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On C(8)-subspaces of separable Banach spaces
by
A. PELCZYNSKI (Warszawa)

We recall that two Banach spaces X and X, are said to be [¢sometri-
cally] isomorphic if there is a one-to-one bounded linear operator % from
X onto X, [with |juz|| = |jz| for all & in X], which is called an [isometric]
isomorphism. A subspace (= closed linear subspace) Y of a Banach space
X i8 called complemented if there is a projection (= bounded linear idem-
potent operator) from X ontoY. If § is a compact Hausdorff space, C(8)
will denote the Banach space of all complex-valued [or real-valued]
continuous functions on §.

The main result of the present paper is the following

THEOREM 1. Let 8 be a compact metric space. If a separable Banach
space X contains a subspace Y isomorphic to C (S), then there i3 a subspace
Z of Y such that Z is isomorphic to C(8) and Z is complemented in X.

The proof of Theorem 1 bases upon the following result due to Mi
ljutin [11]; of. also [13], Theorem 8.5. We denote by 4 the Cantor discon-
tinuum.

(M) If 8 is an uncountable compact metric space, then the space C(8)
18 zsomorphw to C(4).

Using (M) we will derive Theorem 1 from the following one:

THEOREM 1a. Let 8 be a zero-dimensional compact metric space. If
a separable Banach space X contains a subspace Y isometrically isomorphic
to C(8), then there are a subspace Z of Y and a projection =: C(S) ot Z such
that Z is isometrically isomorphic to C(8) and l=]] =1.

It is quite possible that Theorem 1 will be wuseful for the problem
of characterizing all isomorphic types of complemented subspaces of C’(S),
S being compact and metric. We have

COROLLARY 1. Let 8 be a compact metric space. If a complemented
subspace Y of C(8) contains a subspace Y, isomorphic to C(8), then Y is
isomorphic to O(8).

This Corollary is a simple consequence of Theorem 1 and the decom-
position method (cf. [13], Proposition 8.3). First we show that for every
infinite compact metric space §
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(+) C(8) is isomorphic to (C(8)XC(8)X...)o.

(For the definition of the ¢,-product (X x X Xx...), of a Banach
space X see [3], p. 31). Next we use the same computation as in [13],
p. 41, replacing only the symbol D" by 8.

For 8 countable we verify (+) using [2], Theorem 1, and the fact
that the space (C(8)x C(8)x...), is isomorphic to the space C(8XS,),
where S, denotes the one-point compactification of the set of integers.
If S is an uncountable compact metric space, then, in view of (M) and
the fact that the ¢,-products of isomorphic Banach spaces are isomorphic,
it is enough to verify (+) for § = 4. This is done in [13], p. 40.

The next two corollaries concern universal Banach spaces. We recall
that a Banach space X is said to be [¢sometrically] universal for all separable
Banach spaces if every separable Banach space is [isometrically] isomorphiec
to a subspace of X.

COROLLARY 2. A separable Banach space X is [isometrically] universal
for all separable Banach spaces if and only if X contains a complemented
subspace Y [there is a projection m: X = Y with ||z|| = 1] which is [iso-
metrically] tsomorphic to C(A4).

The part “if’”’ follows from the fact that the space C(4) is isometrically
universal for all separable Banach spaces ([3], p. 93, [6]). The part ‘“only
if” immediately follows from Theorem 1 (resp. Theorem 1la).

Combining Corollaries 1 and 2 we get

COROLLARY 3. If a complemented subspace Y of C(A) is universal
for all separable Banach spaces, then Y is isomorphic to C(4).

Observe that, in view of (M), one may replace in Corollary 3 the
space O(4) by C(8), where § is an uncountable compact metric space.
Corollaries 2 and 3 show that €' (4), as well as the Banach-Mazur universal
space O([0;1]) (cf. [1], p. 163), are in a certain sense the smallest possible
Banach spaces universal for all separable Banach spaces.

I would like to express my gratitude to Z. Semadeni for valuable
discussion during the preparation of this paper.

