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1. Introduction. Let I”(Z) (1 <p < o), where Z= {0, -1, +2,...},
denote as usual the Banach spaces. of all doubly infinite sequences x
x = {w(n):neZ} of complex numbers such that

oo

lely =( 3 lo)P)?< 0o (1 <p<oo)

and such that
oo = 5D (j& ()] : 1) < o0
when p = oo.
I a1, then it is well-known that the doubly infinite matrix (a(n—m) :
”, m.eZ) defines a bounded operator, which is called a Laurent operator,
Lo: %> axx of I into I for all 1 < p < oo, where * denotes the con-
volution operation. The spectra of the Laurent operators Lq, ael', were

shown to be equal to the sets {Za’(n)e"”": i} <=} by Toeplitz [13]

for the case p =2 and by Krabbe [5] for the ecase 1 <p<oo.
Krabbe based his proof on Wiener’s celebrated theorem (see [6],
p. T1-72) concerning continuous functions whose Fourier series converge
absolutely and the fact that every Laurent form ecan be approximated
by so-called regular Laurent forms. Recently, Bisen and Gindler [2] ob-
tained Krabbe’s result without nsing Wiener’s theorem. They based their
proof on the operational caleulus for bounded operators on normed
spaces and the approximation theorem referred to above, and so ob-
tained as an application another proof of Wiener’s theorem.

The purpose of the present note is to show that the same results hold
for the Laurent operators of the form L, aelt, on Orlicz spaces 1°. We
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shall obtain them by using some elementary results from classical Fourier
apalysis and some results of the theory of commutative Banach algebras.
We shall be able to avoid the approximation theorem referred to above
and consequently we shall not need to use the Newburgh convergence
theorem (see [11], p. 36-37) for the spectra of certain convergent sequences
of operators. Furthermore, we shall also determine the spectral radius of
the Laurent operator L,, ael. At the end of Section 4 we shall present
another proof of Krabbe's theorem for the P-spaces (1 < p < o), the
essential ingredients being a simple form of the well-known M. Riesz
convexity theorem and Theorems 4.3 and 5.3.
In the last section we shall consider Laurent operators

Ly = (f('n—m) tn, meZ),

where {f(n):neZ} is the sequence of Fourier coefficients of a complex
function of bounded variation F on |f] < =, where F' is supposed to be
normalized as to be right continuous for —= <t < = and left continuous
at t = w. It was shown by Stetkin [12] that such Laurent operators are
bounded on ¥ (1< p< co) and Hartman [3] showed that the spectrum
of I, is equal to the closure of the range of . We shall show that such
Laurent operators are bounded on reflexive Orlicz spaces I° and show
that Hartman’s result also holds in this case. We shall also deter-
mine the spectral radius of L;, and as an application we can show that
the norm of the Hilbert transform on ¥ (1< p < oo) is bounded
below by =.

2. Orlicz spaces 1. In 1932 W. Orlicz (see [10]) introduced a new
class of Banach spaces of measurable functions which contained the
classical Lebesgue spaces as special cases. To this class of spaces we justly
refer to nowadays as the class of Orlice spaces. It is beyond the scope
of the present paper to describe here the various new developments in
functional analysis which were prompted by the theory of Orlicz spaces.
Let me suffice by stating that the work of Professor W. Orlicz in the theory
of spaces of measurable functions has been an important source of inspi-
ration to the present author in his work on the theory of Banach function
Spaces. .

In this section we shall briefly recall the definition and elementary
properties of the Orliez sequence spaces I”. For a more detailed account
of the theory of Orlicz spaces we refer the reader to [7] and [14],

Let v = ¢(u), u >0, be a non-decreasing real function of % such
that ¢(0) = 0, ¢ does not vanish identically, and ¢ is left continuous
for % > 0. Furthermore, let y be the left continuous inverse of ¢, i.e.,
¥(0) =0 and y(o) =sup(u:p(u) <o) for v >0, and so p(p(u) <
<o (u>0) and p(p(u)+) >u (u = 0)

=
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If ¢ and u satisfy the above conditions, then @ and ¥ defined
for u,v =0 by

*

o(u) = [p)at, Po)=[vp)a

0

are called complimentary Young functions (W. H. Young, 1912).

