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From triangular matrices to separated inductive limits
by
ALBERT WILANSKY (Lehigh)

Professor Mazur’s prize-winning 1929 article, [6], contains some
of the earliest and most successful applications of three fundamental
tools of functional analysis, the closed graph and Hahn-Banach theorems
and the principle of uniform boundedness. Subsequent developments
in summability. due to Mazur and Orlicz provided much of the impetus
towards extending the Banach space theory to cover Fréchet spaces.
In this article we shall show a thread of development which has its origin
in the 1929 Mazur article. We shall also point out how the use of inductive
limits simplifies, unifies, and generalizes some of the theory of interpolated
and embedded spaces and of lattices of topologies found in articles by
Steiner [11], [12], Schiffer [10], and Aronszajn and Gagliardo [1]. Also
we recall the known fact that infima and quotients of linear topologies
are special cases of inductive limits, which we shall use to set up their
metrizability conditions. (Remarks 1, 2 following Theorem 17.)

If A is a triangle (a summation matrix with a,; — 0 when % > n;
@ 7 0) the convergence domain ¢4 of A (set of sequences mapped by A
into ¢, the convergent sequences) is made into a Banach space by the
fact that A:cy — ¢ is an isomorphism onto. But the crucial fact about
¢4, for Mazur’s purpose, was this: if B is a stronger matrix (cg > ¢y ),
then limp is a continuous function on ¢, (limpr — l%'mkz bux@x.) To prove

this, it is sufficient to show that each a is continnous in z on ¢4, for a
standard argument about the pointwise limit of a sequence of continuous
functions yields the continuity of limp; see [14], Section 7.6, Theorem 3.
The continuity of each  follows by the way that c4 is topologized;
namely, for zecy, ||zl = |lyll. = sup |ya| where y — Awec. With Z = A~!,

we have
@] = Izzktyi' < (2|zkt|)'||i‘l||-

The logical next step in this development, taken independently by
Mazur-Orlicz [6], (these results were announced more than 20 years
earlier!), and by Zeller [17], was to extend these ideas to non-triangular
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matrices by attempting to give ¢4 a topology making each x; continuous
in @, i.c. making coordinates continuous; and also such that the applica-
tions of functional analysis could be made, for example, to deduce the
continuity of limp as above. Their outstanding achievement was to do
this for an arbitrary matrix! An FK-space is a Fréchet space of sequences
such that coordinates ave continuous; every ¢4 can be made into an
FK-space. See [14], Section 12.4, Theorem 2.

A third refinement of these ideas was given by Wilansky-Zeller
in 1959, [16]. Let X be a sequence space; thus X < s, where s is the
space of all sequences with its natural topology ([14], Section 4.1, Example
5). A topology for X makes coordinates continuous if and only if it is
larger (stronger, finer) than the relative topology of ¢; this is true because
s has the smallest topology which makes coordinates continuous. Thus,
an FK-space is a linear subspace of s endowed with a Fréchet topology
larger than that of s; in other words, it is a Fréchet space which is contin-
wously embedded in s, in the sense that the inclusion map 1:X — s, given
by i(x) = «, is continuous. The role of s in the theory of FK-spaces is
two-fold. First, it gives a convenient way of specifying continuity of
coordinates, as just mentioned. Secondly, it is a Hausdorff space, and
so makes applications of the closed graph theorem possible (see the proof
of Theorem 1, below, for details). The refinement consists of replacing
s by an arbitrary Hausdorff space H. For convenience we shall take H
to be a linear space with a Hausderff topology; no assumption is made
concerning continuity of the linear operations. An FH-space is a Fréchet
space which is a linear subspace of H and is continuously embedded in
H. Thus an FK-space is an FH-space with H = s. The following well-
known theorem illustrates the theory of FH-spaces.

TaEoREM 1. Let H be given and let X, Y be FH-spaces with X < Y.
Then the topology of X is larger than that of Y. In particular, we have the
Uniqueness Theorem: A linear subspace of H has at most one FH-topology.

Proof. The inclusion map ¢:X — Y is H-continuous, hence has
closed graph since the H-topology is Hausdorff. Thus ¢ has closed graph
when X, Y have their own topologies since these topologies are larger
than that of H (have more closed sets). By the closed graph theorem,
4 is continuous.