Preliminaries. By a map ¢: @ — 8 we mean a continuous function
from a topological space @ into a topological space S. If P is a closed
subset of @, then ip: P — @ denotes the natural embedding of P into @.
If ¢: Q@ — 8 is a map, then the restriction of ¢ to P is the composite map
@ip. We will say that the restriction of ¢ to P is a homeomorphism if
@ip regarded as a map from P onto ¢(P) is a homeomorphism. If ¢: @ — §
is a map, then ¢°: C(8) - C(Q), the operator induced by ¢, is defined by

(#°(f) (@) = f(pg) for feC(8) and for geQ.

Observe that (ip)’: C(Q) — C(P) assigns to each f in C(Q) its restriction
to C(P).
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For a topological space 8 and for every ordinal number o (cf. [14]
for the definition) we define (cf. [9], p. 150) the a-th derived set S by
transfinite induction: §” = §; 8 = the set of all non-isolated points
of §;

(8D if @ = p+1,

M 8¥  otherwise.

B<a

S@ —

If F is a subset of a metric space with a distance function d, then

diamF = supsup d (¢, s).
8eF teF

By [isometrically] isomorphic embedding from a Banach space Z into

a Banach space X we mean an [isometric] isomorphism from Z onto
a subspace of X.

If 8 is a compact Hausdorff space, then [C(8)]* denotes the dual
of the space C(S). We put

By = {ue[C(8)T": [lull < 1}.

The w*-topology of [C(8)]* is the weakest topology on [C(8)]* such
that for every f in C(8) the function f(-) defined by f(,u) = u(f) for u
in [C(8)]" is continuous. In the sequel we will identify a point s of § with
the evaluation functional at s defined by f(s) = f(8) for feC(8). This
identification determines the embedding of § into By which is a homeo-
morphism if Bg is regarded in the w*-topology. We recall that (cf. [5],
p. 441)

exBy = U #-8,

l2|=1

where ex By denotes the set of all extreme points of B (cf. [5], p. 439,
for the definition), and

28 = {ueBg: 2 'ue8} for every complex z # 0.

Proofs of the results. Our first proposition is due to Holsztynski [8].
A particular case of isotonic isometries was considered earlier in [6].
Our proof is different from that in [8].

ProrosITION 1. Let 8 and T be compact Hausdorff spaces and let
u: C(8) - C(T') be an isometrically isomorphic embedding. Then there are
a closed subset Q of T, a map ¢: Qo;go 8 and a continuous function &(-)

on Q such that |e(q)| =1 for q in Q and

e(q)(ug) (@) = g(9(@) (9@, g<C(8)).
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Proof. Let w*:[C(T)]* —[C(8)]* denote the adjoint of wu. Let

I' = {2:|2| =1} denote the unit circle on the complex plane. Let us set
Qz =(u*)—l(z's)"\T’ Q =|L|)]sz

1

e(q) =2~ for ge@, and for zel',

p(q) = e(q)u*(q) for geQ.

If geC(8) and ge @, then, by the definition of the adjoint operator,
we have

e(g)(ug)(9) = (@) [v* (@)1(9) = [2(@)1(9) = g(¢(q).

Hence to complete the proof it is enough to show that ¢(-) and ¢
are continuous, ¢ is closed, and ¢(Q) = S.
Let F be a closed subset of I. Then
eNF) = U @)@ AT =@w)y (Y 8)~T.
2eF 2eFl
Since the map (z,8) —2"'s is a homeomorphism from I' X § into
Bg and since the operator u*:[C(T)]* — [C(8)]* is w*-continuous (i. e.
continuous if both spaces [C(T)]* and [C(8)]* carry their w*-topologies),
the set ¢! (F) is closed. Hence &(- ) is a continuous function and Q = ¢! (I")
is closed. Thus ¢ is continuous and maps @ into S. We will show that
(@) = 8. To this end for each s in § let us consider the set

K(s) = (u*)"'(s) ~ Bp.