For example, ®(u) =4 (#>0) and P(v) =0 for 0 <v <1 and
Y(v) = oo for » >1 i3 a pair of complimentary Young functions. If
1<p<oo and ¢ is defined by p~'4¢ =1, and if p(u) =",
p(0) =" (1,0 2 0), then Bu) =p~'u’, P(v) =g'%" (4,2 >0) is
also a pair of complimentary Young functions.

A pair (D, ) of complimeniary Young functions satisfy the following
important inequality, known as Young's inequality:

wv < D)+ (v) holds for all w,v > 0;

equality occurs if and only if one at least of the equalities v = ¢(u), % = p(v)
holds.

In this generality Young's inequality was first proved by A.C.
Zaanen (see [1471, p. 77). Zaanen’s proof is somewhat geometric in nature.
‘We ghall present now a new and purely analytic proof of Young’s ine-
quality. Tt will be based on the notion of the spectral measure determined
by a measurable function (see [8], sections 2 and 4). From Lemma 4.4
of [8] it follows that the spectral measure determined by v is the Radon
measure dp. With this observation in mind using integration by parts
and the left continuity of ¢ and v, we obtain the formula

Ow) = [p)dt=upw)— [ty =up(u)— [tyou()dy
(0,%) (0,%) (0,00)

= up(w)— [ v(0)x0mlr @),
(0,00)

where yo, denotes the characteristic funetion of the open interva.l (0, %).
Since for all @ >0 we have ¢(u) = sup (v rp(v) << u), we obtain @ (u)
= up(u)—¥(p(w) for all w>0. Then
0 < wv = ugp () +u(v—p(w) = B (u) - ¥ (v) + ¥ (g () — P(0) + u(v—p(u)
= O (u)+¥P)+a,
Wwhere

a= f p(f)di+ulv—pw)).
(v,p(4))
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Now observe that if » >¢(u), then

p(0)dt = plp(w)+)o—p @) > ulo—pw),

(p(u),0)

0, if, on the other hand, » < ¢(u), then

— ) ylp(w))

ie, a <

[ v < (o) < ulp(u)—1),

(©,3u)

and so again a« < 0. This proves Young’s inequality. We have equality
if and only if ¢ = 0, and so, by interchanging the role of ¢ and y we obtain
that equality holds if and only if either » = ¢(u) or % = (v). This finishes
the proof.

Let (@, ¥) be a pair of complimentary Young functions and let
P = P(Z%) denote the set of all doubly infinite sequences # of real numbers
such that z(n) > 0 for all neZ.

To every weP we assign the numbers

oua(?) = inf(K: k>0 and 2 (ko (m)) < 1),

eo(@) = sup ( Y a(n)y(n) :y <P and oay(y) <1).

It is well-known (see [7]) that ps and oye ave saturated funciion
norms in the sense of [9]. Furthermore, g, as well as oys has the Fatou
property. The norms purs and pp are equivalent; more precisely, we have
(see [71)

oMo < 0o < 20m0.

The corresponding Orlicz spaces 1™®(Z) and I”(Z) are the spaces of
doubly infinite sequences f of complex numbers such that o ([f])<< 00
and with the norms [|flae = ems(lf]) and ||fls = eql|fl) respectively.
Since gy, and g, are equivalent, the spaces I™® and 1° contain the same
elements and are homeomorphic as normed spaces. The elements of
these spaces can be characterized independently of the norms. We have
fel™?®, and so0 also fel?, if and only if

Foo
D) B(klf(n)]) < oo
for some %k = k(f) > 0. For the sake of convenience we shall denote the
linear space of sequences f satisfying the latter condition by ().
Since the norms gue and g, have the Fatou property, the Orliez
spaces 1'® and 1° are complete. Furthermore, the associate space of [*°
in the sense of [7] and [8]is I¥ and the associate space of 1” is ¥, Thus

icm°®
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the Orlicz spaces are perfect, ie., they are identical with their second
associate space. For the norm ||-|ly, this means, in particular, that

e = sup (3 V If(m)g )] = gl <1).

Holder’s inequality takes the form
+o0
2 Iftnyg(m)]

Observe that the spaces I° (I®) are intermediate spaces, i. e, It = (D)

= 1%, and |lallo < Ky lall, and ||, < K, Ja]l, for some constants K, Ky,
and similarly for the norm |- |,.

Finally, we recall (see [7]) that the elements of I(®) can also be
characterized as follows: fel(®) if and only if

+co
Dif)g(n)f < oo

< [ fllazollgll-

for all gel(P).

