References

- [1] K. O. Friedrichs, Perturbation of spectra in Hilbert space, Lectures in Applied Mathematics, Amer. Math. Soc. 1965.
- [2] P. R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity, Chelsea 1951.
 - [3] T. Kato, Perturbation theory for linear operators, 1966.
- [4] Wave operators and similarity for some non-selfadjoint operators, Math. Ann. 162 (1966), p. 258-279.
- [5] C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Ergebn. der Math. 36 (1967).
 - [6] F. Riesz and B. Sz.-Nagy, Functional analysis, 1955.
- [7] M. H. Stone, Linear transformations in Hilbert space and their applications to analysis, Amer. Math. Soc. Coll. Publ. 15 (1932).
 - [8] K. Yosida, Functional analysis, 1965.

Reçu par la Rédaction le 11. 1. 1968

Metrics on an arc

by

M. KATĚTOV (Prague)

Consider the following two questions:

- (A) Does there exist a "smallest" continuous metric on a given arc A, i.e. a metric ϱ such that, for any continuous metric σ on A, there exist a homeomorphism $\varphi:A\to A$ and a number $\alpha>0$ such that $a\delta\langle\varphi x,\varphi y\rangle$ $\geq \varrho\langle x,y\rangle$ for every $x,y\in A$? If not, does there exist a "minimal" metric with respect to the order just described?
- (B) If ϱ is a continuous metric on an arc A, does there exist a normed linear space E and a distance-preserving mapping $f: \langle A, \varrho \rangle \to E$ such that the arc f[A] admits of a "coordinatization"? (We say that an arc $B \subset E$ admits of a "coordinatization" if there are a point $a \in E$ and a continuous mapping f of [0, 1] into a closed hyperplane $L \subset E$, $a \notin L$, such that B consists of all ta+ft, $0 \leq t \leq 1$.)

Both questions seem to be rather elementary. However, I have not found any answer in the literature. So the present note appears though the results may be already known.

In § 1 some definitions and lemmas are given; § 2 contains some auxiliary concepts and propositions. In § 3 the main results are stated and proved.

1.

- 1.1. The terminology and notation of [1] is used. Since it does not differ substantially from current terms and symbols, only two points of difference should be mentioned: an ordered pair a, b is denoted by $\langle a, b \rangle$; the value of a mapping f at an element x is usually denoted simply by fx. As usual we often denote, e.g., a space and the set of its points by the same symbol. The letters \mathcal{N} and \mathcal{R} respectively stand for the set of all natural numbers $0, 1, 2, \ldots$ and the set of all reals.
- 1.2. Definition. If X is a set, we denote by M(X) the set of all bounded pseudometrics on Y. If X is a topological (or uniform) space, we denote by $M_t(X)$ (or $M_u(X)$) the set of all continuous (or uniformly continuous) bounded pseudometrics on X.

Metrics on an arc

1.3. Definition. Let X be a set. If $\sigma \in M(X)$, $\sigma \in M(X)$, we put

$$d\langle\varrho,\sigma\rangle=\sup\{|\varrho\langle x,y\rangle-\sigma\langle x,y\rangle|\}.$$

Clearly, d is a metric on M(X), and $\langle M(X), d \rangle$ is a complete metric space.

- **1.4.** If X is a topological (or uniform) space, then $M_t(X)$ or $M_u(X)$ is closed in M(X).
- **1.5.** Convention. Every subset of M(X) will be considered as a metric space (with the metric described in 1.3). If $H \subset M(X)$, $\overline{H} H$ is meager in \overline{H} , and \mathbf{P} is a property of elements ϱ of H, then "almost every $\varrho \in H$ possesses the property \mathbf{P} " means that the set of all those $\varrho \in H$ which do not possess the property \mathbf{P} is meager in H.
- **1.6.** Proposition. Let X be a metrizable uniform space. Then almost every uniformly continuous bounded pseudometric on X is a metric on X inducing its given uniformity.

Proof. By M^* we denote the set of all bounded metrics inducing the uniformity of X. It is easy to see that M^* is dense in $M_u(X)$. Choose a metric τ inducing the uniformity of X. For $n=1,2,\ldots$ denote by H_n the set of all uniformly continuous bounded pseudometrics ϱ on X such that, for some $\varepsilon>0$ depending on ϱ , $\varrho\langle x,y\rangle<\varepsilon$ implies $\tau\langle x,y\rangle< n^{-1}$. It is easy to show that H_n are open in $M_u(X)$ and $\bigcap H_n=M^*$.