Just as the Mazur-Orlicz-Zeller replacement of Banach space by
Fréchet space in the treatment of c4 extended the theory to cover all
matrices, not just triangles; so the extension to FH-spaces allows non-
matrix investigations, such, for example, as Abel summability, and
integral transforms of function spaces. We shall not pursue these appli-
cations, but refer to [10], [3], [1], and [14], Sections 11.3 and 12.4. This
small sample will suffice to indicate that the concept of continuously
embedded space arises in many diverse branches of mathematics.
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The .following terminology will be useful: H is some (fixed) linear
space which also has a Hausdorff topology (no a priori assumptions are
made abou‘t continuity of the linear operations); an FH-space is a Fréchet
space contlx}uously embedded in H, a BH-space is a normed FH-space
a PH-space is a linear metric space (not necessarily complete) continuously’
9mbedded in H (called a paranormed space in [14]) and an NH-space
is a norr'ned space continuously embedded in H. A trivial example would
be one in which H has finite or countably infinite dimension; ever
FH-spa.ce would then be finite dimensional. ’ Y

It 13 possible that an NH-space may have no BH-completion ; indeed
.(to. a.vmd trivialities) an example can be given when H is an a;bitrary
m:flmte-dimensiona,l Banach space: merely let X be the same as H but
with a larger non-complete norm. More generally:

. TuroREM 2. Let H be a Fréchet space and X any infinite-dimensional
linear subspace. Then X can be given a PH-topology with no FH-completion.
Let p be the paranorm of H, (p(z) is the distance from & to 0) and
let f be a discontinuous linear functional on X. Let q(x) = p(x)+|f(z)]
Th.en g = p so that (X, ¢) is a PH-space. Since f is not continuous ther(;
exists a sequence {z,} in X with f(z,) =1, p(z,) — 0. Then {z, }’ is a
q-Cauchy sequence; if (X, ¢) had an FH-completion Y we WOqu have
Ty >y In Y, hence z, -y in H. But 2, -0 in H hence y = 0. This
contradicts ¢(x,) — 1. .
Good discussions of the completions of NH and BH- § )
found in [10], Section 2.2; [1] Section 3, [15], Section 5.38.1)%6‘; fio o
Thejre are some spaces which cannot be given certain FH-topologies.
Afn ol?wous example is a space of countably infinite dimension which
since it must be of first category in itself, cannot be completely metrized’
Some less obvious examples will follow from the next result. .
T}IE(')REM 3. Ler X, Y be complementary linear subspaces of an FH -space
ff. ;’hen if X, Y can be given FH-topologies, they must be closed subspaces
I'Jet P, ¢ be the paranorms which can be placed on X, Y. Then Z = X +
+Y is an FH-space with p+¢. By Theorem 1, this must be its original
topology.
. ExAmpLE 4. In ¢, the subspace ¢ has an algcbraic complement S.
Th',ls space S cannot be made into an FK-space, since, by Theorem 3
this would force ¥ to be a closed subspace of ¢,. : ,

_ ExAMpPLE 5. In m, the subspace ¢ has an algebraic complement S.
Tl%ls space § cannot be made into an FK-space, since, by Theorem 3,
this would force S to be a closed subspace of m, and thus there would

be a .continuous projection of m onto ¢. This contradicts a result of R. S
Phillips (see [13]). '
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The problem arises whether a collection (X,) of given linear metric
spaces may, by suitable definition of H, be made into PH or FH -spaces.
These may be partially overlapping spaces, the assumpt-lf)n being that
where they overlap, the linear operations agree. To fix the ideas, we shall
suppose all spaces are linear subspaces of a fixed linear space E _(there
is actually no loss of generality in this assumption, as exp}alned in [1],
Section 1, and [15], Section 2.6, Remark). Let H be the linear span of
uX,. There is an obvious candidate topology for H which will make
each X, continuously embedded in H; this is the inductive limit topology.
We shall give a brief sketch of two forms of inductive limit;2 and then
return to the question of whether we have succeeded in m.alqng the X,
PH-spaces, the answer being yes precisely if the inductive limit topology
for H is separated (Hausdorff). .

