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does not imply that. On the other hand, all discrete groups have such
invariant neighborhoods, W = {u}, so all discrete groups, whether they
are amenable or not, have regular representations of finite type.
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Concerning extension of multiplicative linear functionals
in Banach algebras
by

W. ZELAZKO (Warszawa)

A commutative complex Banach algebra A has the ES-property
(Extension from Subalgebras) or belongs to the class ES (written as 4 ¢ES)
if for every its (closed) subalgebra A, = A and every multiplicative
linear functional f defined on A4, there exists a multiplicative linear
functional F' defined on A4 such that its restriction to 4, equals f. In other
words, A ¢ES if and only if every multiplicative linear functional in any
subalgebra of A is extentable to such a functional defined on 4. Clearly,
any subalgebra of a member of ES also belongs to this class. In this paper
we characterize the class ES in terms of spectra of elements of algebras
in this class. Our main result reads as follows:

THEOREM 1. A Banach algebra A belongs to the class ES if and only if
for every element xe A its spectrum o(x) i8 a totally disconnected subset of
the complex plane.

To illustrate this theorem we show that for any compact group G
the group algebra L,(G) belongs to the class ES. (For related results see
also [1] and [3].)

Let A be a commutative complex Banach algebra with unit e. We
shall write M (A4) for the (compact) maximal ideal space of A provided
with the Gelfand topology. The spectral (semi-) norm |z|, is defined as

llells = sup |f(#)| = sup 2" (f)| = sup|(oz)| < l=ll,
feM(4) M(4)

where 2" (f) = f(z) is the Gelfand transform of xeA. If p is any complex
polynomial in one variable, then for any xeA

o(p (@) = p(o(a)),
and so

(1) lp(2)lls = b lp(%)].

€a(Z)
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We shall write I'(A4) for the Shilov boundary of 4, i.e. for the smallest
closed subset of M (A) such that

l2lls = sup |z" (f)]
r(d)

for every xeA. A theorem of Shilov states that any functional fel'(A4)
is extentable to an element of M (4,) for any superalgebra 4, of 4 (having
A as its closed subalgebra). A functional foeM (A) is in I'(A) if and only
if for any neighbourhood U of f, in M (A) there exists an element zeA
such that

suple” (f)| > lz" ().
1eU fe U

sup

M4\
If A,is a subalgebra of A and zed, = A, then we write o(x) for the

spectrum of x in A and o,(2) for the spectrum of 2 in 4,. We have

(2) o(z) = a4(),
while
(3) bdry o,(z) = bdry o(z),

so that if o(x) is a totally disconnected subset of the complex plane,
then for any subalgebra A, containing the element x we have

(4) oo(®) = o(x).

If A is an algebra without unit, then it may be imbedded in an algebra
A’ with unit element, as a maximal ideal. In this case the spectrum of
any element « in A is defined as the spectrum of x in A;.

The subalgebra A, generated by an element z,¢A is defined as the
closure in A of all the polynomials in x, with complex coefficients. The
space M(A,) may be identified with the spectrum o,(x).

If M(A) =M, M,, where M, and M, are open-closed disjoint
subsets of M (A), then there exists an idempotent weA (u? = u) such
that

M, = {feM(A): uM(f) =1} and M, = {feM(A): u"(f) = 0}.

For any weA the element exp z is defined as

o] n

@
exp & = Zﬁ’

n=0
it is a well defined element in A and (exp )" = expz .
The proofs of all these statements may be found e.g. in [4].

LEMMA 1. Let A be a commutative complex Banach algebra with unit
element e. If for an element xye A the spectrum o(x,) conains a continuum,
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then there is a subalgebra Ay, = A and a functional feM(A,) which i8 non-
extentable to a member of M(A).

Proof. Suppose that there is a continuum K joining two points

t,taea (), ¢, #t,. We putb
To—1e d e
y——t;tf an z—expzy.

So z is an invertible element in A and there is a continuum K, < ¢(=2)
joining 1 and 4. This implies that 2* is an invertible element in 4 such
that its spectrum o(2*) separates the complex plane between 0 and oo.
Let A, be the subalgebra of A generated by z*. We shall show that there
is a functional f in .M (4,) that cannot be extented to a multiplicative
linear functional defined on 4. To this end, for any complex polynomial
p we put

flp(z*)] = p(0).

By the maximum principle and relations (1), (2) and (3) we have

Iflp ()]l < sup Ip(f)l = sup |p(f)| < sup|p(})]
teog(eh) tebdry ag(e) teo(e)
= sup |o(p (2*)| = lIp (&")lls < [IP (&*)I],
and so f may be extented by continuity onto the whole of 4,. Clearly,
this extension belongs to M (4,). On the other hand, f cannot be extented

to an element of M(A4) since f(z*) = 0 and #* is an invertible element

in 4, q.e.d.

The following lemma is known (cf. [2], §42, 11, 9):

LEMMA 2. A compact plane set is totally disconnected if and only if
it contains no continuum.

