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has not been shown to apply to Lebesgue measure, but only to some
measure (though conceivably detailed consideration of this countere-
xample may establish u ~ m).

In any case the question is still open as to whether the theorem is
valid for low dimensions or for » a prime, n >2. Of course, the translation
field theorem does not hold, but as pointed out this asserts a stronger
conclusion than necessary. Another question is whether, when orientation
invariance is dropped, there always exists a point interior to a translation
field at least in the case that f is obtained by reflecting ¢ in y=0. If

s0o, Theorem 1 would apply without the restriction of orientation
preservation.
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Generalized modular spaces
by

HIDEGORO NAKANO (Detroit, Mich.)

The modular space was originally discovered in [2] as a special case
of the Banach space. For instance we can discuss the L,-space as a Banach
space, but if p is a function, then the theory of the Banach space is not
available. However, considering the L,-space as a modular space, we can
discuss the case of function p as well as the case of constant p. The defini-
tion of the modular formally includes the Banach norm, but the conjugate
of the modular is quite different from that of the Banach norm. In this
paper we attempt to unify the two theories of the Banach space and the
modular space in one, considering that a modular has two kinds of conju-
gates: the conjugate and the polar.

1. Modulars. The convex modular is defined in [2], and the concave
modular is defined in [4]. A generalized definition of modulars is given
in [1]. Here we define modulars more generally to include the Fréchet
norm too.

A function m on a linear space S is called a modular on 8, if for any
xeS we have

1) o< m(x) < +oo,

2) m(—2) =m(2),

3) infm(éw) =0,

>0
4) m(éz) <m(npz) for 0 E< 7y,
5) there is y >0 such that

m(m—{—y).g x(m(xw)—i—m(xy)) for all x,ye8.

Such y is called a character of m. It is obvious by 3) and 4) that m (0)= 0.

Let m be a modular on a linear space 8. An element K8 is said to be
finite, if m(éx) < +oo for all £ > 0. All finite elements form a linear
manifold of 8, which is called the finite manifold. A modular m is said
to be finite, if 8 is the finite manifold.
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440 H. Nakano

An element aeS is said to be null, if m(&a) = 0 for all £ > 0.
All of null elements form a linear manifold of 8, which is called the null

manifold. A modular m is said to be pure, if the null manifold consists
only of 0.

A modular m is said to be normal, if

m(®) = supm(&x) for all zeS.
0<é<l

For any modular m, setting

mo(®) = supm(éx) for xel,
0<é<1

we obtain a normal modular m,, which is called the normalization of m.

A modular m is said to be simple, if m(z) = 0 implies m(&x) = 0
for all & >0, that is, if m(x) = 0 implies that  is null.

A modular ¢ on 8 is called a quasi-norm, if 1 is a character of g, that
is, if

9@ +y) <q@)+q(y) for all #,yeS.

It is obvious by the definition that every quasi-norm is finite, simple
and normal.

A quasi-norm n on 8 is called a norm, if n(&x) = £n(z) for all £ > 0
and xeS8. For a quasi-norm ¢ on S, setting

.1
ng(x) = inf—q(éx) for all zeS,
1 & ,

we obtain a norm n,, which is called the associated norm of q.
A modular m is said to be conver, if a+f =1, a,>0, implies

1 1
m(@+y) < am(—(;a;) +ﬁm(gy) for all z,yeS.

It is obvious by the definition that 2 is a character of any convex
.modular. We can easily show that a quasi-norm ¢ is convex if and only
if ¢ is a norm.

A modular m is said to be singular, if m(x) = 0 or +oo for all zeS.
For a convex modular m, setting

+oo if m(z)>1,

8m(m):l
0 if mx) <1,

er obtain a singular convex modular s,, which is called the singularity
or m.
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2, Convergence. A sequence z,eS(v = 1,2, ...)is said to be convergent
to zeS for a modular m and we write z, -1:-; x, if

limm(&(@,—)) =0 for all £ >0.