3. The imbedding of I' in [IM®] and [I?]. It is well-known that I in

its usual norm
+o0
lale = 3 la(n)]

iy a commutative Banach algebra under convolution. The Banach algebra I*
has a unit ¢ determined by e(n) = 0 for n # 0 and e(0) = 1. By e we
shall denote the element satistying e,(n) = Orn, neZ, where 6 is the Kro-
necker delta. To every ael! we assign its Fourier transform

+00
A = D ane™, <=

It is well-known that the mapping a — A of I* onto the algebra of
continuous 2n-periodic functions with absolutely convergent Fourier
series iy an algebraic isomorphism and iz norm decreasing.

Let (&, %) be a pair of complimentary Young functions. By [1%°]
([7*1) we shm]l denote the complex Banach algebra of all bounded linear
transformations of I%(1% into (1)

We begin with the following simple lemma:

Lemyma 3.1. For every ael, the Laurent opemtor Lue[lm], and- so: ulso
Lge[12], , .
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Proof. From ! ¢ (@) < I it follows that for all ael' and for all
zel(P) the infinite series
+00
2 a(n—m)z(m)

M=—00

converges absolutely for all wel(®). In order to prove that L,e[1”] we
have to show that

sup (la #zp : Jlalls < 1)< oo,
To this end observe that for all xel(®P) and y<l(¥) we have

+oo +oco

Dllexa)(m)lymi < > 3 |a(n)l|zin—m)||y(m)|

N=—00 M=—0c0

+00 00 -
= Dlami( D l—m)llym)l) < lalyliolls 9l

Ne=—00 M=—o00

by Hoélder’s inequality and the fact that the Orlicz norms are trans-
lation invariant. Hence,

sup(fla *alls : 2lle < 1) < llafl,.

The proof for the space I™® is of course the same.
For all ael, we set

alle = sup ([l +zls : [lofle <1) = |||al|ls
and

| Lallare = sup (lla*aflus : 1#5)ae < 1) = |l|a}llras-

Then by (3.1) we have |||a][ls < llall, and {|[a]]|ue < llall, for all aclt.

Further, a = a * ¢ implies that |alle < llells- |1]a]|ls and |allus < llellas|||#]| 30
for all a<lt. Observe also that

27 llalll3z0 < llalllo < 21|l0][]2z0
for all aelt.

Lemma 3.1 can now be strengthened to the following statement:

THEOREM 3.2. The mapping a— L, of I* into [1°] ([1"®]) s an alge-
braic isomorphism and norm decreasing.

) Proof. It is easy to see that a b — L, (L;). That the mapping & — L,
is one-to-one follows from the above inequalities ||afl, < llello | Lalle and
lallare < llellaro 1 Lal pro-

Under the norms *1lles Il 1]la0 the space It is also a commutative
normed.algebm. Their closures in [7°] and [1™*] will be denoted by 2 and Iy
respee!:wely. Furthermore, we shall frequently identity I* with the com-
mutative subalgebras of [1%] ([**]) of the Laurent operators of the form Lq.

icm
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Concerning ||| |/ls and |||*{/|lys we have the following result:

TuoreM 3.3. For all acl* we have ||lallle = ||lal]iare-
Proof. Observe that

llalllo = sup | 3 @iy : el < 1, Iylare < 1)
T,k

= sup (| Y sy,

ke

Halle < 1, 'l < 1)

= sup (lla*ylare : 1 lare < 1) = |llall|are,

and the proof is finished.

Remark. Of course |||a|]|yw is the norm of the transposed matrix
and so is equal to its norm.

4. The spectra of the elements of the algebras I;, and Iij,. Let X be 2
commutative Banach algebra with unit e. The set of all non-zero homo-
morphisms of X into the algebra of complex numbers is usually referred
to as the Gelfand representation space of X or the spectrum of X and will
be denoted by sp(X). Since X has a unit element, sp(X) is a closed sub-
set of the unit ball of the Banach dual X* of X, and so sp(X) is a compact
Hausdorft space in the weak*topology of X*. If acX, then we recall
that its spectrum sp(a, X) consists of all the complex numbers 4 such
that le— a is singular. Since X has a unit element, it follows that sp (a, X)
= {h(a) : hesp(X)} (see [11], (3.1.6)).

