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On periodic solutions
of linear differential-difference equations
with constant coefficients
by
D. PRZEWORSKA-ROLEWICZ (Warszawa)

The purpose of this paper is to give

1° simple conditions of the existence of periodic solutions of the
differential-difference equation

(1) >

k=0 j=

a2 (t—wy) = y (1),
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-]

where y is a given periodic function (which can be identically equal to
zero), ax, and w; are real numbers and w, = 0, and #® denotes the k-th
derivative of x;

2° effective formulae for these solutions.

All known methods of solving linear differential-difference equationt
are very complicated, even in the case of constant coefficients and constans
retardations (see for example Bellman and Cooke [1]). The reason is
that the characteristic quasi-polynomial of equation (1) is a transcendental
function. Then it is very difficult to find all the roots of that quasi-poly-
nomial and their number is infinite. The usual method of determining
periodic solutions of (1) is by using some asymptotic properties of roots
of the characteristic quasi-polynomial (see Elsgole [3], Halanay [5],
Hahn [4] and Zvierkin [10] and [11]).

Our method will be different and much simpler. We shall show that
in the class of periodic functions (with period  not yet determined)
equation (1) is equivalent to a finite number of ordinary linear differential
equations with constant coefficients. Since the conditions of solvability
of these equations are well known (see for example Coddington and
Levinson [2] and Krasnoselskil [6]), we shall not deal with them; we
shall assume only that the required conditions are satisfied.

The proposed method is based on properties of involutions of order
N which have been studied by the author ([7], [8] and also [9]).
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1. Involutions of order N. We shall enumerate here without proofs
those properties of involutions of order N which will be needed later.
The reader can find the respective proofs in papers [7], [8] and in the
book [9].

Let X be a linear space (over complex scalars). A linear operator S
transforming X onto X is called an involution of order N if N is the smallest
positive integer (N > 2) such that 8~ = I, where I denotes the identity
operator.

Let ¢ = 6™, We have

1
Py = (I+e7 8+, e @D8%Y), v =1,2,..,¥.

If 8 is an involution of order N, then we have the following important
properties of P:

2
@) P,P,=P,P,=6,P,, P8 =8P, (s4,»=1,2,...,N),

where ¢, is the Kronecker symbol;

(3) 8P, =¢P, (»=1,2,...,N).
This implies that X is a direct sum
N
of spaces X, such that Sz, = &'z, for every z,eX, (»=1,2,...,N).

Every element xe¢X can be written in a unique manner as a sum:

N
(5) » = Zw(,), where z,) = P,zeX, (»=1,2,...,N).

y=1

If a linear operator A acting in X commutes with an involution S of
order N, then

(6) A(DAF\X(,))CX(,) fOT 1’:1,2, .--’N,
where Dy = X denotes the domain of A.
In fact, let 2eD4. Then w, = P,xeX, for v=1,2,...,N and
N-1
Avy = APo = A( Y 8o

k=0

N-1
= () 8" 4z = P,(43) = (40)) e X,).

k=0

Hence A.(.DA a) X,) c X(,).
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2, Solution of the problem. Let us write
n m
Ax = 2 Zaij(k)(t——wj), Wy = 0.
k=0 7=0

Equation (1) will be written further as
(7) Az =y.

Without loss of generality we can assume that 0 = w, < 0; < ... < wp.
Since we are looking for a periodic solution of (7), we assume that all
numbers w,,..., o, are commensurable. Consequently, there is a number
r # 0 and there are positive integers n; such that

(8) w;=mn;r for j=1,2,...,m.

THEOREM. Let a real function y(t) determined on the real line be periodic
with period wp,, commensurable with real commensurable numbers
W1y +ory Op. Then equation (7) has w-periodic solutions if and only if all
ordinary differential equations with constant coefficients

(9) A,u = Dbpu® =y, (v=1,2,..., )
k=0
have w-periodic solutions, where
1 -1
Yoo =5 D, € "Y(t—Fn),
’ k=
(9') o v=1,2,...,N,
by, = Qi g™ £ = ez""’N; e
w; =mr for j =1,2, ..., m41, n; are positive integers, r # 0, nog = 0,
N is a common multiple of numbers ny, ..., Nm,, (not necessarily the smallest)
and o = Nr.
The solutions are of the form
1 & N_1
o= 2 D & mgt—tn),
v=1 k=0

where m, 18 an w-periodic solution of the v-th equation (9).

Proof. Let us consider the space X of all w-periodic real functions
x(t) determined on the real line with the period » described above. Let

(10) Sy =x(t—r) for zeX.

S is a linear operator transforming X onto X and, moreover, 8 is
an involution of order N. In fact,

(11) SNy =w(t—Nr) =2(t— o) = (1)
and N is the smallest number satisfying (11).
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According to (4) we can decompose the space X into a direct sum
of spaces X, where X, =P, X,

N-1
Py — %2 & o (1 — kr)

k=0
and @, = P,x for every #eX (v =1,2, ..., N).

Now we can write the operator 4 in the following form, if we remark
that 8, as a shift operator, commutes with derivation:

Aw = 2"7 Zm:ak,a;"‘)(t—w,) = Z”‘ fa,,jsw")(t)

=3 S| Jatg] = 5 San St
=ZN§][§‘@ &= af}) (1) Zl kz_mbk.w{f;(t)

[2 m] () —[S‘ AI.]m(t),

where b, and A, are determined by (9) and (9’). Finally,

N
A =D AP,

v=1
Every operator A, commutes also with S. Hence the equation Az =y
is equivalent to N equations
A,xp =Yy, where y, =Py (v=1,2,...,N).

Let us suppose that there is a solution e X of the equation Az = y.
Then w,) = P, i8 a solution of the equation 4,4 = y,,»=1,2,..., N.

and by definition , belongs to X. Hence ) are w-periodic functions.

Let us suppose that every equation A,u =y, has a solution z,.
By the assumptions, #,¢X. Then

N
T = ZP, 2

V=]

is a solution of Az = y. In fact, (2) implies

N
2y = P,x =P, (2 P, w,‘) = P,

p=1

Az —ZA P, —ZA o _ZA P, _ZP (4,20

v.—.-l

=ZPvﬁ'l(v) =Z?/(v) =Y.

V=] Ym]

and
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From the preceding considerations it follows that the solution is
of the form

N 1 N N-1 N N-1
S — kv
T = ;P, ) =— Sty =— "8y (t—
, Prey =+ 2, Z, &8y =4 Z, 2, o (t—Fkr),
=1 v=1 k=0 v=1 k=0

where 2, is an o-periodic solution of the equation 4,z = Y, Which
was to be proved.

This theorem is also true without any essential changes of the proof
if #(f) and y(¢) are vector functions. What is more, we can assume that
the functions #(#) and y(¢) determined on the real line belong to a Banach
space and even to a linear metric space.
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