Since w* is w*-continuous and since By is w*-compact, K (s) is w*-
compact. Clearly, by linearity of »*, K (s) is convex. Finally, K (s) is non-
empty because ||$|| =1 and «* maps B onto By (this follows from the
Hahn-Banach extension theorem and the fact that w is an isometrically
isomorphic embedding). Therefore, by the Krein-Milman theorem ([5],
p. 440), K(s) has at least one extreme point, say u.

We will show that ueex By. Let u = + v,, where ||| + |voll < 1;
0 #7,;0 #v,. Then 8 = u*», + u*»,. Since ||u*| =1, we have

1 = |ls)l < llw*wall 4+ w* vgll < J* (lwall 4 Ivell) < 1.
Hence
lu*vall = lall; ¥ wall = Iwall; e vall + ¥ vall = 1.

This formula implies that «*», = as and u*v, = (1—a)s for some
a with 0<a<1, because 8 = u*v,+u*v,e exBy. Write A, = a~'v,;
Ay = (1—a)"',. Then A, AeK(8) because |4 =1 and u*i =3¢
(¢ =1,2). Since 4 = al,+(1—a) 4, and u is an extreme point of K(s),
we get u = 2, = 4,. This shows that x is an extreme point of By. Hence
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there are a ¢ in T and a 2 in I'" such that @ =2t. Since ueK(s), we get
w*(t) =27's.  Consequently, te@y: and ¢(t) =2. Therefore ¢(t)
= g(t)u*(t) = s. Thus ¢ maps ¢ onto 8. That completes the proof.

PROPOSITION 2. Let Q and S be compact metric spaces. Let ¢: Q — S
be a map.

(I) If the set ¢(Q) s uncountable, then there is a closed subset P of @
such that P is homeomorphic to the Cantor discontinuwum and the restriction
of ¢ to P is a homeomorphism.

(IX) If @(Q) is countable, then there is a closed subset P of Q such that P
18 homeomorphic to ¢(Q) and the restriction of ¢ to P is a homeomorphism.
(In general, ¢(P) does not coincide with (Q).)

Proof. (I) has been proved by Kuratowski [9], p. 351.

(II) By a theorem of Mazurkiewicz and Sierpinski [10], the topo-
logical type of a countable metric space 7' is determined by the pair
a(T), m(T)), where a(T) is a countable ordinal number such that
T %@ but 7"+ = G, and m(T) is a positive integer such that
the finite set 7™ has exactly m(T) elements.

Observe that (II) is an easy consequence of the following fact:

(%) If v:Q - 8 is a map (8, Q compact metric spaces) and if »(Q)
18 countable, then there is a closed subset P of @ such that a(P) = a(zp(Q)),
m(P) =1 and the restriction of v to P is a homeomorphism.

Indeed, let ¢: Q — 8 be an arbitrary map and let ¢(Q) be count-
able. Let

[‘P(Q)](a) = {8”827 ceey 3m}7

where m = m ((Q)) and a = a(p(Q)). Since ¢(Q) is a countable compact
metric space, it is zero-dimensional. Hence there are mutually disjoint
closed-open sets §; (¢ =1,2,..., m) such that 8;¢e8; and

U8 = 8.

i=1

Let us set @; = ¢7'(8;) and let y; denote the restriction of o to Q..
Clearly

[ (@01 = [@(Q))]? = 8 = {s;}

because 8; is a closed-open subset of ¢(Q) and [P(@)1D ~ 8 = {8}
(1=1,2,..., m). Thus a(p;(Q:)) = a(p(Q)) = a. Hence, by (), there
Is a closed subset P; of @; such that m(P;) =1; a(P;) = a(¢(Q)) = a,
and y; restricted to P; is a homeomorphism. Let us write

m
P =P,

=1
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Since §; are mutually disjoint components of ¢(Q) and P; = ¢~ *(8;)
= @, the sets P; are mutually disjoint components of P. Clearly ¢ restricted
to P is a homeomorphism, because ¢ restricted to P; is a homeomorphism
and the closed sets ¢(P;) are mutually disjoint (because ¢(P;) <= S;).
Taking into account that P; are components of P, we infer that