Let (X,) be a family of linear topological spaces, K a linear space,
and, for each a,u*:X, > E a linear map. Let H be the linear span of
U w*(X,). Then Tj, the inductive limit topology is the least upper bounda
of all locally convex topologies for H, each of which makejs every u
continuous, and T, the unresiricted inductive limit topology is the leagt
upper bound of all linear topologies each of which makes every u” conti-
nuous. Discussions of T; may be found in several texts, for example [2],
Section 6.3; [9], Chapter 5; a discussion of T, appears in [15], Chapter 2.
For a finite number of locally convex spaces, T, is locally convex, 1'1ence
T, = T;. A special case is the direct sum Y X,. By definition, ZX,,. is the
set of those points in I X, with only finitely many non-zero coordl.na,tes,
D;, D, are the inductive and unrestricted inductive limit topologies on
D X, for the spaces X, and the injection maps X5 2?(,, ff)r the spaces
X, and the injection maps j°: X; —~ 3 X, (§” (xp) is a point in the dlr.ect
sum with exactly one non-zero coordinate, the f-th coordinate being
xg). We shall use the letter # to denote a member of ZXa and for each
B, xp is the B-th coordinate of x. .

THEOREM 6. Let h: ) X,—~ H be defined by h(x) = Y u"(xs). Then
T; is the quotient topology of D; by h. If there are only finitely many Xa, Ty
i8 the quotient topology of D, by h.

The first half is standard; see [9], p. 94, Proposition 28. Next ?ssume
finitely many spaces X,, X,, ..., X,. Since H is spanneq by U (X?-), h
is onto. Also h is continuous since it is a finite sum of continuous functions
(each u’(wp) =u’oxn’(x), where #’ is the projection of Z.Xi =IIX; onto
X;). Finally, h is open, for let V = D' [Vi] be a basic nelghborhoo.d of 0
in Y X; = I1X;, where each V; is a balanced neighborhqod of 0 in X;.
Then h[V]= Y u'(a'[V])= Y u'[W:], say; each W, being a balanced
neighborhood of 0 in X;. It remains to show that the latter set is a neigh-
borhood of 0 in H. Let T be the linear topology for H generated by all
sets of the form Z‘u"[Wi], each W; being a balanced neighborhood. of 0
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in X;. (That T exists is easy to prove, using, for example, [14], Section
10.1, Theorem 3.) Each «*:X; — (H, T) is continuous since (u)~! 2-1¢i[Wi]
> W, and so, by definition of D,, we have D, > T.

THEOREM 7. The inductive limit topology of a family (X.) of locally
convex spaces is separated (Hausdorff) if and only if h* is a closed subspace
of 3 Xa, where h is defined in Theorem 6. The same result is true for the
unrestricted inductive limit of finitely many spaces without the assumption
of local convexity.

This is immediate from Theorem 6.

We can now solve the problem of making a collection of spaces into
PH-spaces.

THEOREM 8. Let {X,} be a family of locally convex linear metric spaces,
each of which is a linear subspace of a linear space E. Then a space H may
be defined making each X, a PH-space if and only if {w: ', = 0} is a closed
subspace of 3 X,. If the family is finite, we may drop the assumption of
local convexity and express the condition as: {v:4, 4w, +...+ a2, = 0}

n

is a closed subspace of [| X;.
i=1

This is immediate from Theorem 7, taking the maps «* to be inclusion.
The next 3 examples and 3 theorems deal with the intersection of
topologies as a special case of inductive limit.

ExXAMPLE 9. Let X be a linear space and let (8,) be a family of linear
topologies for X. Let H = X and let each u* be the identity map from X
to itself. Then the inductive limit topology T; is the least upper bound
of all locally convex topologies smaller than each 8,; in other words,
T; is the locally convex infimum of the S,. Similarly, 7T, is the linear
infimum of the §,. Theorem 7 yields a criterion for the separation of
these topologies.

ExAMPLE 10. Let X be a linear space and let §;, S, be linear topolo-
gies for X. Let 8,A8, denote the linear infimum (see Example 11). Then
Example 9 and Theorem 7 yield the following result: 8,AS, is separated
of and only if {(w,, 2,): 2,4+ 2, = 0} is a closed subset of (X, 8, ® (X, 8,).
This in turn leads immediately to the result: S,AS, is separated if and
only if the identity map from (X, 8,) to (X, 8,) has closed graph. This result
leads us to the insight that the concept of closed graph should be consi-
dered with respect to the direct sum rather than the product when it
is desired to extend the notion to more than two spaces; Theorem 7 is
the natural generalization of the result of Example 10. Another proof
of the result of this example can be based, for locally convex spaces, on
a Lemma of V. Ptak, namely [7], Theorem 3.7 (this is also Section 1.1,
Theorem 1.5 of [15]), for this implies the existence on X of a total family
F of linear functionals which are both 8,- and §,-continuous. The weak
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topology by F is separated and is smaller than both 8, and §,. It should
also be noted that the condition stated in this example is equivalent to
the requirement, when §;, §, are metrizable, that (X, §,), (X, S,) can
be made into PH-spaces as in Theorem 8.