Tt is well-known that the non-zero complex homomorphisms of the
convolution algebra I' are of the type

+00
ht(a) = 2 anemti —n<isw
“o

(see [6], p. 71-72), and sp(l) is homeomorphic to the interval (—w, ],
where —x and ~ are identified. )

Since the commutative Banach algebras % and i, have equivalent
norms, their spectra are identical. We shall now r.letermine th;a spectrufn
of 7. To this end, observe that |[|-]lle < -1, implies that sp(ls) = sp(t )
Since the Banach algebra It is commutative, completely regular and semi-
simple (h(a) = 0 for all hesp(l) implies a = 0), it follows ﬁ'OHT a general
theorem of C.E. Rickart (see [11], Corollary (3.7.7)) that mdged for
every Young function @ we have that sp(lp) = sp (11 and that their topo-
logies are the same. For the sake of completeness we shall present a proof
of this result here for this special case.

Trmormy 4.1, For every Young function @ we have sp(lg) = sp(B).


GUEST


W. A. J. Luxemburg

Proof. Observe that sp(ls) is a closed subset of sp (i*). If there exists
a number — = < f, < = such that %, ¢sp(lp), then for some & > 0 we infer
that [t—1,| < & implies t ¢sp (ip). Liet acl* be such that

+00

A(t) = ) a(n)e™
satisfies A(f) =1 for all teU, = {t: [t—1] < 8}, A(t) =0 for tesp(ly)
and 0< A(f) <1 for all |{| < w. Since A(f) =0 for all tesp(ly), it
follows that o is in the radical of 13, and so the operator L, , has
an inverse T in 15 It is obvious that there is an element bel' such
that 0 < B(t) <1 for all || <=, B(t,) =1 and B(t) =0 for all ¢¢U,.
Then, since I* is semi-simple, it follows that b(e—a) = 0. Hence,
0 = (Ly L, o) T = Ly(Le_oT) = Ly L, = Ly and a contradiction is obtained
since by Theorem 3.2 the mapping ¢ — L, iy an isomorphism.

From Theorem 4.1 we can now at once draw the following coneclusion:

THEOREM 4.2. For every Young function @, the spectrum

(1] < =)

e
sp(a, [5) = 5p(a, la) =1 Y aln)d™, |t <=} = sp(a, 1)
for all acl®. Consequenily, for every ael* the spectral radius »(a, 1) of @
satisfies
v(a, 1) =v(a, ls) = »(a, luo)

= max (IE‘0 a(n)e™

and similarly for ||| ||lme-

il < 7) < lllalllo < llall,

We shall now determine the spectral radius of a Lauvent operator
Ly, aclt.

THEOREM 4.3. For every acl', we have

max (lf a('n)eml <

In partioular, |llalll. < |llalllo and [llalll, < |{lalllxe for all aclt,
and if a(n) >0 for all neZ, then |||allls = |||oll|lxa = lllallls = llall

Proof. For every ael® we have by definition

=) = lllall]s.

Hallls = S“P(Iﬂ:f a(n) (}Sw(n-k)y(k)), el <1 and [yl < 1).
Hence,

IZ a(n)e™

< llallls

icm
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will follow if we can determine two sequences {m}, {y} (I=1,2,...)
of elements of 1*(Z) such that jml, <1, lyf <1 (I=1,2,...) and

00 .
> wy(n—T)y:(k) tends to ¢ as I co boundedly for neZ. To this end,

o0
let |t <n and let &(t) =1/2 whenever —t,—1/I1<t< —1,+1/,
t # 4= and zero otherwise and if 4, = —= we let &;(f) =1 for += < ¢
L m—1/l and zero otherwise and similarly for #, = ». Then we set f; = g;
= 1/27r51, and hence ||fyll; = |gill = 2=. If {w;}, {y;} are the sequences
of Fourier coefficients of f; and g, respectively (I =1,2,...), then [z

=yl =1 and
+oo
| 2 mln—Ew(b| <1
+00

for all neZ. Now

+00

D an— )m(k)~w f Sy e™ s

k=—c0

and it tends to &"

| X am)e™| <|llallls

In order to prove the converse inequality observe that if aell, then

Y boundedly as I — oo. Thus we obtain that

for all [f)] <=

Ilallz = sup(lla el : flefl: <
~on(| [15

[[lall]: < max (’2 u(n)e"’“l: 14l gn).

Since the spectral radius is always less than or equal to the norm,
the stated inequalities follow. If a(n) > 0 for all n<Z, then setting ¢ =0
we obtain thait

llafl, = > a(n)

N a1l < 1),

and so

< Mlallls < llallle < falls,

and so all the inequalities are equa]ities. This completes the proof of the
theorem.

