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This paper may be regarded as a continuation of [8], where some
preliminary results on Raikov systems and their applications were given.
‘We shall assume here the basic results of that paper. The main result
to be proved here (Theorem 2) was conjectured in [8] (Proposition 9’
of that paper) and generalises Proposition 9 of [8], which was stated
without proof. In general terms, what we prove is that the pathological
features of the measure algebra M (R) of the real line R are in a certain
sense uniformly spread throughout the algebra. If A and B are two sub-
algebras of M(R), of a certain type, with 4 properly contained in B,
then the phenomena associated with the names of Wiener and Pitt,
which have been known for many years [4], [6] to occur between the
atomic measures M,(R) and the whole measure algebra M (R), occur
also between A and B. The technigues used to apply to the measure
algebra information available about Raikov systems are those described
in [7], and we assume the results of § 1 of that paper. The main theorems
of the present paper are generalisations (in the special case G = R) of
Theorems 2.3 and 2.5 of [7].

In order to simplify the exposition we maintain the restriction
(observed in [8]) of stating and proving results for the case of the real
line B only. In many cases the extension to a general locally compact
abelian group is straightforward, but there are some others where the
difficulties are more substantial, and we reserve a full discussion of the
general case for another oceasion.

‘We begin by recalling the basic definition. A subset of R is of type F,
if it is a countable union of compact sets. A collection # of subsets of R,
of type F,, is a Raikov system if the following properties hold:
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Tt A, and A, is a subset of A,, of type F., then 4,eF;
is also in &,

RI1.

R2. The union of a countable collection of sets in &

R3. If AeF and {eR, then A—1teF;

Rd. If AeF, then A4+ AeF.

(In the above, + and — denote the group operations in E, not set-the-
orvetic union and diffevence). If there holds also the condition:

R5. If AeF, then —AeF.
we shall say that the Raikov system F iy symmetric.

For some elementary consequences of the definition see [1], §§ 31-33
and [8].

The lemma that follows is no doubt well known, but we state it
explicitly, as we are unable to give a reference. The proof is straight-
forward,

Levwma 1. Let A be @ {‘ompacf subset of R; then either A is countable
ér<we can write’ A = A, o Ay, where A, is perfect and A, is countable.

CoroLLARY. Each generator of o Raikov system other than the minimal
system F, (consisting of all ‘countable sets) may be assumed to be a perfect
set. : ' :

* Prootf. This follows at once by combining Lemma 1 with Propo-
sition 4 (i) of [8].

"We adopt the convention that a set 4 will be said to be nowhere
dense, or of the first category, or of the second category, in & set B, even
though A4 is not a subset of B, p1ov1ded that A ~ B has the property
in que\tlon

LeMmA 2. The Raikov system F, is properly contained in the s_yste‘m F,
if and only if there ewists a compact set BeF, such that each set A eFy is
of the first category in B.

Proof. If #,. =%, or F, >.%,, then each compact set B in #F,.i8
also in #,. Since .B is & compact subset of E, it is complete metric, and
hence of the second category in itself. Thus there exists a, set A (= B)
in &, sueh that A is not of the first category in B.

If, on the other hand, #, c &, and &, # F,, suppose that for ewch
compact BeF, there exists 4 «#, such that A is of the second category
in B. Fix such a set. B, and let the corresponding set 4 be written as
a.countable union.of compact (hence closed) sets 4, (r =1,2,...). Ab
least one of these sets 4, is dense in some open subset of B; there exists
an open interval I, , such that B~ I, < A,.

Let now B, be the subset of B consisting of points .« whlch belong
to no-such interval I, , for any possible choice of 4. We may write

Bo—B\U nd '~ B),
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and it follows that B, is closed in B, and hence compact. If B, is not
empty, then, by the argnment already applied to B, there must exist
some set A,e#, with A, of the second category in B,. There would then
exist zeB,, with 2 contained in some interval I, 4 o a8 above, so that B,
would not be minimal. Thus B, is empty, and every me¢B is contained
in some I, 4.

Since B is compaet, it is covered by a finite set of the intervals I, 4.
Sinee I,4 = A,, B is covered by a finite collection of sets 4., all of which
are in #; it follows that B itself iy in #,. Thus an arbitrary compact
get in &, is necessarily in & ; but by Proposition 4 (i) of [8] each generator
of #, may be taken to be compact, hence each generator of #, is in F,
and 80 #, < #,. We have thus established a contradiction, and so there
must exist BeF, such that no set 47, is of the second category in B.