Such z is called a limit of a convergent sequence 2,eS(» =1,2,...).
We can prove that w, 1} z and y,—?» y imply

az, + Y, 1} ar+py for all real numbers a and S,

and that lima, = a implies a,mz} ax for all ze8. We can also prove

that =, —’-:; x implies z, l:; x+z if and only if # is null. Thus the limit of
a convergent sequence is uniquely determined if and only if m is pure.

A manifold A4 < 8 is said to be closed if Aew,i; z implies zeA.
A manifold 4 < 8 is said to be complete if for any sequence z,¢A
(»=1,2,...) such that z,—u=, ;m: 0, there is z ¢ A such that z, 1:; z. It is
obvious by the definition that if A is complete and B is closed, then the
intersection A ~ B is complete. We can easily prove that the null manifold

is complete and closed. We say that a modular m on 8 is complete if S
is complete.

3. Quotient modulars. Let 4 be a linear manifold of S. The elements
of the quotient space S/A are denoted by #+A (xeS), that is,

(@+4)+@+4)=@+y)+4 for a,ye8,

and we have v+A4 = y+A4 if and only if z—yeA. For a modular m on §,
setting
my(x+A) =infm(z+u) forzel,
ued

we obtain a modular m4 on S/A which is called the quotient modular of m
by A. It is obvious by the definition that if m is a quasi-norm, then m4
also is a quasi-norm; if m is a norm, then m, also is a norm; if m is convex,
then m, also is convex; and if m is singular, then m, also is singular.

As a generalization of the so-called Hausdorff’s theorem about norms,
we can prove

COMPLETENESS THEOREM. If a modular m is complete, then the quotient
modular m4 also is complece.

We can also prove

PURITY THEOREM. If a linear manifold A is closed for a modular m,
then the quotient modular m, 8 pure.
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Let N be the null manifold for a modular m on §. Since N is closed,
the quotient modular my is pure by the Purity Theorem. This pure
modular my is called the purification of m. For the purification my of m,
we have by the definition

my(@+N) =m(zx) for all zeS.
4. Conjugates. All of linear functionals on S form a linear space,

which is called the free dual of S and denoted by 8. Let m be a modular
on §. A <peS is said to be bounded for m, if there is y > 0 such that

¢(@) < y(m(@)+1) for all weS.

It is obvious by the definition that all bounded linear functionals

form a linear manifold of :9, which is called the dual of 8 for m and denoted
by S.
We define the conjugate m of a modular m as

(1) m(tp) sup (p(@)—m(w)) for <pe;§'\

~

Then 1)0 < M (¢) < + oo for q)eS, as ¢(0) = m(0) =0. It is obvious
that 2) 7(— @) = m(p) for all pe8. If a+pf =1,a, >0, then
7 (ap-+ BY) < o (g)+pm(¢)  for all ¢, pef.

Thus the conjugate 7 satisfies all conditions of the convex modulars
except 3).
We have by the definition

(2) ¢(#) <(¢)+m(w) for all peS and zes.

We can easily prove that q)€1§ is bounded if and only if there is £ >0
such that m(&p) < +oo, that is,

(3) 8 = {g: M(Ep) < +oo for some & > 0}.

For any ¢e8 there is y > 0 such that ¢(z) < y(m(x)+1) for all z 8.
and if 0 < £<1/y, then

Ep (@) —m(0) < (§y—1)m(2)+ &y < &y
for all zeS. Thus m(&) < & for 0< é<1[y, and we conclude that

infm(£p) = 0 for all peS. Therefore 7 is a convex modular on S.
>0

If m(&p) = 0 for all £ >0, then &p(nx) < m(nz) by (2), and we have

1
q)(m)g—gm(nw) for all &, >0.
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Since there is % > 0 such that m(nz) < +o0o, we obtain ¢(2) <0
for all z¢8, that is, ¢ = 0. Therefore m is pure on S.
Since

sup 7 (&p) = 2 (6@ (@) —m(x)) = m(p),

0<é<1
 is normal on S.