COROLLARY. Let X be a compact metrizable space. Then almost every continuous pseudometric on X is a metric inducing the topology of X.

1.7. Proposition. Let X be a separable metrizable topological space. Then almost every bounded continuous pseudometric on X is a metric inducing the given topology of X.

Proof. Denote by M^* the set of all bounded metrics inducing the topology of X. Let $\{G_n\}$ be a countable open base of X; let B consist of all $\langle G_m, G_n \rangle$, $\bar{G}_m \subset G_n$. If $b \in B$, $n = \langle G_m, G_n \rangle$, let T_b consist of all $\varrho \in M_t(X)$ such that $\inf\{\varrho \langle x, y \rangle | x \in G_m, y \in X - G_n\} > 0$. Clearly, each set T_b is dense and open. It is not difficult to show that $M^* \supset \bigcap T_b$

Remark. It is easy to see that $M^* \neq \bigcap T_b$ in general.

2.

2.1. Conventions. A topological space homeomorphic to a compact non-degenerate interval of reals will be called an arc. If A is an arc, then every non-void connected $T \subset A$ will be termed an interval of A; sometimes, symbols [a, b], etc., will be used to denote intervals of an arc. We shall say that two intervals T_1 and T_2 of an arc A overlap if $T_1 \cap T_2$ contains more than one point.

If A is an arc, $T \subset A$ is an interval with endpoints a, b, and ϱ is a pseudometric on A, we put $\varrho T = \varrho \langle a, b \rangle$. The set $\mathscr R$ and all of its subsets are considered (unless the contrary is stated or implied by the context) as spaces with the usual metric, say μ , defined by $\mu \langle x, y \rangle = |x-y|$; instead of μT we write |T|.

Clearly, every continuous metric on an arc A induces the given topology of A. If A is an arc and ϱ is a continuous metric on A, we shall say that $\langle A, \varrho \rangle$ is a *metric arc*.

2.2. Definition. If τ is a continuous pseudometric on an arc A and $T \subset A$ is an interval, then the least upper bound of numbers $\Sigma\{\tau T_i\}$ where $\{T_i\}$ is a finite family of non-overlapping intervals, $\bigcup T_i = T$, will be called the τ -length of T.

Clearly, if the τ -length of T is equal to a number $a < \infty$, then for any $\varepsilon > 0$ there exists a number $\delta > 0$ such that for any non-overlapping intervals T_i with $\bigcup T_i = T$, $\tau T_i < \delta$, we have $\Sigma \tau T_i > a - \varepsilon$.

- **2.3.** Definition. Let ϱ be a continuous pseudometric on an arc A. If $x \in A$, $y \in A$, then
- (1) $\varrho'\langle x,y\rangle$ will denote the greatest lower bound of numbers $\Sigma\{\varrho V_i\}$ where $\{V_i\}$ is a finite family of intervals, $\bigcup V_i = [x,y]$;
- (2) $\varrho''\langle x,y\rangle$ will denote the greatest lower bound of numbers $\Sigma\{\varrho V_i\}$, where $\{V_i\}$ is a finite family of intervals of $A, \bigcup V_i \supset [x,y]$.
- **2.4.** For any continuous pseudometric ϱ on an arc A, ϱ' and ϱ'' are continuous pseudometrics, $\varrho \geqslant \varrho' \geqslant \varrho''$. We have $\varrho = \varrho''$ if and only if, for any intervals T_1, T_2 of $A, T_1 \subset T_2$ implies $\varrho T_1 \leqslant \varrho T_2$.

Remark. If ϱ is a metric, it may happen that ϱ' is a pseudometric and even $\varrho'\langle x,y\rangle=0$ for all $x\in A$, $y\in A$. See 2.5, Corollary, 2.10 and 2.13.

2.5. Proposition. Let $\langle A, \varrho \rangle$ be a metric arc. Then the ϱ' -length and the ϱ'' -length of every interval $T \subset A$ coincide.