CorOLLARY. In Lemwma 2, the set B may be assumed to be perfect.

Proof. This follows at once from the Corollary to Lemma 1.

‘We now describe two generalisations of the basic definition of inde-
pendence, for subsets of R. Suppose that F is a given subset of R; we
say (as in [8]) that a subset X of R is independent with respect to H, or
E-independent, if the relation

(1) Dlna.eB,
T=1

where %y, ..., ny are integers and w, ..., 2y are distinct elements of X,
is possible only if 0¢F and n; = ... = ny=0. This reduces to the stand-
ard definition of independence if & = {0}; it is clearly in general a more
restrictive condition.,

A less restrictive condition than independence is obtained if we
require that the coefficients », should satisfy an inequality of the form

@) Il <k (<7 <N).

We may say that X is independent up fo order k if the relation

N
1
S =0,
=1

where n,, ..., ny are integers satisfying (2) and @, ..., 2y are distinet
elements of X, is possible only if #; = ... = ny = 0. This concept has
already been used in the case k = 2 by Hewitt and Zuckerman [2], who
call such a set dissociate.

These two generalisations may be combined; we shall call the set X
E-independent wp to order k or, more briefly, (H, k)-independent, if re-
lation (1), where n,,..., ny are integers satisfying (2) and &, ..., 2y
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are distinct points of X, is possible only if 0e# and ny = ... =2y = 0.
It is clear that in general (&, k)-independence mncither implies nor is
implied by ordinary independence; we have weakened the condition
in one way and strengthened it in another.

ProprosITION 1. Let A be a given perfect subset of R, and E « set such
that B — ® and — B — 2 are of the first category in A for each xeR. Then
there ewists a perfect (E, 1)-independent subset of A.

Proof. Suppose that B = H, v F, v ..., where each set 4+ H.—g
is nowhere dense in 4. We may assume without loss of generality that
B B, c

‘We may now imitate the standard construction (see, e.g., [3], p.
20-21). At the first stage, choose two disjoint closed intervals B and B{,
of length not exceeding 1, such that BY ~ 4 and B’ ~ 4 are perfect,
and such that (B ~ 4)x (B ~ 4) does not cut any line

N1 %1+ Nay = Gy,

where a;eF, and |n,) <1, |ny <1

At the j-th stage, if intervals BY=, ..., BY) are mltla,lly Ppresent,
choose Bf) and BY) to be closed subultelvals of BU-Y, . . BY_, and BY
to be closed subintervals of BY~Y, so that

(i) the intervals BY) arve disjoint;

(ii) each B iy of length not exceeding j;

(iii) each set B(j’ ~ 4 is perfect;

(iv) the set (BY ~ 4)x
plane

< X (B ~ A) does not intersect any hyper-

LT A S

where a;cF; and |n,] <1 for 1<r <2,

This is always possible. To show this, let S be a fixed selection of
the integers ny, ..., 7.7, subject to |n,] <1 for 1 < » < 275 let the map fs
of R? to R be defmed by

fs(@yy ooy o) = Ny Ngi s

Then the mverse image under fs of the set %J; is nowhere dense in A2
Tor, if f5*(B;) were dense in some neighbourhood N of (g ..., ) e A”
we could suppose without loss of generality that N had the form

(J1m A)X... X (T ~ A),

where each J, is an interval such that J, ~ A is perfect. If then 7, is
chosen so that Nry # 0, and a, is fixed in J, ~ A for r £ 7y, the set

Ny By — Z Ty e

57

Ngd Byj = a5,
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is dense in J,0 ~ A, which is a contradiction. It follows that the union
of the finite collection of sets fg'(Fj;), as § varies through the possible
selections of the integers ny, . ,n‘,/, subject to |n.] <1 for 1<r < 2,
is nowhere dense in the set A‘ It follows that intervals BY) can be
chosen so as to satisfy (i)-(iv) above.
If we now write
al oo
AV = UBD A4 and A =) 49,

r=1 F=1
then clearly 4’ is a closed subset of A. It is perfect, since each open set
that contains a point of 4" must contain some set BY) ~ A, and hence
infinitely many points of A’. Given N distinet points of A since the
lengths of the intervals BY tend to zero as j tends to infinity, it follows
that if § is large enough these ¥ points will be in N distinet sets of the
form BY) ~ 4. Hence no linear relation of the form

N

E Nplly = @

can hold if aeli; (for j sufficiently large) and |n,] <1 (1 <r < XN). But
this implies that no linear relation of the form indicated can hold if aeE
and [n,] <1 (1 <r < N), which is what was required.