m m
PO = PP = U {si}.
=1 t=1
Hence a(P) = a(¢(Q)) and m(P) = m(p(Q)). Thus P is homeo-
morphic to ¢(Q).
We shall prove () by transfinite induction. If «(y(Q)) = 0, then
P may be any one-point subset of . Assume that (x) is true for every
map y: @ — 8 (@, S arbitrary compact metric spaces) such that a(y(Q)) < a,
where a > 0 is a fixed countable ordinal number. Let us consider a map
@:Q - 8 such that a(p(Q)) = a. Fix se[p(Q)]”. Choose a sequence
of different points (s,) in @(@) so that

lim s, =s, Sne[(p(Q)](‘B") AN [‘P(Q)](u) forn =1,2, ...,

where f, =8 if a =f+1, and f<f.<... with supf, =a if a is
a limit ordinal number (this is possible because for every countable com-
pact metric space T and for arbitrary countable ordinals 0 < g < a, T®
is a nowhere-dense subset of T®). Next choose a sequence (8,) of mutually
disjoint closed-open subsets of ¢(Q) such that

$welpy, Spn @9 =0 n=1,2,..), lim diam 8,=0

(this is possible because every countable compact space is zero-dimensional
and [¢(Q)] is a finite set). Let @, = ¢~ '(S,) and let ¢, denote the
restriction of ¢ to Q,. Let a(®(Q)) = y». Then we have a > y, > fa,
because ¢(Q,) = 8, is a closed-open neighbourhood of s,e[¢(Q)]%? and
S, ~ [¢(@)]® = @. Therefore, by the inductive hypothesis, there is a
closed subset P, of @, such that

a(‘Pn(Pn)) = a(‘P(Qn)) = Va5

m(P,) =1, and ¢, restricted to P, is a homeomorphism. Let p, be the
unique point of PY. Observe that without loss of generality one may
assume that diam P, << n~'. To this end it is enough, if necessary, to
replace P, by a sufficiently small closed-open neighbourhood of p,.
Since @ is a compact metric space, one may also assume that the sequence
(ps) is convergent (we may replace (p,) by a suitable subsequence). Let
p =lim p,. Let us set

P={p}o UP,.

N=1
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Observe that P is closed. Indeed, since P, are mutually disjoint and
closed, it is enough to show that if (p,) is a convergent sequence such
that p,eP, for n =1,2, ..., then lim p, <P. In fact, lim p, — » because
lim p, = p and lim diam P, = 0. Next we will show that @ restricted
to P is a homeomorphism. Let p’ and p”’ be two different points in P.
There are three possibilities:

1° There is an index » such that both p’ and p’’ belong to P, . Then
P(P') = @u(p’) # @u(p”') = @(p"') because @, is a homeomorphism.

2° p'ePy, p"ePy, my #m,. Then @(p)eS,, and @(p")el,,. Thus
@(p') # @(p”) because S, ~ Spy, = 0.

3° p'ePy, for some ngand p”’ = p. Then @(p’) €8y, , while ¢ (p”') = ¢(p)
= lim ¢(p,) = s because ¢(p,)eS,, limdiams, =0 and lim 8y = S.
Thgefore 9(p') # p(p) because ¢(p) = s<[p(Q)]®, whereas 8, ~ [¢(Q)]®

Therefore the restriction of ¢ to P is a one-to-one map. Since P is
compact, the restriction of ¢ to P is a homeomorphism.