Proof. Denote the ϱ'' -length of an interval T by m''T. We shall show that $m''T\geqslant \varrho'T$ for every non-degenerate closed interval T; from this, the assertion will follow at once. Let $\varepsilon>0$. Clearly, due to the continuity of the pseudometric ϱ' , there exists a closed interval $T^*\subset T$ strictly contained in T (i.e., with endpoints distinct from those of T) such that $\varrho'V>\varrho'T-\varepsilon$ for any interval V with $T^*\subset V\subset T$. Denote by γ the greatest lower bound of numbers $\varrho\langle x,y\rangle$, where $x\in T^*$, $y\in A-T$; clearly $\gamma>0$. Choose non-overlapping closed intervals $T_i, i=0,1,\ldots,n$, with $\bigcup T_i=T^*$ such that $\varrho T_i<\gamma, i=0,1,\ldots,n$. For each $i=0,1,\ldots,n$ choose a finite family $\{T_{ij}\}$ of intervals in such a way that $\bigcup T_{ij}\supset T_i, T_{ij}\cap T_i\neq\emptyset$,

$$\sum_i arrho T_{ij} < arrho^{\prime\prime} T_i + rac{1}{n+1} \, arepsilon , \qquad \sum_i arrho T_{ij} < \gamma \, .$$

(this is possible since $\varrho''T_i \leqslant \varrho T_i < \gamma$). Then all T_{ij} are contained in T. Clearly

$$\sum_{i,j} \varrho T_{ij} < \sum \varrho'' T_i + \varepsilon \leqslant m'' T + \varepsilon.$$

Put $V = \bigcup T_{ij}$. Then V is an interval, $T^* \subset V \subset T$. We have

$$arrho'V\leqslant\sum\left\{arrho T_{ij}
ight\}\leqslant\sum_{i,j}arrho T_{ij}< m''T+arepsilon.$$

Since $\varrho' T < \varrho' V + \varepsilon$, we obtain $\varrho' T < m'' T + 2\varepsilon$. Since $\varepsilon > 0$ is arbitrary, we get $\varrho' T \leqslant m'' T$.

COROLLARY. Let $\langle A, \varrho \rangle$ be a metric arc. For any interval $T \subset A$, the following four conditions are equivalent:

- (1) $\rho' T = 0$;
- (2) $\rho''T = 0$;
- (3) the ϱ' -length of T is equal to 0;
- (4) the ϱ'' -length of T is equal to 0.

This follows at once from the above proposition. E.g., if $\varrho''T=0$, then $\varrho''V=0$ for every interval $V\subset T$, hence the ϱ' -length, and therefore the ϱ'' -length of T is equal to 0.

2.6. LEMMA. Let ϱ be a continuous pseudometric on an arc A. Let $T \subset A$ be an interval. Then $\varrho'T + mT \geqslant 2\varrho T$, where mT is the ϱ -length of T.

Proof. Let $\varepsilon > 0$. Choose intervals $T_i \subset T$, i = 0, 1, ..., n, such that $\bigcup T_i = T$ and $\Sigma_{\ell} T_i < {\ell'} T + \varepsilon$. By an easy induction it can be shown that it is possible to select intervals $T_j^* = T_{i(j)}, \ j = 0, ..., m, \ m \leq n$, in such a way that, with $T_j^* = [a_j, b_j]$, we have $a_0 < a_1 \leq b_0 < a_2 \leq b_1 < a_3 \leq ... < a_n \leq b_{n-1} < b_n$, $\bigcup T_j^* = T$. Put

$$egin{aligned} b_{-1} &= a_0, & a_{n+1} &= b_n, \ a &= \sum \{ arrho \langle a_i, b_i
angle | i ext{ even} \}, \ eta &= \sum \{ arrho \langle a_i, b_i
angle | i ext{ odd} \}, \ a' &= \sum \{ arrho \langle b_i, a_{i+2}
angle | i ext{ even} \}, \ eta' &= \sum \{ arrho \langle b_i, a_{i+2}
angle | i ext{ odd} \}. \end{aligned}$$

Then it is easy to show that $\varrho'T\leqslant \alpha+\beta<\varrho'T+\varepsilon$, $\alpha+\alpha'\geqslant \varrho T$, $\beta+\beta'\geqslant \varrho T$, $\alpha'+\beta'\leqslant mT$. Hence $\varrho'T+mT\geqslant 2\varrho T$.

Remark. Simple examples show that $\varrho''T+mT\geqslant 2\varrho T$ does not hold in general.

2.7. Proposition. Let ϱ be a continuous pseudometric on an arc A. Let $T \subset A$ be an interval. If the ϱ -length of T is finite, then it is equal to its ϱ' -length.

This follows at once from 2.6.