Remark. We could obviously secure by the same construction an
E-independent subset of A if we made the assumption that, for each
weR and positive integer m, the sets n 'E—x and —n 'E-—2z arve of
the first category in A.

We now turn to the application of Raikov systems to the algebra
M(R), that is to say, the bounded complex Borel measures of finite
total mass on R. For an account of the basic definitions and properties
of M(R) see, for example [5], § 1.3 (where the case of a general locally
compact abelian group is treated), or [1], Chapter V (the ring V* treated
there is in all respects equivalent to M (R)). We also require the basic
results on Banach algebra elements with independent powers, as given
in [7], and we use the notation and terminology of that paper without
further explanation. We denote by M (#) the closed sub-algebra of M (R)
consisting of measures that are concentrated on the Raikov system &.
We denote by M (#)* the complementary ideal of M (%), consisting of
all measures that are singular with respect to all measures in M ().
As a consequence of the existence of a complementary ideal, it follows
that if a measure peM () has an inverse u~* €M (R), then in fact u~' e M (F).
‘We may therefore apply the results of [7], in particular Proposition 1.7,
with & the class of translations and inversions.

ProrostrioN 2. Let & be a proper symmetric Raikov system with
a single generator; Zet H be a group that generates &. Let {P;} be a disjoint
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collection of subsets of R, with P = {JP; (H, 1)-independent, and for each
i let p; be a continuous measure concentrated on @ = Py (—P;). Then
the set of measures {u;} has independent powers with respect to M (F) and
is completely decomposable.

Proof. We may assume without loss of generality that the index-set
is finite, say ¢ = 1,2,..., N. Write p = p;+...+uyand @ =P o (—P)
let (v), denote the translate of the measure » by the real number z. We
wish to show first that if as, a,eM (F), then the measures a,u” and
(emu™), are mutually singular in the two cases (i) m s n, or (ii) m = n,
2 % 0. We may clearly assume for (i) that m < n.

Suppose first that a, and «, are concentrated on H, and that 4,, ...,
..., uy are all non-negative. Then the measures a,u”, (amp™), are con-
centrated on the sets H 4 (n)Q, H-4 (m)@—z respectively. Evidently if
these two sets are disjoint, the two measures are mutually singular. If
the sets are not disjoint, we have

hto+. o2y = haty1+.. .+ Ym—2
for some hy, hoeH and @i, ...,%n, Y1, ..., Yme@. Denote by S the set
of points (%, ..., #,)eR" such that, for some heH, we have
ht+ao+...+ o e H4 (m)Q —z;
since H is a group, this is the set of points (ay, ..., ®,) such that
Tyt e H(m)Q—2.

If we can show that (u X...Xw)(S) =0, then it will follow that
Lan X (X ... X p)](H X 8) = 0, which implies that (a,u™) (H + (m)Q —z) = 0.
’Let 2=NW+y+...+Yn—2—...—z,; each x,y; is of the form
+Px; With preP. Leb also @, 4; = + Py, With pyeP. Then, if py, ..., Byn
were all different, and different also from p,...,p, 4ny there would

be in either of the cases (i) or (ii) a non-trivial linear relation among
the p,p; of the form

D) Ept D) kpieH,

which is not possible. Thus S is contained in a finite union of sets of the
form

{w: @+, =0} (i #4)
for o —a; =0} (i %))

{&: =)} (any 7, j)
{#: @ = —a}} (any 4, j)
{o: @ = yi} (any 4, j)
{o: m= —y;}  (any i,7),
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and it is clear that these are all of (u X...Xpu)-measure zero, since u is
continuous. It follows that (e,u")(H+(m)@—2) =0, and s0 a,u” and
(o ™), ave mutually singular.