LEMMA 3. A commutative complex Banach algebra with unit element
belongs to the class ES if and only if for every for subalgebra A, = A its maxi-
mal ideal space M(A,) is totally discomnected.

Proof. If for some subalgebra 4, = A the space M (A4,) is not totally
disconnected, then there are two points f,, f,e M (4,), fi # fs, that cannot
be separated by two disjoint closed-open subsets of M (4,). Take any
element z,¢ 4, such that z;\(f;) # #{'(fs). This implies that in the spectrum
ao(x,) the points z{(f,) and 2 (f,) cannot be separated by its two disjoint
open-closed subsets, and so the spectrum o,(x,) is non-totally disconnected.
By lemma 1 there is a subalgebra 4, < 4, and a functional feM(4,)
that cannot be extented to a member of M (4,). This implies that f cannot
be also extented to a member of M(A) and so A is not in ES.

On the other hand, suppose that tor every subalgebra 4, = A the
space M (A4,) is totally disconnected. This means that for any functional
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JoeM(A,) there is a basis of neighbourhoods consisting of open-closed
sets. The characteristic function of any such a neighbourhood is a Gelfand
transform of some element of A4, This implies that f, is in the Shilov
boundary I'(4,), and so f, may be extented to a member of M (4). Since
A, was an arbitrary subalgebra of 4 and f, an arbitrary element of M (A4,),
we infer that 4¢ES, q.e.d.

PROPOSITION 1. A commulative complex Banach algebra A with unit
element e belongs to the class ES if and only if for every xe A the spectrum
o(x) is a totally disconnected subset of the complex plane.

Proof. If for some x, ¢ A the spectrum ¢ (z,) is non-totally disconnected,
then taking as 4, the subalgebra generated by x,, we see by (2) that
0o(%,) is non-totally disconnected. Since M(A,) = a4(x,), we infer by
lemma 3 that A¢ES.

On the other hand, suppose that A¢ ES. By lemma 3 there is a sub-
algebra A4, with non-totally disconnected maximal ideal space M (A4,).
Similarly as in proof of lemma 3, we obtain an element z,e A4, such that
the spectium ¢,(2,) is not totally disconnected. This implies that o(x,)
is also non-totally disconnected, otherwise, by formula (4) it would be
00(®o) = o (), q. e. d.

We have so obtained theorem 1 in the case of an algebra with unit.
However, if A has no unit element, it may be imbedded as a subspace
of codimension 1 in an algebra A4, with unit element. Since the spectra
of elements in A and in A, are the same and since any multiplicative
linear functional defined on 4 may be uniquely extented to such a func-
tional on A, by setting f(e) =1 (and the same for any subalgebra
A, = A), this implies that proposition 1 implies theorem 1.

COROLLARY. If C(X)eES, and if M(A) = X, then AcES.

Such a situation as above holds if X is a one-point compactification
of a discrete space (or, more generally,‘)a, scattered space; cf. [1]). So apply-
ing the corollary to group algebras for compact groups we obtain

THEOREM 2. If @ is a compact abelian group, then L,(@) with convoiu-
tion multiplication is a member of ES.

Or equivalently

THEOREM 2'. If G is an abelian compact group and if A is a subalgebra
of the group algebra L,(G), then any multiplicative linear functional f defined
on A is of the form

f@) = [a(yt)at,
where yx(t) is a continuous character on G (which must not be determined

uniquely by the functional f), and the integral is taken with respect to the
Haar measure over the whole of G.
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Suggested by the corollary and the results in [1], the author sapposed
that it is possible to obtain some stronger results than in Theorem 1,
namely that

1° A commutative Banach algebra belongs to the class ES if and
only if the spectrum of every its element is at most denumerable.

2° The fact that a Banach algebra A belongs to the class ES depends
only upon its maximal ideal space, and A4 ¢ES if and only if every contin-
uous function (zero at infinity in the case of an algebra without unit)
has at most denumerable range (i.e. if and only if the maximal ideal
space of A (if A has a unit element) or one point compactification of this
space (if A has no unit) is a scattered space; cf. [1] and [5]).

These conjectures, however, are disproved by J.-P. Kahane, who
in a letter to the author proposed the following counterexample: Let A,
be the Banach algebra of all functions defined on the Cantor set E, which
satisty the Lipschitz condition with exponent a. Since for every weA,
we have dimz(F)< (e—1)dimE (Hausdorff dimension), this implies
that 4,¢ES. On the other hand, if #(f) = ¢, then zed,, and o(x) = x(E)
is non-denumerable, what disproves 1°, and F is not a scattered space,
what disproves 2° (F is clearly the maximal ideal space for A,).

Theorem 1, as well as the corollary, remains true if we replace the class
of Banach algebras by more general class of locally bounded algebras (cf. [6]).

Added in proof. In paper [7] we have extended the concept of
an ES-algebra onto non-commutative Banach algebras and in [8] we
have generalized the results of this paper and paper [7] onto multi-
plicatively convex B,-algebras.
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