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Metrics on an are
by

M. KATETOV (Prague)

Consider the following two questions:

(A) Does there exist a “smallest” continuous metric on a given arc
4, i.e. a metric g such that, for any continuous metric o on A, there exist
a homeomorphism ¢ : 4 -~ A and a number a > 0 such that ad{pz, py>
> o{x,y) for every z, ye A? If not, does there exist a “minimal” metric
with respect to the order just described?

(B) If p is a continuous metric on an arec 4, does there exist a normed
linear space E and a distance-preserving mapping f: <4, ¢) — F such
that the arc f[4] admits of a “coordinatization”? (We say that an arc
B < F admits of a “coordinatization” if there are a point a<F and a con-
tinuous mapping f of [0, 1] into a closed hyperplane L < E, a¢ L,
such that B consists of all ta+ft, 0 <<t < 1.)

Both questions seem to be rather elementary. However, I have not
found any answer in the literature. So the present note appears though
the results may be already known.

In §1 some definitions and lemmas are given; § 2 contains some
auxiliary concepts and propositions. In § 3 the main results are stated
and proved.

1.

1.1. The terminology and notation of [1] is used. Since it does not
differ substantially from current terms and symbols, only two points
of difference should be mentioned: an ordered pair a, b is denoted by
{a, b); the value of a mapping f at an element z is usually denoted simply
by fx. As usual we often denote, e.g., a space and the set of its points by
the same symbol. The letters ./ and % respectively stand for the set of
all natural numbers 0,1, 2, ... and the set of all reals.

1.2. Definition. If X is a set, we denote by M (X) the set of all
bounded pseudometrics on Y. If X is a topological (or uniform) space,
we denote by M,(X) (or M (X)) the set of all continuous (or uniformly
continuous) bounded pseudometrics on X.
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1.3. Definition. Let X be a set. If ce M (X), ceM (X), we put
d{o, o) = sup{le{w, y>—olz, y)|}.

Clearly, d is a metric on M (X), and (M (X), d> is a complete met-
ric space.

1.4. If X is a topological (or uniform) space, then M,(X) or M, (X)
is closed in M (X).

1.5. Convention. Every subset of M (X) will be considered as
a metric space (with the metric described in 1.3). If H <« M(X), H—H
is meager in H, and P is a property of elements ¢ of H, then “almost
every oeH possesses the property P” means that the set of all those ge H
which do not possess the property P is meager in H.

1.6. PrROPOSITION. Let X be a metrizable uniform space. Then almost
every uniformly continuous bounded pseudometric on X 8 a metric on X
inducing its given uniformity.

Proof. By M* we denote the set of all bounded metrics inducing
the uniformity of X. It is easy to see that M* is dense in M, (X). Choose
a metric 7 inducing the uniformity of X. For » =1, 2, ... denote by H,
the set of all uniformly continuous bounded pseudometrics ¢ on X such
that, for some ¢ > 0 depending on g, o{z,y> < ¢ implies 7<{x,y)> < n~ "
It is easy to show that H, are open in M,(X) and (" H, = M".

COROLLARY. Let X be a compact metrizable space. Then almost every
continuous pseudometric on X is a metric inducing the topology of X.

1.7. PrOPOSITION. Let X be a separable metrizable topological space.
Then almost every bounded continuous pseudometric on X is a metric in-
ducing the given topology of X.

Proof. Denote by M* the set of all bounded metrics inducing the
topology of X. Let {@,} be a countable open base of X; let B consist of
all (G, G, Gp c Gp. I beB, n = (G, G, let Ty, consist of all g eM,(X)
such that inf{o{(x, y)|ze@,, ye X —@G,} > 0. Clearly, each set T, is dense
and open. It is not difficult to show that M* > N T,

Remark. It is easy to see that M* # (T, in general.

2.

2.1. Conventions. A topological space homeomorphic to a compact
non-degenerate interval of reals will be called an arc. If A is an are, then
every non-void connected 7' = A will be termed an interval of A; some-
times, symbols [a, b], ete., will be used to denote intervals of an are. We
shall say that two intervals 7', and T, of an arc A overlap if T, ~ T, con-
tains more than one point.
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If 4 is an are, T < A is an interval with endpoints a, b, and ¢ is a
pseudometric on 4, we put o7 = o{a, b). The set Z and all of its sub-
sets are considered (unless the contrary is stated or implied by the con-
text) as spaces with the usual metrie, say u, defined by ulwz, y)> = |v—y|;
instead of w1 we write |T.

Clearly, every continuous metric on an arc A induces the given to-
pology of A. If A is an arc and ¢ is a continuous metric on A4, we shall
say that (4, o) is a metric arc.