We show next that if a; and a, are concentrated on H, and 7y, ...,
c .y TN,y 81y ...y Sy ave positive integers or zero, and we write

T k3 & 8
o =aypt g, A =aaprt ..,

then the measures 4; and (2,), are mutually singular unless (ry, ..., 7~)
= (84,...,8y) and 2=0. Let r =r+...47y and & = $;+...+8y;
then ,, 1, are absolutely continuous with respect to a;u”, a4’ respec-
tively. The mutual singularity of 2, and (1,), follows from the mutual
singularity of a;u”, (ayu’), in the cases r # s or r =, 2 # 0, by what
we have just proved. If r = s but (r, ..., 7x) # (81, ..., Sy) We can use
a very similar argument. Since 1, is concerntrated on H--(r)@i+-..
o+ (ra)Qx and A, on H--(8))Q1+...+(sy)Qx, We wish to show that
if § is the subset of R" consisting of points (2, ..., 2,) such thab

Biy ooy B €Quy  any Brorpyase--y Brely
and
oyt BeeH A (1) Q1+ -+ (53)Qx—2,
then
(B X oo X oy X o X oo Xpn¥(8) =0

(where we have r, factors g, ..., 7y factors uy). Since we must have
% > 8 for some %, we may apply the argument already used, but this
time with @ in place of @, to show that § must be econtained in a finite
union of sets of the kind specified. Each of these sets has (4 X... X g1 X
X fiy X .. X iy)-Ineasure zero, and the required result follows.

We next relax the condition that the measures o, and a, should
be concentrated on H. Sinece H is a group that generates &, «; and a,
must be concentrated on F,-subsets of countable unions of translates
of H. Suppose that for ¢ =1, 2 we have

o
ay = _S_ ik y
k=1

where a;; is concentrated on H— 2. Then (u).s, and (agf)_,gl. are con-
centrated on H, and the measures

CR R DU QR Y R (%) RO, . P
are mutually singular if (ry,...,7~) 7 (81, .-+, S¥), which is the same as

saying that appl...gd and aypi... @Y are mutually singular for

all j and %. It follows then that the measures «; pit .. g and appit... Wy
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are mutually singular. There is now of course no need to include explic-
itly the possibility of one of the measures being translated through e,

since this is covered by the assumptions we have made about «; and a,.
©

Suppose that « = } «;, where o; is concentrated on I —z; (2 s %,
F=1
if j # k). Then, by what we have proved above,

3) ot < ¥ = D eyt o w21,
=1

since a;pi* ... u¥ and {(opprt ... ,u;],")zk_aj are mutually singular. Moreover,
o

if @ = Z’aj, where the «; are concentrated on disjoint subsets of H,

J=1

then the measures ojui'... ¥ and wuy'...pY are concentrated on

disjoint sets if j # k, because of the (H, 1)-independence of P, so that
o

once again (3) holds. So, if we can write « = 3 ¢;¢;, where the ¢; are
7=1

(in general _complex) constants and the measures o; are non-negative
and have disjoint supports, we have

3 . | d
et o il = || X eraiait oo || = 3 lesl el . Vsl
7=1 7=l
= lalllll™ ... ™

‘We have used here the elementary fact that the norm of any product
of non-negative measures is equal to the product of the norms of the
measures. Since any measure a<l (#) can be approximated arbitrarily
closely by a sum 2 ¢ja;, as above, it follows that the relation that we

i=1

have just proved holds for and aeM (#) and non-negative uy, ..., uy.
It follows that for such measures we have

| by

2 arl...ﬂvﬂ?i'l e /"TJVV” = E ”“rl...‘rN”HNl“rl o Nual™

for any polynomial in the u; with coefficients in M (#); that is, the set
{w} has independent powers with respect to M (%) if the u; are non-
negative.

Finally we remove the restriction that the measures By eeey b
should be non-negative; the argument is that used in Proposition 2.2
of .1[17] (of which the present Proposition iz a generalisation). We can
write

p= [ fdlu,
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where f i8 a function of absolute value 1. By approximating to f by suitably
chosen step-functions, we can approximate to u; by sums 3 ¢;u;, where
the u; are non-negative measures concentrated on sets Py; with P; = (U Py
and Py ~ Py = @ if j 5= k. The set of all such {u;} (as both 7 and j run
through their respective index-sets) has independent powers with respect
to M(Z), by what has just been proved, and the set of all sums {3 ¢;, ;)
has independent powers with respect to M (F) also. By Proposition 1.2
(iv) of [7], the set {u;} has then independent powers with respect to
M (%), as required.