Finally, we will show that a(P) = a and m(P) = 1. Since the re-
striction of ¢ to P is a homeomorphism, a(p(P)) = a(P) and m(qp(P))
= m(P). We have

?(P) ~ [#(@1? < ({p(p)} ~ [w(@)]‘“’)u((ﬁl 8:) ~ [9(@17) = {s}.
Now if « = f+1, then
P 5 Gng = D{pn}

Hence P? is infinite. Therefore, by compactness of P, the set P¢+) — p
is non-empty. Since the restriction of ¢ to P is a homeomorphism, the set
[¢(P)]® is non-empty. Hence [¢(P)]® = {s}. Similarly, if « — sup Bn
with g, <p,<..., then p,ePyw < P for n—=1,2,... Thus p
= lim p,eP!). Hence, also in this case, the set [¢(P)]® is non-empty.
Therefore [¢(P)]® = {s}. Hence, in either case, [¢(P)]® is a one-point
set, i.e., a(P) = a(p(P)) = a and m(P) = m(p(P)) = 1. That completes
the induction and the proof of the Proposition.

PROPOSITION 2a. If ¢ is a map from a compact metric space Q onto
a compact metric zero-dimensional space S, then there i8 a closed subset
P of Q such that P is homeomorphic to 8 and ¢ restricted to P is a homeo-
morphism.

Proof. If 8 is uncountable, then the desired conclusion follows
from Proposition 2, (I) and the well-known fact that every zero-dimen-
sional compact metric space is homeomorphic to a subset of 4.
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If 8 is countable, then we use Proposition 2, (II).

Remark. The assumption of metrizability of @ in Proposition 2
can not be removed. Indeed, let SN denote the Stone-Cech compactifi-
cation of the set of integers. Since every compact metric space S contains
a dense countable set, there is a map ¢ from SN onto 8 (cf. [7], p. 84).
Since no infinite closed subset of N is metrizable (because SN is extrem-
ally disconnected; [7], p. 96), the restriction of ¢ to a closed infinite
subset of AN is not a homeomorphism. However, Proposition 2 is likely
to hold for dyadic spaces (= continuous images of Cartesian products
of two-point discrete spaces).

Proof of Theorem la. First assume that X = C(T) for some com-
pact metric space T. Let u: C(8) — C(T) be an isometrically isomorphic
embedding such that u[C(8)] = Y. By Proposition 1, there are a closed
subset @ of T, a map ¢ from @ onto S and a function &(-) in C(Q) with
le(g)] =1 for all ¢ in @ such that

(1) e(q)(ug)(q) = g(p(g)) for qeQ and for geC(8).

Restating (1) in terms of induced operators we obtain
(2) ,(40)°u = ¢°,

where v,(f) = &(:)f for feC(Q).

Since § is a zero-dimensional compact metric space (by Proposition
2a), there is a closed subset P of @ which is homeomorphic to § and such
that the restriction of ¢ to P is a homeomorphism. The fact that the
restriction of ¢ to P is a homeomorphism may be reformulated in terms
of induced operators as

3) (Upp))° = ¥O(ip)°¢°,

where ¥: ¢(P) — P is the homeomorphism inverse to the restriction of
@ to P. Let L: C(«p(P)) - O0(8) be a linear extension operator with
IL) =1, ie.

(4) (L)) =F6), LI =1fl  (scp(P), fC(p(P))).

The existence of L is a particular case of the Borsuk-Dugundji ex-
tension theorem (cf. [4] and [13]). Restating (4) in terms of induced
operators we get

(5) (tep))°L = idoipepy)s

where idgp, denotes the identity on C((p(P)). Let us define the operator
7w: O(T) - O(T) by

(6) n = uL¥°(ip)ov, (iq)°.
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(We regard ig as the natural embedding of @ into 7 and ip as the natural
embedding of P into @.) Let us set

Z = uL(C(p(P))).

By (4), w and L are isometrically isomorphic embeddings. Hence
Z is isometrically isomorphic to C(¢(P)). Since P and ¢(P) are homeo-
morphic to 8, Z is isometrically isomorphic to €(8). Clearly, Z < u(C(8))
= Y. We will check that = is a projection from CO(T) onto Z with |j=|| = 1.
Let feC(T). Then

7(f) = wL[(¥°(ip), (ig)°) (f)] Z.
Thus #(C(T)) = Z. Combining (2), (3), and (5) with (6) we get

muls = uL¥°(ip),(ig)°uL
= uL¥P°(ip)° ¢°L
= uL(igp))°L
=ul.
Hence

7 = guL¥(ip), (ig)® = uL¥O(ip)'0, (ig)* = .

