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Formulae of Fredholm type for solutions of linear
equations with generalized Fredholm operator
by

A. BURACZEWSKI (Warszawa)

1. Introduction. Sikorski [3] gave formulae of Fredholm type for
solutions of a Fredholm linear equation

(I+T)w =z
in a Banach space X, and for the adjoint equation
w(I+T) = w,y

in a conjugate space 2 in case T is a quasi-nuclear operator. Later
I proved the same formulae in a more general case by an algebraic
argument [2].

The purpose of this paper is to give a further generalization of Si-
korski’s formulae to a larger class of linear equations

(U+T)w = m,
in a linear space X, and for the adjoint equation
w(U4T) = w,

in a conjugate space £2, where U is a generalized identity and T' is any
operator such that U-+T is a generalized Fredholm operator of finite
defect [1]. The formulae obtained are abstract analogues of the original
Fredholm formulae for solutions of inhomogeneous integral equations
with a continuous kernel in the space Cigp;-

2. Terminology and notation. 2 and X denote two fixed linear spaces
over the real or complex field F. The letters w, &, 1 will always denote
elements of © and the letters z, y, z — elements of X. Every mapping
into ¥ will be called a functional.

We assume that @ and X are conjugate in the sense that there is
a bilinear functional ww defined on £xX such that

(a) if wz =0 for every we, then © = 0;

(a') if wz = 0 for-every weX, then o = 0.

Let A be a bilinear functional defined on 2 xX. The value of 4
at a point {w,#) will be denoted by wdw.
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In the following A will denote the class of all bilinear functionaly
on QxX such that

(b) for every fixed ze¢X, there exists a yeX such that wdz = wy
for every wef (this unique element y will be denoted by Az);

(1) for every fixed wef there exists an 5eQ such that wdz = yx
for every weX (this wnique element 7 will be denoted by wA).

Thus every bilinear functional AW can simultancously be inter-
preted as an endomorphism ¥ = Az in X or as an endomorphism » = wd
in £. The three possible interpretations of A will systematically be used
throughout the paper and the elements A <¥ will simply be called oper-
ators.

If w, and z, are fixed non-zero elements, then the bilinear function
K defined by the formula

wKr = oz, wyz

will be called a one-dimensional operator and will be denoted by 24 w,.
Every finite sum of one-dimensional operators will be called a finite
dimensional operator. .
Let UeWA be a fixed generalized Fredholm operator [1] of order
#(U) =0 and defect d(U) = —d where d > 0. There exists a quasi-
inverse S of U such that »(§) = 0 and d(8) = 4, i.e.

SUS =8, USU=T.
Clearly
d
6h) SU=I and US=I-Ys-z,
i=1
where ¢, ..., 55 and s,, ..., 8; are complete systems of solutions of the

equations wU =0 and Sz =0, respectively such that e;s; = d;; for
i,§=1,...,4d.

Suppose that Te¥ is any fixed operator such that U-+T is a gener-
alized Fredholm operator of order » and defect — d. The operator U+-T'
has a determinant system Dg, D,,... also of order » and defect —d,
D, being a multilinear functional on £"x X**? whose value at a point

(01 ooy @y @y, ooy Brpq) 18
a)l,...,}u,,
[P ),
L1y ceny Ly q

Since r is the order of the determinant gystem, D, 5= 0 but all D;
with ¢ < r vanish identically.

Let #1,..., % and 9y, ..., 9,,4 be points such that
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Then the complete system &, ..., $rpq Of solutions of w(U+T) == 0
is given by the formulae

1 (771, ............... N e

) for every ze¢X
(7./11°"7yi—15wy3/1‘+17 coey Yria S

and the complete system 2y, ..., 2, of solutions ‘of (U -+-T)z = 0'is given by

N1y ooy Nimny Wy Ni1yeeay Nr

(3) we = —l—D,(

5 ) for every wef,
R

Yise o v o vt v v v v e s Yrea

where &y; = 65 (4,5 =1, ...,7+d) and wz; = 6y (4,5 = 1,...,+). The
operator B defined by the formula

1
(4) - wBy = 5

r

D, ((u, Ney eees Or )

Ly Y1y eevy Yria
is a quasi-inverse of U-+T.