The complete decomposability of the set {u;} is clear since each u;
is continuous.

THEOREM 1. Let %, be a symmetric Raikov system with a single gener-
ator, and let F, be a strictly larger symmetric system; let & >0 be given.
Then there exists a measure pelM (F,) such that

(@) Yol =35

(ii) 0 < h{u) < & for all symmetric homomorphisms h;

(iii) u has independent powers with respect to M(F,).

Proof. Let H be a group that generates #,, and let 4 be a perfect
seb in F, such that H—w is of the first category in 4 for each zeR; such
sets exist, by the Corollary to Lemma 2. Now apply Proposition 1;
let P be a perfect (I, 1)-independent subset of A, and write P=P,upP,,
where P, and P, ave disjoint perfect sets. Let 4, and 1, be continuous
Hermitian measures concentrated on P, v (—P,) and P, v (—Ps) respe-
ctively. By Proposition 2 the set {1, 4.} has independent powers with
respect to I (%,); the rest of the proof now follows as in Theorem 2.3
of [7]. For any positive integer n, the measure

pon = (12 8~ Z)" 23

has independent powers with respect to I (F,), since the set {A;, As}
has this property; evidently if 4 = ga/lull, then g satisfies (i) and (iii).
Tf n is chosen so large that 27" < g, then (ii) holds also; for since 4, is
Hermitian we have

— Al < 1 (2q) < A4
if  is a symmetric homomorphism. Then
2

0 < ) < Al 1]

and since

flamll = 2" 120" 1221

(ii) follows.
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TuEOREM 2. Let &, be a symmetric Raikov system with a single gener-
ator, and Fy a stricily lorger symmetric system; let & > 0 be given. Then
there exists a continuous Hermitian measure yeM (F,) such that

@ lpll =15

(i) 0 < h(u) < e for all symmetric homomorphisms h;

(i) of aeM(#,) is such that inf|h(u)] <1 and veM (F)* is such
2

that h(v) =0 for all non-symmelric homomorphisms h, then (a- pu-»)
has mo inverse in M(R).

Proof. Let P, and P, be as in Theorem 1;let u, and u, be continuous
Hermitian measures concentrated on P, u (—P,), P, u (—DP,) respec-
tively, such that

lesall = llaalt = 1

and 0 < h(u,) < min(d, 3e), 0 < h(u) <min(k, fe) if 7 is symmetric.
Write g = p; 4 p.. Since {u,, #,} has independent powers with respect
to M (#,), by Proposition 2, we have ||y =1, so that (i) holds; clearly
(ii) holds also.

‘We now prove (iii); as in the case of Theorem 1, the proof is essen-
tially the same as that of Theorem 2.5 of [7], with minor variations.
There are two possibilities: either a=' exists or it fails to exist. If the latter,
then (a+ u-+»)"" fails to exist also. For, if (a4 p-v)~" were to exist,
we could write it as g+, where feM (F,) and yeM (F,)". Since M (F,)*
is an ideal and u,veM(%,)*, it follows that # = a~!, a contradiction.

If o~" exists, suppose that

ceo(a) and o] = inf|h(a)| < 1.
h
Since M (#,) is closed under translations and inversions (this last
fact is easily established by the argument used in the preceding paragraph),
we can apply Proposition 1.7 of [7] to show that there exists a homo-
morphism A such that

()] = ()l =3, Byt ) = —ec.

This h cannot be symmetric, in view of (ii). It follows that h(») ==
and we then have

h(a) =c¢,
’

h(ad-p49) =¢—e¢+0=0,

80 that (et ) has no inverse in M(R).

We have thus succeeded in showing that if #, and &, are symmetric
Raikov systems, #; having a single generator and &, strictly larger
than &, all the Wiener-Pitt pathology that occurs in M(R) as a whole
oceurs also between M (#,) and M (%,). While it would certainly be of
interest to refine this result by showing that the pathology occurs between
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any two similarly related algebras of a larger class (for example, the
class obtained by dropping the qualification “symmetric” for the Raikov
systems in question), perhaps the problem of specifying some non-patho-
logical subalgebras of 3 (R) offers a greater challenge. Very little is known
about this, and it seems likely that quite new ideas and techniques will
have to be devised in order to deal with if.
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