2.8. LEMMA. Let A be an arc and let σ be a continuous pseudometric on A. Let φ be a monotone real-valued function defined for $x \geq 0$, continuous at 0, and such that $\varphi x \geq 0$, $\varphi 0 = 0$. Then for any interval $T \subset A$ and any $\varepsilon > 0$ there exists a continuous metric σ on A such that $d < \varrho, \sigma > < \varepsilon$ and for some intervals $T_i \subset T$ with $\bigcup T_i = T$ we have $\Sigma \varphi(\sigma T_i) < \varepsilon$.

Proof. We consider the case T=A only; the general case is quite similar. As it is well known, there exists an infinite-dimensional normed linear space E and a continuous mapping $f: A \to E$ such that $\varrho \langle x, y \rangle = |fx-fy|$. Now choose points $x_i \in A$, $i=0,1,\ldots,n$, in such a way that

(1) the intervals $T_i = [x_i, x_{i+1}]$ cover A and do not overlap;

(2) for any $x \in T_i$, $y \in T_i$, we have $\varrho \langle x, y \rangle < \frac{1}{8} \varepsilon$.

Find linearly independent points $b_i \in E$, $c_i \in E$, $|b_i| = 1$, $|c_i| = 1$, such that no element

$$\sum \lambda_i b_i + \sum \mu_i c_i \neq 0$$

is equal to a linear combination of the points fx_i . Choose a number $\delta > 0$ such that $2n\varphi\delta < \varepsilon$, $\delta < \frac{1}{8}\varepsilon$. Consider the linear segments $S_{i,0}, S_{i,1}, S_{i,2}$ joining the following pairs of points (with i = 0, 1, ..., n-1): fx_i and $fx_{i+1} + \delta b_i$, $fx_{i+1} + \delta b_i$ and $fx_i - \delta c_i$, $fx_i - \delta c_i$ and fx_{i+1} . Denote by B the union of these 3n segments. It is clear that B is an arc. Denote by τ the metric on B defined by $\tau \langle u, v \rangle = |u-v|$. Then

$$\sum_{i} ig(arphi au(S_{i,0} \cup S_{i,1}) + arphi au(S_{i,1} \cup S_{i,2}) ig) \leqslant 2n arphi \delta$$
 .

Clearly, the τ -diameter of $S_{i,0} \cup S_{i,1} \cup S_{i,2}$ is less than $\frac{1}{8}\varepsilon + 2\delta$. Now let g be a homeomorphism of A onto B such that $gx_i = fx_i$, i = 0, 1, ..., n; put $\varrho\langle x, y \rangle = \tau \langle gx, gy \rangle$, $S_{i,j}^* = g^{-1}[S_{i,j}]$. Then

$$\sum_{i} \left(\varphi \sigma(S_{i,0}^* \cup S_{i,1}^*) + \varphi \sigma(S_{i,1}^* \cup S_{i,2}^*) \right) \leqslant 2n \varphi \delta < \varepsilon.$$

It is easy to show that $d\langle \varrho, \sigma \rangle < \varepsilon$.

- **2.9.** Definition. If $\langle P, \varrho \rangle$, $\langle Q, \sigma \rangle$ are metric spaces, then a mapping $f: \langle P, \varrho \rangle \to \langle Q, \sigma \rangle$ is called *contracting* if $\sigma \langle fx, fy \rangle \leqslant \varrho \langle x, y \rangle$.
- **2.10.** THEOREM. Let $\langle B, \sigma \rangle$ be a metric arc. Let A be an arc. Then almost every continuous metric ϱ on A has the following property: if $f: \langle A, \varrho \rangle \rightarrow \langle B, \sigma \rangle$ is monotone and contracting, then f is constant.

Proof. By 1.5 and 1.7, the assertion is meaningful. Let $g: B \to [0, 1]$ be a homeomorphism. For any $\xi \ge 0$ let $\varphi \xi$ be equal to

$$\sup\{|gu-gv|\,\sigma\langle u\,,\,v\rangle\leqslant\xi\}.$$

Metrics on an arc

Clearly, φ has the properties stated in 2.8, and, in addition, is upper semi-continuous. For any $\varepsilon > 0$ denote by $H(\varepsilon)$ the set of continuous pseudometrics ϱ on A such that for appropriate intervals T_i with $\bigcup T_i = A$ we have $\Sigma \varphi(\varrho T_i) < \varepsilon$. Clearly, $H(\varepsilon)$ is open in $M_t(A)$ because φ is upper semi-continuous. By 2.8, $H(\varepsilon)$ is dense.

