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The main concerns of this brief note are homeomorphisms of planar
sets and their implications for a gpecial fixed point theorem for measure
invariant homeomorphisms. Although the restrietion to homeomorphisms
is a strong restriction, this is partially balanced by the fact that the
space is not compact. The result is perhaps valid even if the condition
of orientability preservation be dropped. However; this possibility though
discussed is not settled. The bar to extension of the theorem to high-
dimensional spaces is taken up. ;

First we explain our usage. A measure u needs merely be finite and
positive for open bounded sets, but not necessarily completely additive.
A simple Iine L is a non-self-intersecting homeomorph of the real axis
such that the image of a non-Cauchy sequence of positive reals is non-
Cauchy, and similarly for the negative reals (considered of order type o*).
The open disk {z||jz]| < 1} is denoted by .D and & homeomorphism: of D
onto D by T. The plane is indieated by P and Euclidean n-space by R".

THEOREM. Let T be a measure preserving and orientation preserving
homeomorphism of D onto D. Then T has a fized point in D.

Suppose the theorem false.

Let & be a homeomorphism D ® P of D onto the plane P. Then

(a) t = hTH?,
" =aT"K', =m=41,4+2,..,

are orientation preserving homeomorphisms on P onto P.
With a view to possible generalization it may be remarked that the
proof only requires existence of a set 4 with non-empty interior, & non-
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finite subecollection of whose transformation iterates, 1”4, are disjunct,
n= 41, +2,... For the hypotheses at hand much more is available.
Indeed, it is known [1] that since ¢ is an orientation preserving homeo-
morphism, there is a simple line L, with the following properties: Let
I =t'L,. The four lines L,, Ly, L,, L., are simple and are pairwise
disjunct. Let S, be the open strip with boundaries L, and L,. Let 8; = #'S,,
=41, +2,..,; 80

(b) 8~ 8, =0, Son 8., =0, ‘Sl"S--l:@-

The strip S, is referred to as a translation field. Remark for tacit
use below that S; is connected as a homeomorph of §,. S, is bounded
by L, and tL,. Note that

(e) Lyntly=@, 8,8 =0, 88, =0.
Otherwise application of t~* or ¢" yields the contradictions (with (b)):
Lo~ L, =0, 8,~8 #0, 8, ~8.,#9d.
From connectivity considerations
(d) Sy~ 8, =0@.

Thus suppose (d) false. By the Jordan curve separation theorem I,
separates the component K (—1) containing §_, from that, K (0), con-
taining 8;. L, is a common boundary for §; and &, so

(e) 8~ K(0) # 9.
The negation of (d) implies
@ : Sn Ly #0.

However, L, is in the open part of §_, ~ S, whence (e) and (f)
imply
(g) Sg m SD 7& g
contrary to (d).

By induction, if 8, ~ 8, =@, m >n > —1, then
(h) B~ 8y =0, m+1>j>-—1.

Indeed, application of ¢~™ shows that

8 A TS, = 0.

) A connectivity argument as in (e) and (£) then establishes (h). Moreover,
similar arguments establish (h) for negative m or » and hence

(i) S S =0, m#n.
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Let J =1h'S, « D; whence by (a), T'J =k '#§, = D. Sinee &,
ig open, J iz open. Accordingly
w(T'T) = u(J) > 0.

It follows that u(D) = oo, contradicting the assumption u(D) < oo.
Hence T has a fixed point.

CororrAwY. If T is a measure preserving homeomorphism on D — D,
then T2 has a fired point.

If T is orientation preserving, this is a consequence of the theorem.
If not, T is orientation preserving.

Remark. For the validity of the theorem it would be enough to
have

. 1
wI™ A > - n(d).
In general (cf. Example 2),

© o J—
USwm #P and UTJ #D.

Of course, the fixed point guaranteed by the theorem need not be
at the origin even if it iy unique. An elementary illustration is afforded
by the Mébius transformation. Thus let e have modulus inferior to 1.
Consider the circle ¢ with center at the origin defined by

‘ Z—a

lg—a?

=a|.

Let T be the homeomorphism represented by

w—a g—a
. =e’iﬂ

w—a” g—a "t
for some 6, 0 < 6 < 2x. Then T has the unique fixed point a.
It is of interest to list some examples of tramslation fields with

a view to possible weakening of the orientation preservation condition.

Example 1. Translation. For a translation along the z-axis of amount
a, @ >0, an I, is a simple line cut only once by each line parallel to
the 2-axis. Then I, is a displacement of magnitude a of L,

US8:=2P.
Example 2. (J §; % P. Let U be the strip 0 <y < 3.
Define t by
(+2(y—2),29y—3) for 2<<y<3,
He,9) = (c+1/2(y—2),y[2) for 0<y<2.
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Extend t to 3<y <6 by reflecting in y= 3 and similarly to all 2
and ¥.