Moreover, using properties of the determinant system for U--T,
it can be shown that i '

ryd . r
() (VDB =T~ Y yr&, BUHD) =I—= Yz .
=1 i=1
Having (5) we easily obtain the formula
r . N . L r+d
(6) STB— 28 = B(US+TS—I)— ' Sye-&.
i=1 i=1

Since the determinant system Dy, D,,... for U~+7T is determined
by T up to a scalar factor = 0, we may assume [1] that this system is
of the form

(1) D, =0

W1y iy O
(8) Dr( =
Xiyeeey Pria
and for k =1,2,... :
[op Big,y «. .y 0p Bitg, |
i

........... ‘ X

By, ..., wp, Bog,|

Wy )

L+1? ? T Pktr

X Dr( 1
LR e Papyrta

for n =0,...,r—1,

: I
......... ‘ !,

Er—ydmr-ydy ey €r+dmr+d

|
.y 139

W12y ..

| Ry y oony 2y

M1y anny ({)r+]f )

Lry ooy Proapk

(9) DrYk( = ngnpsgnq
D,q
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where Y is extended over all periautations p = (Pyy-.-; Pryr) and
r+k and 1, ..., 7+ d-}k, re-

S

2
q = @1y --+r Grsarx) OF the integers 1,...,
spectively such thab
D1 <P <o < DPry
g < Qe <o < ks
2. Formulae of Fredholm type. We precede the proof of these for-
mulae by the proof of the following theorem:
TrworEM 1. If Dy, Dy, ... is o determinant system for U+T of ovder v
and defect —d < 0, then

< Pryrs

< grqds

Dregr < Prpe < vee

10
( ) gk+1<Qk+g<...

08T, ..., 0, 8T
(1) Da
ml,...,a:,,+d
.—.—_(——-1)‘11)%( Diye o v w0 0o w .y Op )
, (US‘—}-TS—I):L'“...,(Ub—i—TS——I)mM@
for n=0,1,...
Moreover
8T,..., 0, 8T 1y vvvy Wy
(12) D,«(wl peeng @r )= (_1)¢Dr( PR ] )
Byyeees Trpa By ouey Brpa

Since Uz = —Tz for ¢ =1,...,7 and —§& = &(US+T8~I) for
j=1,...,74d, formulae (12) and (11) for n = r follow from (8). The
proof of (11) is based on the well-known formula

W1 e e Al

18 j-e--- .
Apyr,) »vs Thgropr
Gpp1eee Gpple | | Bpggyt e Gog gy s
= E SENP | L. e ,
P
Gpg1 e Gppe sl * a'T'lr-irkF"'
where the permutation p is the same as in (10). Therefore by (8 (6

(13), ( 12 and well-known properties of classical determinants, we obtaun
(wIST, - ,conST)
rik

Lyy ooy Trydrk

- wp, 8T By, ... wp STBy,
= (-—1)"2 SENP-SERG |- - ¢ v v e X
v, w,,kSTquk. .. wkaTBaﬁqm
« D, (")TU;H’ ey m”k—H')
Fagprr + 0 Papipra
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—1)’2 sgng X
q

gy T(STB—i;; 25 0:8) g, - wi.{STB _iz; 20 13 8) g Wy 121 - Okprr
E1ltyy - E1%apypyq
X A
1 Er+d‘qu+1 s Er+quk+,+d
-
=(—1) Z sgnpsgng X
203
r+d r4-d
oy, [BUS+TS—TI)— 121 Syiilwg, ... wp [B(US+T8—I)— i;’lSyi- &g,
S R T T T S T L X
1 r+d r+d
i @, |BUS+T8—I)~ glsyi'ff] By op[B(US+T8—I)— ﬁé’lSy;&]mqk
Opgyys -3 Oppyy
X Dr ..........
CPPERRRE R T
= (—-l)Tngnp X
»
. r+d r+d
mI,I[J.’?(U;S’}—TS-—I)—ié;’1 Syr&]e... mpl[B(UxS’%—fl’S—I).—né’1 S?/i'fi]”qk+r+,z
r+d r+d
sclome |BUS+TS8—I)— 3 Sys &l .. op|BUSHTS—I)— 3 8ys Eil%ayrrd

|

1 &ixy . flmqk+r+d

l §r+dm1 s 5r+dwgk+r+d
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= (—1)d2sgnp -Sgng %

»,q

Ly B(US+TS=I)iy, ... wp B(US+TS—TI)aw,,
Xl ...................... g v e I X
0, BUS+TS—T)ay, ... 0, B(US+TS — )y,

Oppaqr ooy Doy,
fo+1 k41
X -Dr(

(USHTS—I)ity ..., (USHTS—I)ay,,, M)

= (—1)"‘Dr+k(

1y vovy Wppr )

(US4+T8—1)z, ..., (USHTIS—1) g, .4
This completes the proof.

Now we are in a position to prove the formulae of Fredholm type.