For a sequence ¢,eS(v =1,2,...) if tp,,—q),% 0, then, since we
have by (2)

1
l%(w)—-w.(w)l<—§;(m(5(%—¢.))+mww)) for #e8 and &, >0,

we obtain

lim I‘Pu(w)—q’-(m)l = 0.

H,y—>00

Thus, setting
plw) = lim @ (x) for zeS,

we have q)eS For any & > 0 there is g, by the assumptlon, such that
m(E(p.—9,)) <1 for p,»> g, and we have

|pu (®) — @u (@) | <?(m(m)+1) for all @eS; pu,»> o.
Thus
1

lpu (@) — p(@) | < ?(m(w) +1)

for #¢8, p> ¢, and g,—@e8S for u> ¢ by the definition. As ¢,e8, we
have ge8. Furthermore, for any £ >0 we have by the definition

(& (pa—9)) = sup (£ (g (2)— (@) —m (@)

<x§g"(5(%(w)—tp.(m))—m(w)) =4§:‘§>7ﬁ(£(%—¢.)),
and we obtain

lim 7 (&(p,—¢)) =0 for all £>0.

HB—>00

Therefore 7 is complete on S.
Now we can state
CONJUGATE THEOREM. The conjugate m of a modular m is a normal,
complete and conver modular on the dual S of 8 for m.
_For the dual S of 8 for a modular m, setting »(¢p) = @(x) for eS8,
@el, every xeS is considered as a linear functional on S, bounded
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for m, by (2). A modular m on 8 is said to be reflexive, if m coincides with
the conjugate m of # on 8§, that is, if

m (@) = sup(p(z)—m(p)) for all zeS.
@S

Acccording to § 80, Theorem 2 in [3], if m is convex and normal,
then m is reflexive. Thus we have by the Conjugate Theorem

REFLEXIVITY THEOREM. A modular m on 8 .is reflewive if and only
if m is convex and normal.

The conjugate m of the conjugate m is a convex and normal modular
on § by the Conjugate Theorem, and reflexive by the Reflexivity Theorem.
We have by (2)

m(2) = sup(p(@)—m(p) <m(x) for weS.
o8

Thus, setting M (z) = m(v) for xeS, we have
H(9) = sup(p(@) — M (=) > ()
for ¢eA§. If W (s) < +oo, then eS8 by (3), and

m (¢) = sup (@ (p) —7 (P)
) oS 8

for the dual 8§ of § for m, because 7 is reflexive by the Reflexivity Theorem.

Thus we obtain

m(p) = sup (p(2)—M () = M (¢),
xeS

and we conclude that M (¢) = m(gp) for all @ef and that the dual § of 8
for m is the dual of S for M. _
Conversely, for a reflexive modular M on 8, if M(¢) = m(p) for

all pe8, then

M (@) = sup(p(@)—m(p)) =m(x) for all zel.
@eS

Thus for any modular m on 8 there exists a unique reflexive modular
M on 8 such that m(p) = M (p) for all peS. Such, M is called the associate
of m. If m is convex, then the associate of m is the normalized of m,
because the normalized of m also is convex and reflexive by the Reflexivity
Theorem, and has the same conjugate with m by the definition.

For a quasi-norm ¢ on § we can easily prove that g(¢) = n,(¢) for
all <;oe§ for the associated norm 7, of ¢. Since every norm is a reflexive
modular by the Reflexivity Theorem, the associated norm mn, is the
associate of ¢. :
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According to § 82, Theorem 4 in [3], we have

PROXIMITY THEOREM. Let m be the conjugate of a convex modular
m on 8, and let S be the dual of 8 for m. Given y > 0 and a finite system
of real numbers a, and ¢,e8 (v =1,2,...,n), then for an;il 0<e<<l we
can find xeS such that ¢,(x) = a, (v.=1,2,...,n) and m(ex) < y if and
only if

n f

g L, <y+m (D &)

V=1

for any finite number of real numbers & (v =1,2,...,n).