Measure angles in the counter-clockwise direction from the nega-
tive z-axis. Thus #(z, 0) is a translation of magnitude —1 and #(z, 3)
a tranglation of magnitude 2.

The displacement vector

v =z,y)—(®,9)
rotates through = in going from y = 0 to y = 3. Define L, in U by
(0,y) for 2<y<3,
0T t(m,ﬁ) for —co<2<0.
Then L, = tL, is represented by

@, x+1 for 0 <2
le‘u )

<2,
(®,1) for —co< & <0.

Extend the definition of I, to 3 <y <6 by replacing ¥ by 6—y.
Hence §, lies entirely in 0 < y < 6. Note that the segment

, A ={0,9]0<y <3}
meets 1" A for all # > 0. Note that
U 8 ={(#,9)| -0 <a< o0, 0<y < 6.

Another possible field is obtained by taking L, = ¢, a constant
=+ 0 mod 3.

Suppose in fact 0 < ¢ < 3. Then I, lies below L, and L; approaches
y = 0 asymptotically for ¢ - co and y = 3 for ¢ — —oo,

Ul ="0.

For the next four examples the homeomorphisms are understood
to be orientation reversing homeomorphisms denoted by ¢ of the type
i = at, where t is an orientation preserving homeomorphism symmetrical
with recpect to the x-axis and o is reflection in the w-axis. Use L™
and L~ to indicate lines in v > 0 and in y < 0 respectively.

Example 3. Let ¢ be the unit translation as in Example 1. For
instance, let L, = (0, y) and L, = (1, ). S, consists of one component.
Evidently for an arbitrary point p there is a translation field S, including p
as an interior point.

Example 4. Replace y by y—3 in Example 2. Then L, and I)l and S,
are from the first tranglation field in Example 2, except that ¢ maps L
into (tL,)” and L; into (tLy)™".
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Examiple 5. 8, consists of fwo components. Tn Example 2 identify
Ly, I, and §, with the new L, L{ and Sy and Ly, Ly, S; are their
reflections in the z-axis. Here

iLy = LF.

Thus 8, consists of two components S; and S; .

Similarly for the second translation field in Example 2 when IL;
is identified with L, = ¢, 0 < ¢ < 3. Again there are two components
Sy =8 v 8.

Note for either S; or S§ in this example the boundary of each com-
ponent consists of the map of part of the boundary of the other.

Example 6. Sets of poinis admitiing no containing translation field.
Let A be a closed subset of P with

AnP =0

and suppose that 4 constitutes the fixed point set of the homeomorphism ¢
on P* onto P*. The argument in the proof of the theorem indicates
8y ~ 8y = @. Here no point a of 4 can be interior to §, for from 24 = a
follows

2(8) ~ 8 =0

if 8y o aeA. The question of restrictions on an A4 so that it can comprise
all of the fixed points of ¢ is equivalent to that of existence of an extension
of the identity map on A to a fixed point free homeomorphism on P
and it and its generalizations to other spaces constitutes a problem of
independent interest particularly when 4 is not bounded.

The natural question is whether a similar theorem is true for open
disks of arbitrary dimension. The following discussion answers this in
the negative for certain composite n values and in particular for D',
Thus, it is known [2] that for every r 5= ™, p a prime, m > 1, there is
a eyclic group of order r acting on R with no fixed point. (The smallest
odd 9r value is 135.) Let m be the Lebesgue measure on D. Define a new
measure x4 on D = D by

(1) u(4) :—l—lg(»mA—!-...mT“A).

Evidently 4 is measure preserving.

Let ¢, h and T be related analogously to (a).

By (1), T is s invariant yet has no fixed point.

If 4 is a set of zero Lebesgue measure mAd, its homeomorph T4
may have non-zero Lebesgue measure. Accordingly though m is absolutely
continuous in u, the converse need not be true, so x4 may not be equi-
valent to ILebesgue measure. Accordingly the counterexample above
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has not been shown to apply to Lebesgue measure, but only to some
measure (though conceivably detailed consideration of this countere»
xample may establish g ~ ).

In any case the question is still open as to whether the theorem is
valid for low dimensions or for » a prime, # > 2. Of course, the translation
field theorem does not hold, but as pointed out this asserts a stronger
conclusion than necessary. Another question is whether, when orientation
invariance is dropped, there always exists a point interior to a translation
field abt least in the case that i is obtained by reflecting ¢ in y = 0. If
50, Theorem 1 would apply without the restriction of orlenmmon
preservation.
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