ExaMpLE 11. It is possible that S;A8; # 8; ~ S,, in other words,
that the infimum of two linear topologies not be linear. Phrased in another
way, this says that the lattice of linear topologies is not a sublattice of
the lattice of all topologies. Let p, ¢ be non-comparable complete norms
for a linear space X ([14], Section 7.5, Example 6). Then p ~ ¢ is a T)-
topology, being the intersection of two T';-topologies; but is not Hausdorff,
for, as in Theorem 1, this would imply that the identity map has closed
graph, hence is continuous. Thus p ~ ¢ is not a linear topology since it
is T, but not Hausdorff. The lattice of linear topologies is discussed in
[11], [12], where it is also proved constructively that p ~ ¢ is not linear
if p, ¢ are any non-comparable norms. Our example also shows two group
topologies for a commutative group whose infimum is not a group topology;
this is so since addition eannot be continuous in S; ~ 8,3, a T'-topological
group being always Hausdorff. It is easy to check that the linear operations
are separately continuous.

THEOREM 12. Let Sy, S, be linear topologies for a linear space X. The
following conditions are equivalent:

(i) The identity map from (X, 8;) to (X, S,) has closed graph,

(i) S;A8, is separated,

(iii) 8; ~ 8, is Hausdorff.

That (i) implies (ii) is given in Example 10. The rest is trivial.

Condition (iii) of Theorem 12 always implies (i); however, there
exist examples of a set X, with topologies 8;, S., satisfying (i) but not
(iii). If 8,, 8, are first countable, then again (i) and (iii) are equivalent
([8], Theorem 6).

THEOREM 13. Let 8,, 8, be linear topologies for a linear space X. Then
8, ~ 8, is linear if and only if for every Sy ~ 8, neighborhood U of 0, there
exist Sy, S, neighborhoods of 0, V, W respectively, with V4+W < U.

It is easy to check [14], Section 10.1, Theorem 1, using the fact that
if V, W are S;, 8, open, respectively, then VW is both 8, and S, open,
hence is 8; ~ S, open (since V+W = o {V+w:weW}, a union of trans-
lates of S; open sets).

THEOREM 14. Let Sy, 8, be locally convex linear topologies for a linear
space X. Then Sy ~ 8, i linear if and only if it i8 locally convex.

If 8, ~ 8, is linear it is an unrestricted inductive limit — as mentioned
above, for finitely many spaces this is the same as the inductive limit,
hence locally convex.
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Conversely, if S; ~ S, has a local base at 0 of convex neighborhoods,
the criterion of Theorem 13 applies, for if U is a convex 8; ~ 8, neighbor-
hood of 0, we may take V.= W = }U.

We return briefly to the question of when an inductive limit is
separated. Clearly, if ¥ has a separated linear topology 7' such that every
u*: X,— (H,T) is continuous, it follows that 7', is separated, indeed T, > T'.
It is a little less obvious that it is sufficient that 7' merely make addition
continuous, as well as each %%, to imply that T,, > T, hence, if T'is Hausdorff,
that T, is separated. This is true because the map kb given in Theorem 6
is continuous as a map to (#,T), and T, is the quotient topology by h.
We now attempt to relax the conditions on 7.

THEOREM 15. Let X, Y be linear topological spaces, E a linear space,
and w:X — H,v:Y — B, linear maps. Suppose that E has a Hausdorff
topology T making w, v continuous. Then T, is separated.

Applying Theorem 7 we shall show that ' is closed in X X Y, where
h(z,y) = u(x)+v(y). Let (w5,ys) be a net in h' converging to (z, y).
Then —y; - —y, hence u(xs) = —v(Ys) = v(—¥) > v(—y) = —0(y),
also u(x,) — w(x). Hence u(x) = —ov(y) and so (x,y)eht.

Theorem 15 is false for 3 spaces as the next example shows.

ExAMPLE 16. Let L be a linear space and 8,, S, separated linear
topologies for L such that 8; ~ 8, is not Hausdorff (see Example 11).
LetX =Y = (L, 8,),Z = (L, 8y), E = Lx L, u(z) = (w, 0),v(y) = (0, 9),
w(z) = (2,2). Let T be the topology for E which on Lx {0} and {0} x L
makes w%,v homeomorphisms, on the diagonal D = {(¢, t):teL}, makes
w a homeomorphism, and is discrete elsewhere. Then T is Hausdorff and
u, v, w are continuous maps to (E, T'). We next note that w: X — (E, 1,)
is continuous, for if #, is a net converging to 0 in X, then x, -0 in ¥
(since X = Y) and so w(xs) = u(ws)+v(xs) -0 in T,. Now if T, were
separated, w~'[T,] would also be separated, since w is one-to-one. But
this is impossible since this latter topology is smaller than both S;
and S.,.