5. Polars. For a modular m on 8 we define the polar P, of m as

P (g) =m8(g£l<p(a:) for peS.

It is obvious by this definition that 0 < Pm(p)< +oo for ¢S, and
Pu(Ep) = EPm(p) for £>0 and geS.

Pou(9p+$) < Pulp)+Pu(})  for g, ye¥.
Since fp(r) < m(x)+ m(&p) by (2), we obtain by the definition

1 2
(4) P,(p) < inf E(l +m(ép)) for ged.
>0

Thus we obtain by (3) that P,(g) < +oo for all peS, and we conclude
that P,, is a norm on the dual 8. In addition, P,, is pure, because if P,,(¢)
= 0, then m(x) <1 implies ¢(x) = 0, and since for any xeS there is
&> 0 such that m(éx) <1, we obtain ¢(x) =0 for all zeS.

POLAR THEOREM. If m i8 convex, then we have

L.l &
(5) ' P, (p) = inf —(1 —I—’rTL(E(p)) for ¢e8,
e>0 & »
(6) Py () <1 implies m(p) < Pm(g),
(7) . 8n = Py, for the singularity s, of m.

Proof. We set
1
=inf—(14+m
¢ =iy,

and we suppose P,, () < +oo. Then we ean find o > 0 such that Pn(op)<1.
If +oo>m(yx) >1 for some 0 < y <1, then we can find § >0 such
that m(éxr) =1, §<1, and we have '

_ A

ev(o) = enléa) < T <m),

e e AN A E AR IR L A o NN e S
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because m is convex and 1 = m(fx) < ém(z). Thus we obtain
' op(@) <m(z)+1 for all ze8,
and we have 7 ( gp) < 1 by the definition. Therefore a < oo and we have
ta<1+m(ép) for all real numbers §.

Thus for any 0 < e <1 there is z,¢8 by the Proximity Th.e(.)r.em
such that ¢(x,) = a and m(ex,) <1. Then we have by the definition

P,(p) = sup (@) >¢ea for 0<e<l1,
m)<1 :

and we conclude that P,, (¢) = a. Thus P, (@) = aby (4).
Since

Smen) > 5 >1
"for 0< £< 1, if Pu(p) <1, we have by (5)
Prlg) = inf (1+m(Ep) = Tlp)s |
&1 &

because 7 is convex and i (&g) > () for £>1.
We have by the definition

3m(¢) = sup ¢(@) = sup ¢(@) =Pn(p) for ges.
S(E)=0 m@)<1
If m is convex, then we have by (5)

(8) 8 = {p: Pm(p) < +o0}.

Since P,, = 3m, we conclude by the Conjugate Theorem that Py,
is complete on the dual S. |

SINGULARITY THEOREM. For a norm n on 8 the conjugate @ is the
singularity of the polar P, on 8.

Proof. Since by the definition

n(p) = S (p(&0)—n (&) = sup & s;g(w(w)—n(w)),

we have 7 (p) = 0 if and only if ¢(2) < n(2) for all we8. If there is weS
such that ¢(z)>n(x), then m(g) = +oo. Thus # is singular by the
definition. Since ¢(z) < n(z) for all ze8 if and only if P.(p) <1, we
conclude by the definition that 7 is the singularity of Py.

According to the Singularity Theorem, for a norm n on S we have

» A
dta<y+m (’_21 £0)

yml
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if and only if
» »

2 &0, < 7Pn(2 5#?77) .

v=1 vl

Thus the Proximity Theorem is a generalization of the so-called
Helly’s theorem.

6. Modular norms. For a modular m on S we defined the associate
M such that m = M and

M (z) = sup(p(2)—7i(g)) for all zef.
peS

Considering every eS8 as a linear functional on S, we set
N,(@) =Pr(x) for weS.

