, then we use the notation $x^s=\xi_1^{\sigma_1}\ldots\xi_q^{\sigma_q}$ (if $\xi_j=0$ and $\sigma_j=0$, then we read $\xi_j^{\sigma_j}=1$); thus the "power" of the vector x to the vector exponent s is a real number. By a polynomial of x of degree m we understand $\sum_{0\leqslant s\leqslant m}a_sx^s$, where the coefficients a_s are real numbers.

Let I=(A,B); in other terms, we assume that $A=(A_1,\ldots,A_q)$ and $B=(B_1,\ldots,B_q)$ are given points of the q-dimensional Euclidean space \mathbf{R}^q , such that $A_j < B_j$, and I is the set of points x satisfying A < x < B, i.e., $A_j < \xi_j < B_j$ $(j=1,\ldots,q)$. Given the order $m=(\mu_1,\ldots,\mu_q)$, we assume that, for every $j=1,\ldots,q$, the interval I is cut by μ_j different hyperplanes $\xi_j=\xi_{j_1},\ldots,\xi_j=\xi_{j_{k_j}}$; the intersection of the hyperplane $\xi_j=\xi_{j_k}$ with I will be denoted by H_{j_k} . Throughout this section, we assume that the interval I, the order $m=(\mu_1,\ldots,\mu_q)$ and the numbers ξ_{j_k} $(j=1,\ldots,q;\ k=1,\ldots,\mu_j)$ are fixed. If $\mu_j=0$ for some index j, then we understand that no number ξ_{j_k} with that index j is given. The union of all H_{j_k} will be denoted by U. Thus we may say that U is the intersection of I with the union of all hyperplanes $\xi=\xi_{j_k}$.

By $x_s (0 \le s \le m)$ we shall understand $x_s = (\xi_1 \sigma_1, \ldots, \xi_q \sigma_q)$, where ξ_{j_0} denotes ξ_j . We see that the set of points $x = x_s$ is a hyperplane whose number of dimensions is $q - \operatorname{sgn} \sigma_1 - \ldots - \operatorname{sgn} \sigma_q$, where $\operatorname{sgn} \sigma_j = 0$, if $\sigma_j = 0$, and $\operatorname{sgn} \sigma_j = 1$, if $\sigma_j \ge 1$. Thus, in particular, x_0 denotes the variable x. The intersection of the hyperplane $x = x_s$ with I will be denoted by K_s . In particular, $K_0 = I$. Evidently, if $s \ne 0$, then K_s is included in some H_{jk} . This implies that the union of all K_s is U.