Thus = is a (non-zero) projection and ||| > 1. Since the norms of
all operators appearing in the left-hand side of (6) are equal to 1, we
have |lz|| < 1. Thus |jz|| = 1. This completes the proof in the case where
X =0(T).

In the general case we may regard X as a subspace of C (T) (actually
for T = 4; cf. [3], p. 93). The desired projection is the restriction to X
of the projection constructed for C(T).

Proof of Theorem 1. We shall need the following facts:

(a) If w:Z — X is an isomorphic embedding, then there exist a Banach
space X, and an isomorphism v from X onto X, such that v is an isometric-
ally isomorphic embedding ([12], Proposition 1).

(b) If S i8 a compact metric space, then there is a zero-dimensional
compact metric space S, such that C(8) is isomorphic to c(8,).

If 8 is countable, then 8, = 8. If § is uncountable, then, by (M),
C(8) is isomorphic to C(4).

We are now ready for the proof of Theorem 1. Let ¥ be a subspace
of a separable Banach space X. If Y is isomorphic to a space C(S), then,
by (b), there are a zero-dimensional compact metric space 8, and an
isomorphic embedding u: O(8,) -~ X such that u(C(Sl)) =Y. By (a),
there exist a Banach space X, and an isomorphism v: X — X, such that
vu i an isometrically isomorphic embedding. Let us put ¥, = vu (C(8y)).
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Since vw is an isometrically isomorphic embedding, ¥, is isometrically
isomorphic to C(S,). Hence, by Thecrem 1la, there are a subspace Z,
of Y, such that Z, is isometrically isomorphic to C(S,) and a projection
7, from X, onto Z, such that ||lz|| = 1. Let Z = v~'(Z,) and let # = v~ m, 0.
Clearly = is a projection from X onto Z. Since Y, o Z,, we have Y
= v~ (¥,) 2 v"'(Z,) = Z. Since v is an isomorphism, all spaces Z, Z,,
C(8,), and C(8) are isomorphic each to other. This completes the proof.
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Composition of binary quadratic forms*
by

IRVING KAPLANSKY (Chicago, Ill.)

1. Introduction. Gauss’s complete discussion of the composition of
binary quadratic forms over the integers ([6], sections 235-244 and
several later sections) was a tour de force that makes remarkable reading
to this day.

Several of the great mathematicians of the nineteenth and early
twentieth centuries took up the theme and gave fresh accounts of the
work. This material takes up twenty condensed pages in Dickson’s history
([31, p. 60-79).

The idea of giving still another account of this venerable subject
arose when I attempted to extend the theory to Bézout domains (integral
domains where every finitely generated ideal is principal). Now the modern
view of composition is that it is really just multiplication of suitable
modules. (This idea is attributed by Dickson to Dedekind, quoting the
eleventh supplement in [5]. A recent exposition is [1], p. 212-5.) But
when one proceeds to a detailed execution, there are difficulties. The
correspondence between quadratic forms and modules needs touching up.
There is some trouble disentangling a module from its conjugate, overcome
by “orienting’ the module; there is also a need to use “strict” equivalence
of modules, meaning multiplication by elements of positive norm. Both
of these points seem to require an ordered integral domain, and on closer
inspection one sees further obstacles if the base ring has wunits other
than 4 1.

I might have concluded that ordering was indispensable for compo-
sition, had it not been for the existence of still another method, the
technique of ‘““united forms”, also attributed by Dickson to Dedekind
(tenth supplement in [5]; as late as 1929 Dickson [4], Ch. IX, thought
this to be the best method to put in his book). It is a fact that this discussion
is valid verbatim for any principal ideal domain of characteristic == 2.
But I could not get it to work for Bézout domains (the difficulty comes

* Work on this paper was supported in pars by the National Science Foundation.
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