TuroREM 2 (cf. [1], p. 152-153). For n =0,1,...,let
o (wl, ciey Oy ) _ .Dn(wlST7 ey w.,LST>’
Lyy oery Bpog, LyyeoeyPuga
and Tet 1y, ooy Yy Y1y ooy Yrya De fixed points such that

5*=D:(WU cery Nr )7&0

Yiyeers Yria,

Let &, (0 =1,...,7+d,j=1,...,7) be defined as follows:

B b/ y N
L = w0 for every xeX,
Yoy ees Yimry @y Yigry o ooy Yraa
1 Niyg vees Mio1g Wy Mgy ooy T
w25 =?D:‘ ( " for every weQ
Yig o v v o v v v v oy Z/r»;.d

and define an operator B by

1 Wy Nyy eeny Ny
U)B*.’.D:—B; :,,_1( .
ZyYry ooy Yroa
Then the egquation

(%) (U+Ta = x,
has a solution ® iff &xy =0 for i =1,...,7-+d, and the equation
) o(U+T) = o,

has a solution o iff wyg; =0 for j = 1,...,7. The general form of the

solution of (*) is given by

& = (§—B"w+ a2 +...+ 6,2,
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and the general form of the solution of (%) is

o = wg(S—B*)+ o1&+ .+ briabria,
where 8 is a quasi-inverse of U and @y, ..., @y, byy ..., beog are arbitrary
constants.

The formulae for &, ..., &,.q and 2, ...,2, can be obtained imme-
diately from (2) and (3) by application of (12), which form complete
systems of solutions of w(U+4T) =0 and (U-+T)z = 0, respectively.
The formulae for solutions of (x) and (**) can be obtained by use of the
identities

Do (wo, . " wn)
(U)o, 3y vvvy Tasa

(wo(UJ;-T), Oy eeny Oy )
n4-1

Loy Ty g vy Tnya

nid

=0

for n = r, so that, by virtue of identity (11),

wB*(U4T)w = o8To— Y wz-n8Tz,
=1
r+d

©(U+T)B*z = o(US+I8—D)z— > o(US+I8—I)y; &

=1

or equivalently

(S—B*)(U+T) = I+ 3 2 miST,

i=1
r4d
(U+T)(8—B*) =TI+ Z‘ (US+T8—I)y;- &i.
i=1

Multiplying the first equation by o, on the left, and the
second equation by @, on the right and assuming that o2z = 0, Eitmo =0
(t=1,...,7+d, j=1,...,7) we obtain

(U4T)(S—B*)zy =x, and oo(S—B*)(T+T) = w.
This completes the proof.
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On functions and distributions with a vanishing derivative
by

J. MIKUSINSKI (Katowice)

1. The main purpose of this note is to give some existence and
unicity theorems for the equation f™ = 0, where f is a distribution or
function of g real variables, and f™ denotes the mixed derivative of
order m = (piy, ..., ig)- The results presented here are closely related
to papers [3] and [4].

We shall first fix the notation. If z = (&,, ..., &) and 8 = (o1, ..., 0g),
where & are real numbers and o; are non-negative integers, then we use
the notation 2° = £ ... £% (it & = 0 and ¢; = 0, then we read &7 =1);
thus the “power” of the vector  to the veetor exponent s is a real number.

By a polynomial of z of degree m we understand Y a,°, where the
o<sm

coefficients «s are real numbers.

Let I = (4, B); in other terms, we assume that 4 = (4,,..., 4g)
and B = (B;, ..., B,) are given points of the g¢-dimensional Euclidean
space RY, such that A; < B;, and I is the set of points « satisfying
A<z<B ie, 4; <& <B; (j=1,...,q). Given the order m = (s,
.ory i), We assume that, for every j =1,..., ¢, the interval I is cut by
u; different hyperplanes & = &p, ..., & == &3 the intersection of the
hyperplane & = & with I will be denoted by Hjz. Throughout this
section, we assume that the interval I, the order m = 1y +++y o) and
the numbers & (j=1,...,¢; k=1,..., ) are fixed. If ;=10 for
some index j, then we understand that no number & with that index j
is given. The union of all Hy, will be denoted by U. Thus we may say
that U is the intersection of I with the union of all hyperplanes & = .

By #, (0 < s <m) we shall understand @5 = (§,01,..-, £,04), Where
£, denotes &. We see that the set of points # = =, is & hyperplane whose
number of dimensions is ¢—sgno;— ... —sgnoy, where sgno; = 0, if
0; =0, and sgno; =1, if o; > 1. Thus, in particular, z, denotes the
variable #. The intersection of the hyperplane & = @, with I will be
denoted by K,. In particular, K, = I. Evidently, it § %0, then K, is
included in some Hj;. This implies that the union of all K is U.
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