2.2. Definition. If 7 is a continuous pseudometric on an arc A
and T < A is an interval, then the least upper bound of numbers X'{z7';}
where {7} is a finite family of non-overlapping intervals, (JT; = T,
will be called the z-length of T.

Clearly, if the z-length of T' is equal to a number a < oo, then for
any ¢ > 0 there exists a number ¢ > 0 such that for any non-overlapping
intervals T; with UT; =T, «T;< d, we have 27T; > a—e.

2.3. Definition. Let p be a continuous pseudometric on an arc 4.
If xeA, yeA, then

(1) o'<x, y)> will denote the greatest lower bound of numbers Z{oV;}
where {V;} is a finite family of intervals, (JV; = [, y];

(2) o' (=, y) will denote the greatest lower bound of numbers X{oV;},
where {V;} is a finite family of intervals of 4, (U V; o [, y].

2.4. For any continuous pseudometric ¢ on an arc A, o and o are
continuous pseudometrics, ¢ > ¢’ > ¢'’. We have o = o if and only
if, for any intervals T,,7, of A4,T, = T, implies oT';, < oT\.

Remark. If g is a metric, it may happen that o’ is a pseudometric
and even o' (z,y> = 0 for all ze A, yeA. See 2.5, Corollary, 2.10 and 2.13.

2.5. ProprosiTion. Let (A, o> be a metric arc. Then the o -length and
the o''-length of every interval T <= A coincide.

Proof. Denote the o'’-length of an interval T by m'' 7. We shall
show that m''T > o'T for every non-degenerate closed interval T'; from
this, the assertion will follow at once. Let ¢ > 0. Clearly, due to the con-
tinuity of the pseudometric o', there exists a closed interval 7% < T
strictly contained in 7 (i.e., with endpoints distinet from those of T)
such that o'V > ¢'T—¢ for any interval V with T* ¢ ¥V < 7. Denote
by y the greatest lower bound of numbers o{x, y), where zeT*, yeA—T;
clearly y > 0. Choose non-overlapping closed intervals T;,¢ = 0,1, ..., n,
with (JT; = T* such that oT;<y,i=0,1,...,n. For each i=0,
1, ..., n choose a finite family {7';;} of intervals in such a way that (J T
2 T‘i, T,;,'r'\ Tzig,

1
E ; ', g T;
: @T1j<QT+n+1E, : ol <y
7
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(this is possible since ¢''T; < oT;< y). Then all T;; are contained in 7.
Clearly

2@Ti7<29 Ti+e<m'T+e.
Put V = (JTi;. Then V is an interval, 7* <« V < T. We have

OV < Y (el < D oTy< m''T+e.
]

Since o'T < o'V +e¢, we obtain o'T < m' T+ 2¢. Since ¢ >0 is arbit-
rary, we get o T <m''T.

COROLLARY. Let (A, o) be a metric arc. For any interval T < A,
the following four conditions are equivalent:

(1) o'T = 0;

(2) ¢''T = 0;

(8) the o-length of T is equal to 0;

(4) the o -length of T is equal to 0.

This follows at once from the above proposition. E.g., if ¢"'T = 0,
then o'V = 0 for every interval V < T, hence the p'-length, and there-
fore the ¢'’-length of T is equal to 0.

2.6. LeMMA. Let o be a continuous pseudometric on an arc A. Let
T < A be an interval. Then o T+mT > 20T, where mT is the o-length
of T.

Proof. Let ¢ > 0. Choose intervals 7; < T, ¢ =0,1,...,n, such
that (J T = T and ZpT; < o'T+e. By an easy induction it can be shown
that it is possible to select intervals Tj = Ty, j = 0,...,m, m <mn,
in such a way that, with T = [a;, b;], we have a,< a, < by < a, < b,
<< .. < @ <by1< by, U T; =T. Put

b_y=ay, Gy = by,
a = Y'{e<a;,b|i even},
B =D {e<a,b>|i odd},
o' = X' {o<bi, ai,2)|i even},
B = D) {0bi; ai0) i 0dd}.

Then it 1s easy to show that o'T <a+B< o T+e, ata’ > 0T,
B+B = oT, o' +8 <mT. Hence o'T+mT > 2oT.

Remark. Simple examples show that o T+ mT > 20T does not
hold in general.
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2.7. PROPOSITION. Let o be a continuous pseudometric on an arc A.
Let T < A be an interval. If the o-length of T is finite, then it is equal to
its o -length.

This follows at once from 2.6.