Then N, is a norm on 8 and by (5) we have
1
(9) N,(@) =inf — (1+M(&z)) for weS.
g0 &

This norm N, is called the first modular norm of m.
For the singularity s, of M we have Py (p) = 3x(p) for pe8 by (7).
Since ), is convex and normal, we have by the Reflexivity Theorem

8y (@) = sup(p(@) —Pu(g)) for zeS.
@eS

According to the Singularity Theorem, setting
Ny(@) = Ppy, (@) for we8

we obtain a norm N s on 8§ such that sy is the singularity of N,, that
is, N, and M have the same singularity. Thus we have

(10) M(z) <1 if and only if Ny(@»)<1.
Since by (b)
| . 1
Ny(w) =inf—(1+sy(ém)) = inf = for @el,
t>0 & 8p1(52)=0,6>0
we obtain
(11) N,(z) = inf i for weS.

M(E2)<1,E>0
This norm N, is called the second modular norm of m.
If M(z)<1, then by (11)

Ny(x) = inf —1-
MEn<1e1 &
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Since £ > 1 implies M (&x) > & M (x), we have 1/& > M(x) if M(&x)
<1 and £>1. Thus we obtain

(12) M(2)< Ny(w) if M(z)<1

If 1< M(x)< +oo, then there is >0 such that M(qa) =1,
because M (&x) is a convex function of £&. As 0 < <1, we have

Ll i) < M@).
n n

Thus by (11) we obtain
(13) M(@®) > Ny(w) if M(z)>1.
If M(éx) <1, £>0, then 1/§> Ny(x) by (10), and we have

AU () > > Moo,
If M(éx) >1, £>0, then M(éx) > Ny(&x) by (13), and we have
2 (LM () > 3 Nu(6o) = Fo(a).
Thus N,(x) = Ny(z) for all zeS by (9). On the other hand, by (9)

and (11) we have
2

Ny@) < inf -—(1+M(Ea:)) inf — =2N,(x).
MEn<1,£>0 § - MEn<1LE>0
Therefore
(14) N,(z) < Ny(®) <2Ny4(x) for weS.

CONVERGENCE THEOREM. &, 3; x 18 equivalent to each one of a:,l-\}1 ®
and x, 1—? .

Proof. If o, -l-l> 0, then for any & > 0 there is ¢ such that M(Em,)
for v > o, and we have N,(z,) < 1/5 for » > o by (10), that is, =, —> 0.

Conversely if z, -—> 0, then for any &>1 there is ¢ >0 such that
Ny(&22,)< 1 for » > 0, and we have M (&2x,) <1 for »> ¢ by (10). Since
¢ M (éx,) < M(£%a,), we obtain o, > 0. It is obvious by (14) that 2, @
is equivalent to m,li} .

According to the Convergence Theorem, M is complete if and only
if one of N, and N, is complete.
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Now we consider the modular norms of the conjugate . The associate
of m is m itself by the Conjugate and Reflexivity Theorems. Referring
to (10), we have Py = Py, by the definition, and Py, is the first modular
norm of 7@ by (5) and (9).

The conjugate N, of the first norm N, is the singularity of # on S.
Because for peS if m(p) <1, then ¢(#) <1+ M(x) for all xS by (2),
a8 M = M. Thus by (9) we have

() <inf—l—(1+M(£m)) — N,(#) for all zeS,
£>0

and we obtain
Ni(p) = snlg(tp(w)—Nx(w)) =0.

If m(¢) >1, then there is aeS by the definition such that
¢(a) — M(a) >1, and by (9) we obtain

p(a) >1+M(a) > N,(a).
Thus
Ni(p) > seu10>(<p(£a)—N1(§a)) = slge,

Therefore N, is the singularity of .

According to the Singularity Theorem, N, is the singularity of Py,.
Thus @ and Py, have the same singularity on S, and we see that m(p) < 1
if and only if PNl (p) <1. Thus we conclude tha.t

1
Py (p)=_ inf — for pelS.
mEp)<Le>0 &
Therefore Py, is the second modular norm of @ by (11).
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