If $\varrho \, \epsilon H(\varepsilon)$ and $f: \langle A, \, \varrho \rangle \to \langle B, \, \sigma \rangle$ is monotone and contracting, choose intervals T_i with $\bigcup T_i = A$, $\Sigma \varphi(\varrho T_i) < \varepsilon$. Then $\sigma f[T_i] \leqslant \varrho T_i$, $\Sigma \varphi(\sigma f[T_i]) < \varepsilon$. Hence, $\Sigma |g \circ f[T_i]| < \varepsilon$ and therefore $|g \circ f[A]| < \varepsilon$.

Put

$$H=igcap_{n=1}^{\infty}\left\{ H(n^{-1})
ight\} .$$

Then H is a dense G_{δ} -set in $M_t(A)$. If $\sigma \in H$ and $f: \langle A, \varrho \rangle \to \langle B, \sigma \rangle$ is monotone and contracting, then $|g \circ f[A]| < n^{-1}$ for n = 1, 2, ... Hence $|g \circ f[A]| = 0$, which implies that f is constant.

- **2.11.** Proposition. Let $\langle A, \varrho \rangle$ be a metric arc. If $f: \langle A, \varrho \rangle \to \mathcal{R}$ is monotone contracting, then also $f: \langle A, \varrho'' \rangle \to \mathcal{R}$ is monotone contracting. The proof is easy and can be omitted.
- **2.12.** PROPOSITION. Let $\langle A, \varrho \rangle$ be a metric arc. Let the ϱ' -length of A be finite. Let a be an endpoint of A; for any $x \in A$ let gx be equal to the ϱ' -length of [a, x]. Then
- (1) if $f: \langle A, \varrho \rangle \to \mathcal{R}$ is monotone contracting, then $f = h \circ g$, where $h: \mathcal{R} \to \mathcal{R}$ is monotone contracting;
- (2) if (1) holds with a function $g^*: \langle A, \varrho \rangle \to \mathcal{R}$ instead of g, then there exists a contracting monotone mapping φ such that $g = \varphi \circ g^*$.

Proof. We put $ht = fg^{-1}t$. Then $|hu - hv| = |fg^{-1}u - gf^{-1}v|$, hence, by 2.11,

$$|hu-hv|\leqslant \varrho^{\prime\prime}\langle g^{-1}u,g^{-1}v\rangle;$$

clearly, $\varrho''\langle g^{-1}u,g^{-1}v\rangle$ does not exceed the ϱ'' -length of $[g^{-1}u,g^{-1}v]$, which is equal to |u-v|. This proves the first assertion. The proof of the second one is left to the reader.

Remark. The function g itself need not be contracting, not even Lipschitzian.

2.13. THEOREM. Let $\langle A, \varrho \rangle$ be a metric arc. The existence of a nonconstant monotone contracting function $f: \langle A, \varrho \rangle \to \mathcal{R}$ implies and is implied by the condition $\varrho' A > 0$. The existence of a contracting one-to-one function $f: \langle A, \varrho \rangle \to \mathcal{R}$ implies and is implied by the condition that $\varrho' T > 0$ (or $\varrho'' T > 0$) for every non-degenerate interval T of A.

Proof. We prove only the "implied by" part of the second assertion. Both conditions $(\varrho'T>0)$ and $\varrho''T>0$ are equivalent (see 2.5, Corollary). Suppose that $\varrho''T>0$ for every non-degenerate interval $T\subset A$.

Let $g: [0, 1] \to \mathcal{R}$ be a homeomorphism. Choose numbers $a_n, \beta_n, n \in \mathcal{N}$, so that $0 \leq a_n < \beta_n \leq 1$ and $]a_n, \beta_n[$ form an open base of A. Put a = g0, b = g1, $a_n = ga_n$, $b_n = g\beta_n$. Let $f_n x$ be equal to the ϱ'' -distance of x from $[a, a_n]$. Then f_n is monotone contracting, $f_n a_n = 0$, $f_n b_n = \varrho'' \langle a_n, b_n \rangle > 0$.

Now put $f = \sum 2^{-n} f_n$. Clearly, f is monotone contracting, $fb_n - fa_n > 0$. Since the intervals $[a_n, b_n]$ form a base, f is one-to-one.

3.