2.8. LEMMA. Let A be an arc and let ¢ be a continuous pseudomet-
ric on A. Let ¢ be a monotone real-valued function defined for x > 0, con-
tinuous at 0, and such that gz > 0, ¢0 = 0. Then for any interval T < A
and any & > 0 there ewists a continuous metric o on A such that d{o, o) < ¢
and for some intervals T; = T with \J T; = T we have Zo(oT;) < &.

Proof. We consider the case T = A only; the general case is quite
similar. As it is well known, there exists an infinite-dimensional normed
linear space E and a continuous mapping f: A —~ E such that o(w,y)>
= |fo—fy|. Now choose points @;¢d, ¢ = 0,1, ..., n, in such a way that

(1) the mterva.ls T; = [, ;,,] cover A a.nd do not overlap;

(2) for 'any wxeT;, yeT;, we have olx,y) < }e.

Find linearly independent points b;eE, c;eE, |bj| = 1, |¢;] = 1, such

that no element
Zlibr*- Z,uici #0

is equal to a linear combination of the points fz;. Choose a number 6 > 0
such that 2npd < e, 6 < }e. Consider the linear segments S;o, S;;, Si.
joining the following pairs of points (with ¢ = 0,1,...,n—1): fo; and
J®i1+ 0biy fog,+06b; and fo;— by, fo;— de; and fx;,,. Denote by B the
union of these 3n segments. It is clear that B is an arc. Denote by = the
metric on B defined by v{u,v) = |u—v|. Then

2(¢r(s ho v 8i1)+ (851 v 8iy)) < 2ngo.

Clearly, the z-diameter of §;, v 8;, v 8;, is less than }e+24.
Now let ¢ be a homeomorphism of 4 onto B such that gx; = fx;,
t=0,1,...,n; put olw,y) = v<gv,gy), Si; =g '[8i;]. Then

Z(qw (870 v Bi1)+90(87) v 87a)) < 2mpd<e.

It is easy to show that d{p, o) < e.

2.9. Definition. If (P, o), (@, o> are metric spaces, then a map-
ping f: (P, o) —<Q, o) is called contracting if o{fz,fy> < o<, ¥).

2.10. THEOREM. Let (B, o) be a metric arc. Let A be an arc. Then

almost every continuous metric o on A has the following property: if f: (A, o)
— (B, o) i3 monotone and contracting, then f is constant.

Proof. By 1.5 and 1.7, the assertion is meaningful. Let g: B — [0, 1]
be a homeomorphism. For any £ > 0 let & be equal to

sup {lgu— gv}o{u, v) < &}.
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Clearly, ¢ has the properties stated in 2.8, and, in addition, is upper
semi-continuous. For any ¢ >0 denote by H(e) the set of continuous
pseudometrics ¢ on A such that for appropriate intervals 7'; with
U T; = A we have X¢(oT;)< e. Clearly, H(¢) is open in M,(A) because ¢
is upper semi-continuous. By 2.8, H (&) is dense.

If peH(e) and f: (4, ) - (B, s> is monotone and contracting,
choose intervals 7; with (J T; = A, Z¢(oT:) < e. Then of [T;] < oT},
Zo(af [T;]) < e. Hence, X|gof[T;]| < ¢ and therefore |[gof[A]] < e.

Put

H= () Hn).

Then H is a dense Gy-set in M (A). If oeH and f: <4, o) - (B, o)
is monotone and contracting, then |gof[4A]l<n~' for n =1,2,...
Hence |gof[A]| = 0, which implies that f is constant.

2.11. ProposITION. Let (A, o) be a metric arc. If f: (A, o) > R
is monotone contracting, then also f: (A, o''> — & is monotone contracting.

The proof is easy and can be omitted.

2.12. ProPOSITION. Let (A, o> be a metric arc. Let the o -length of A
be finite. Let a be an endpoint of A; for any xeA let gx be equal to the
o -length of [a, ). Then

(1) #f f:<{4, 0> — # is monotone contracting, then f = hog, where
h: Z — R is monotone contracting;

(2) if (1) holds with a function g*: (A, o) — Z instead of g, then there
exists a contracting monotone mapping p such that g = yog"*.

Proof. We put ht = fg~'t. Then |hu—hv| = |fg~'u— gf 'v|, hence,
by 2.11,

lhu—ho| < " <{g™"u, g~ 'v>;

clearly, o' (g 'u, g 'v> does not exceed the o' '-length of [g~'u, g 'v],
which is equal to |u— »|. This proves the first assertion. The proof of the
second one is left to the reader.

Remark. The function ¢ itself need not be contracting, not even
Lipschitzian.