A slightly different assumption will extend Theorem 15 to 3 spaces.

THEOREM 17. Let X, Y,Z be linear topological spaces, E a linear
space, and w,v,w linear maps from X,Y,Z to H, respectively. Suppose
that E has a topology T such that addition is an operation with closed graph,
and w,v,w are continuous. Then T, is separated.

We apply the criterion of Theorem 7. Let (@5, ¥s, 25) be a net in At
converging to (z, ¥, 2). Then u(x)+v(ys) = —w(2) = w(—25) > w(—27)
= —w(2), also [u(as), v(ys)] = [%(z), v(y)] hence —w(2) = u(x)-+v(y)
and so (x,y,2)eht.

Notice that there was no need to assume that 7' is separated, indeed
we cannot conclude that 7, o T, as the next example shows.
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ExAmpLE 18. Let F be the plane, and let 7' be the topology for F
which is the Euclidean topology on the X and Y axes and is discrete
elsewhere. Then addition is an operation with closed graph; one way to
see this easily is that K has a smaller Hausdorff topology (the Fuclidean
topology) making addition continuous (Compare [14], Section 11.1,
Lemma 1). Now if we let X and Y be the axes, and u, v the inclusion
maps, we see that 7, is the Euclidean topology, which is separated,
as predicted by Theorem 17, but is not larger than 7.

THEOREM 19. The unrestricted inductive limit T, of a finite number
of paranormed spaces {(X;, p;):i =1,2,...,n} is paranormed. If each
pi 8 locally convex or a seminorm, so also is Ty, and T, = T;. If each p;
18 complete so is T,,.

Recall the maps «': X; — F and the definition of H given just before
Theorem 6, above. For heH, define

n n
q(h) = inf{Zpi(wi):wiin for i =1,2,...n; h = Zui(wi)}.
in im1
We now show that the formula d(k, k) = ¢q(h— k) yields a semimetric
d which induces T,,. Clearly ¢(0) = 0, ¢q(h) >0, g(—h) = ¢(h). To prove
the triangle inequality, let h, keH,e>0. Choose x;,y;eX; with h =
= (@), Ip' @) < a4,k = Yu'(y), 39 () < q(k)+e. Then

qh+k) < Y pilai+y)< D pola)+ D pily) < g(h)+q(k)+2e.

This completes the proof that d is a semimetric for H; by its form
d is invariant under translation hence provides H with a topology making
addition continuous. Furthermore, each w‘:X; - (H,q) is continuous
since for any x;eX;,

wt (@) = w! (0) 4 ...+ w1 (0) + o' (@) +u' 1 (0) 4 ... +u"(0),

so that ¢[u’(x;)] < pi(x;). Now we shall see that ¢ = T, (i.e. that T,
is the topology induced by ¢q via the semimetric d). First let V be a g-neigh-
borhood of 0. Since f makes addition continuous, there is a balanced
¢-neighborhood W of 0 with W+W+4...4+W < V (there are »n terms
in the sum). Since each «* is g-continuous, («')"*[W1] is a balanced neigh-
borhood of 0 in X; for each <. Now V o Zfzf{(1¢i)‘1[W]} and, exactly
as in the proof of Theorem 6, the latter set is seen to be a T',-neighborhood
of 0. This proves that T, is larger than q. Conversely, it suffices to consider
sequences since (H, q) is first countable. Let ¢(%’) — 0. For each j and
each ¢ = 1,2, ..., n choose o with ' = Yu'(2}) and Y'p; () < q(W)+1/j.
Then af —> 0 in X; for each 4, and so ¥ — 0 in (H, T,) since each s
T,-continuous. Thus ¢ is larger than 7). It follows that ¢ is a paranorm,
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the only missing property being continuity of multiplication; but this
follows from ¢ = T', and the fact that T, is a linear topology.