3.1. Definition. If $\langle A, \varrho \rangle$, $\langle B, \sigma \rangle$ are metric arcs, we put $\varrho \prec \sigma$ if there exists a homeomorphism g of A onto B and a number c > 0 such that $\varrho \langle x, y \rangle \leqslant c\sigma \langle gx, gy \rangle$ for every $x \in A$, $y \in A$. Clearly, the relation \prec is transitive and reflexive.

If $\varrho \prec \sigma$ and $\sigma \prec \varrho$, we put $\varrho \sim \sigma$ and call ϱ and σ , sometimes also $\langle A, \varrho \rangle$ and $\langle B, \sigma \rangle$, equivalent. We choose a fixed single-valued relation τ such that $\tau \varrho = \tau \sigma$ if and only if ϱ and σ are continuous metrics on arcs, $\varrho \sim \sigma$; the element $\tau \varrho$, where ϱ is a continuous metric on an arc A, will be called the *type of metric* ϱ or *of metric arc* $\langle A, \varrho \rangle$ and will be denoted by typ ϱ .

Remarks. 1. Clearly, if $\langle A, \varrho \rangle$ and $\langle B, \sigma \rangle$ are metric arcs and there exists an *L*-isomorphic (in the sense of [2], 1,7) mapping of $\langle A, \varrho \rangle$ onto $\langle B, \sigma \rangle$, then $\varrho \sim \sigma$; simple examples show that the converse does not hold.

- 2. It is clear that the cardinality of the set of all types of metric arcs does not exceed $\exp \aleph_0$.
- 3.2. THEOREM. Every metric arc of finite length admits of a homeomorphic contracting mapping onto an interval of reals endowed with the usual metric. The type of a compact interval of reals is a minimal element in the set of types of metric arcs.

Proof. The first assertion follows at once from 2.7 and 2.13. The second assertion paraphrases the first.

3.3. THEOREM. Let $\langle B_n, \sigma_n \rangle$, $n \in \mathcal{N}$, be metric arcs. Let A be an arc. Then almost every continuous metric ϱ on A is such that $\sigma_n \prec \varrho$ holds for no $n \in \mathcal{N}$.

This follows at once from 2.10.

- **3.4.** THEOREM. Let $\langle A, \varrho \rangle$ be a metric arc. Then the following properties are equivalent:
- (1) $\langle A, \varrho \rangle$ admits of a distance-preserving embedding into a normed linear space E such that, for some continuous linear form φ on E, the restriction φ_A is one-to-one;
 - (2) there are no non-degenerate intervals $T \subset A$ with $\varrho'T = 0$.

Proof. Clearly, (1) implies the existence of a contracting homeomorphism of A onto an interval of reals; this implies $\varrho''T > 0$ for every non-degenerate interval $T \subset A$.

If (2) holds, then, by 2.13, there exists a monotone contracting one-to-one function $f: \langle A, \varrho \rangle \to \mathcal{R}$. By well-known theorems, there exists a normed linear space P and a distance-preserving mapping $g: \langle A, \varrho \rangle \to P$. Define a normed linear space Q as follows: Q consists of pairs $\langle u, \eta \rangle$, $u \in P$, $\eta \in \mathcal{R}$; we put

$$|\langle u, \eta \rangle| = \max(|u|, |\eta|).$$

For $x \in A$ put $hx = \langle gx, fx \rangle$. Then h is a distance-preserving embedding and the linear form φ on Q defined by $\varphi \langle u, \eta \rangle = \eta$ has the required properties.

COROLLARY. A metric arc $\langle A, \varrho \rangle$ of finite length admits of a distance-preserving embedding into a normed linear space E such that, for some continuous linear form φ on E, the function φ_A is one-to-one.

3.5. Questions (A) and (B) stated in the introduction can now be answered. By 3.3, there is no "smallest" (with respect to the quasi-order described in 3.1) metric on an arc. By 3.2, the metric of a compact interval of \mathcal{R} is minimal. It is clear that the property of an embedding $f: \langle A, \varrho \rangle \to E$ described in question (B) is equivalent to the following: there exists a continuous linear form φ on E such that the restriction of φ to the arc f[A] is one-to-one. Therefore Theorem 3.4 provides an answer to question (B).

References

Recu par la Rédaction le 11. 3. 1968

^[1] E. Čech, Topological Spaces, rev. ed., Academia, Prague 1966.

^[2] M. Katetob, O keasumempuveckux ceoucmeax, Studia Math., Ser. spec. 1 (1963), p. 57-68.