2.13. TueorEM. Let (A, o> be a metric arc. The existence of a non-
constant monotone contracting function f: {A, o> — & implies and i8 im-
plied by the condition o’A > 0. The existence of a contracting one-to-one
function f: (A, o> — R implies and is implied by the condition that o'T >0
(or 0T >0) for every mon-degenerate interval T of A.

Proof. We prove only the “implied by” part of the second assertion.
Both conditions (¢'7 >0 and o 'T >0) are equivalent (see 2.5, Corol-
lary). Suppose that o"'T > 0 for every non-degenerate interval T < A.
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Let g:[0,1] -+~ # be a homeomorphism. Choose numbers a,, f,, net",
so that 0 < a, < f, < 1 and Jay,, fu[ form an open base of A. Put a = g0,
b = g1, a, = gan, b, = gp,. Let f,x be equal to the o''-distance of z from
[a, a,). Then f, is monotone contracting, f,a, = 0, fab, = 0''<(a,, b,> > 0.

Now put f = }'27"f,. Clearly, f is monotone contracting, fb,— fa,
> 0. Since the intervals Jla,, b,[ form a base, f is one-to-one.

3.

3.1. Definition. If {4, p), (B,0) are metric arcs, we put ¢ < o
if there exists a homeomorphism ¢ of A onto B and a number ¢ > 0 such
that odx, y> < colgz, gy) for every xeA, yeA. Clearly, the relation <
is transitive and reflexive.

If 3¢ and ¢ 3 ¢, we put p~ o and call o and o, sometimes also
{4, o) and (B, o), equivalent. We choose a fixed single-valued relation
such that 7o = 7o if and only if ¢ and ¢ are continuous metrics on arcs,
0 ~ o; the element 7o, where p is a continuous metric on an arc 4, will
be called the type of metric o or of metric arc (A, o> and will be denoted
by typ e.

Remarks. 1. Clearly, if <4, o) and (B, o) are metric arcs and there
exists an L-isomorphic (in the sense of [2], 1,7) mapping of (4, ¢> onto
(B, o), then ¢ ~ ¢; simple examples show that the converse does not
hold.

2. It is clear that the cardinality of the set of all types of metric
arcs does not exceed expN,.

3.2. TuEOREM. Every metric arc of finite length admits of a homeo-
morphic contracting mapping onto an interval of reals endowed with the
usual metric. The type of a compact interval of reals is a minimal element
in the set of types of metric arcs.

Proof. The first assertion follows at once from 2.7 and 2.13. The
second assertion paraphrases the first.

3.3. THEOREM. Let (B,, 0,), net", be metric arcs. Let A be an are.
Then almost every continuous metric ¢ on A is such that 0,3 ¢ holds for
no neA.

This follows at once from 2.10.

3.4. THEOREM. Let (A, o) be a metric arc. Then the following prop-
erties are equivalent:

(1) <4, 0> admits of a distance-preserving embedding into a mormed
linear space E such that, for some continuous linear form ¢ on H, the restric-
tion ¢4 i8 one-lto-one;

(2) there are mo mon-degenerate intervals T < A with o'T = 0.



554 M. Katétov

Proof. Clearly, (1) implies the existence of a contracting homeo-:
morphism of 4 onto an interval of reals; this implies o7 > 0 for every
non-degenerate interval T < A.

If (2) holds, then, by 2.13, there exists a monotone contracting one-
to-one function f:{4,¢) > %. By well-known theorems, there exists
a normed linear space P and a distance-preserving mapping g: (4, o> — P.

Define a normed linear space @ as follows: @ consists of pairs <{u, ),
ueP, neZ; we put

<, )] = max([u], [n]).

For xe¢A put he = {gz, fr>. Then h is a distance-preserving embed-
ding and the linear form ¢ on @ defined by ¢ (%, ) = 7 has the required
properties.

COROLLARY. A metric arc (A, @) of finite length admits of a distance-
preserving embedding into a mormed linear space E such that, for some
continuous linear form ¢ on E, the function ¢4 i8 one-to-one.

3.5. Questions (A) and (B) stated in the introduction can now be
answered. By 3.3, there is no “smallest” (with respect to the quasi-order
described in 3.1) metric on an are. By 3.2, the metric of a compact interval
of # is minimal. It is clear that the property of an embedding f: (4, ¢) - FE
deseribed in question (B) is equivalent to the following: there exists
a continuous linear form ¢ on E such that the restriction of ¢ to the arc
f[A] is one-to-one. Therefore Theorem 3.4 provides an answer to ques-

tion (B).
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