If each p; is locally convex, T, = T; as mentioned earlier. If
each p; is a seminorm, it is clear that for scalar ¢, heH we have
q(th) = |t|q(h) so that ¢ is a seminorm. Finally, assume that each p; is
complete, and let {#’} be a Cauchy sequence in H. We may assume that
Z’q(laj—lbf_l) < oo, =0. For each j and ¢=1,2,...,n choose
dleX; with 3 o' (2}) =h —H1,

. . . 1
D pilad) < g =W+ .

For each i, let y; = Y }. Then
i=1

j n n
W= 3 Mui(ah) > D iy
r=1 i=1 =1

REMARKS. 1. A quotient is a special case of the inductive limit in
which there is one space and one map. Theorem 19 gives the usual metri-
zation and completeness theorems. This shows also that without metric
assumptions the completeness part of Theorem 19 is false, even for n =1,
since G. Kothe has given an example of a complete space with an incom-
plete quotient (see [4], p. 195 # D, and, for a very elegant example,
[7], p. 44).

2. Example 9 and Theorem 19 also give metrization and completeness
theorems for the infimum of finitely many linear topologies on a linear
space.

3. A more complicated proof of Theorem 19 was given in [15],
Section 2.7. There continuity of multiplication for ¢ was proved in detail.
Here we managed to prove ¢ = T, using only continuity of addition.

4. Theorem 19 generalizes [12], Theorem 2, which states that if
8, 8, are normed, S, A 8, is normed if and only if it is separated. Indeed,
Theorem 19 implies that §;A S, is always seminormed.

5. Theorem 5.12 (b), p. 67 of [1] can be taken as a special case of
an inductive limit. The interested reader will notice that its proof inspired
our proof of completeness in Theorem 19.

We now specialize Theorem 19 to obtain a known result. Let H be
a linear space with a topology 7' making addition continuous, and suppose
that X, X,,..., X, are FH-spaces. There is no loss of generality in
assuming that H = X, +X,+...+ X,. Apply Theorem 19 taking each
' to be the inclusion map. This gives X, + X,+ ...+ X, a Fréchet topology
F; we shall now prove that F is larger than 7'. The map h defined in Theorem
6 takes the form h(x,, s, ...,x,) = Y ;. Thus h: [[X; —~(H,T) is



478 A. Wilansky

continuous. But Theorem 6 says that F is the quotient topology by &,
hence ' > T'. Thus we have:

THEOREM 20. Let H be a linear space with a topology making addition
continuous. Let X,, X,,..., X, be PH (NH, FH or BH) spaces. Then
X, +Xo+...+ X, can be made into a« PH (NH, FH or BH) space by the

formula
g() = int{ Y'pi(@):e = Y,
where p; 18 the paranorm of X;.

ExampLE 21. The most interesting special case is that of two FK-
spaces X, Y; then X+7Y is an FK-space with the paranorm

r(z) =inf {p(@)+q(y):veX,yeX,2 =2+y},

P, q being the paranorms of X, Y. In case p, ¢ are seminorms, r is the
gauge of the sum of the two unit spheres.

Example 21 shows that, for each H, the collection of FH-spaces
is a lattice; X v ¥ is X+ Y with the topology T,; X A Yis XA Y
with the sum of the paranorms of X, Y (see [14], Section 11.3,
Theorem 3).

EXAMPLE 22. Two non-equivalent norms for a linear space which agree
on two complementary closed linear subspaces. Let B be a Banach space
and X, Y disjoint closed linear subspaces such that X+ Y is not closed.
Let H=X+4Y. Then X, Y are complementary subspaces of H. The
norm n which H inherits from B, and the norm » given in Example 16
(in which p =n/X,q =n/Y,) are the two required norms. They are
not equivalent since » is complete and » is not; they both coincide with
n on X, Y; and X, Y are closed because complete.

We conclude this article with some remarks on the restriction of
the topology T of H so that there shall be a meaningful FH-theory.
Note first that Theorem 1 holds with the only restriction on 7' being
that it is Hausdorff, as does the result that if X, ¥ are FH-spaces,
X ~ Y is an FH-space with the sum of the paranorms of X, Y. The
Hausdorff separation of 7T is used crucially in the proof that X ~ Y
is complete (see [14], Section 11.3, Theorem 3). To see that it eannot
be omitted note that in Example 11, p+¢ cannot be complete, since,
if it were, the closed graph theorem would make it equivalent to both
p and q.

On the other hand, Theorem 20 does not require 7' to be Hausdorff,
but instead includes a condition linking 7' to the linear operations. This
condition cannot be omitted as is shown by Example 18, in which X+ Y

has no FH-topology, its only possible topology being not larger than
that of H.
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