Remark. There exists a converse to the last statement of the pre-
vious theorem. Namely, if a(n) > 0 for all neZ and a *x<|(D), for all x el(D),
then aclt, provided D(w) >0 for all u >0. The proof is as follows. If
a¢lt, then there exist natural numbers 9, such thabt

D, 7
Ma)y>nt (n=1,2,..).

k..',p" -
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Let {I,} be a sequence of disjoint intervals of Z of length 4p, and
let J, be an interval with the same midpoint as I, and of length 2p,.
Let y, be defined by @(y,) = (n2p,)~". Define & by x(k) = y, if kel,
(n=1,2,...) and z(k) =0 otherwise. Then xzel(P) and from y(%)
= (ax*z) (k) >n%y, i ke, (n=1,2,...) it follows that

+o0 © o oo
D o((yk) = 3 Y o((y(k) > D' 2pa®(intyn)
ey =10y, 1
= ané(;m/zyn) = 2 2”}’%@(77») = 2 ot = 0,
in>1 inzl inzl

where 4 > 0 is arbitrary. Hence, y ¢/(9P) and a contradiction is obtained.

For a similar result due to A. C. Zaanen for the spaces I”(—oo, +o0),
1 < p< oo, we refer the reader to [16].

5. The spectrum of a Laurent operator I, ¢[1°], a <I'. Let X, be a closed
subalgebra of a Banach algebra X with unit. If a¢X,, then in general
sp(a, X) < sp(a, X;). In our case, Iy (U) is a closed subalgebra of
[1®] ([F**®]), and so for all ael' we have

sp(a, [1”]) = spla, (1)) < sp(a, p) = sp(a, liro).

We shall show, however, that these gpectra are equal.

We shall need the following two simple lemmas.

Leyma B.1. If Tely and T™'[I%], then T commutes with the ele-
ments of 1y, and similarly for lpjs.

Proof. Since I; is a commutative subalgebra of [I5], it follows that
for all Sel; we have § = STT~'= 78T}, and so T°'8 = ST-! for
all Sely and the proof of the lemma is finished.

From the spectral radins theorem for commutative algebras (see
[11], (3.1.7)) the following result follows immediately:

LeMwmA 5.2. Let Tely and let X be a closed commutative subalgebra of
[ls] containing 1. Then

sup (2 ()| : hesp(p)) = sup(|h(T))| : hesp(X)),

and similarly for 1i4.
We are now in a position to prove the main result.
TeroREM 5.3. For all acl, and for all Young functions @ we have

s0(a, ") = 8D (La, o) = 5D (La, lita) = 80 (La, [1°]) = sp(Lq, [1*%])

and the spectral radius of L, is equal to [[a]]]2-

Proof. Wehave only to show that if a1, then 8D (La, 1) = 8P (L, [17])-
To this end, we have to show that if a<l* and Lzt exists and is an element

icm
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of [1”], then Lz els. In order to prove that L7 'el}, we have to show that

h(La) # 0 for all hesp(l}). Assume this is not 80, then by Theorem 4.1,

there is an element ¢, such that |t <  and 2a(n)d™ = 0. Let = L3

and set again o
A@) = Yam)e™ (1t <=).

Then £ > 0 implies that there is an open interval I in (— =, ) such
that fyel and I < {t: 4@ <1/26). Tt is easy to see that there is an
element bel' such that 0 SB(H) <1 (Jt| <=), Blf) =1 and B(t)=10
for t¢I. From Lemma 4.1 it follows that there is a commutative closed
subalgebra X of [I°] such that L;'eX and o = X. Then I = Ly L, L3
and Lemma 4.2 imply that

sup {[h(Ly)| : hesp (i) = sup (|h{Ly)| : hesp (X))
== sup (|h(Ly Ly Lz %)| : hesp (X)) < Bsup (|h(Ly Ly)] : hesp (X))
= psup ([h(LyLy)| : hesp (lo)) = pmax (|4 (1) B(z)] : |z <) < B(L28) =1/2.

But
Sup ([1(Ly)| : hesp (i) = max(|B(@): jt| <=) =1,

and a contradiction is obtained. This completes the proof of the theorem.
Remark. If 1 <p < oo, then Theorem 5.3 states that

SO (L [(°]) = {Ja(n)e™: [f <=} for all aell.

This result is due to Krabbe [5]. We shall bresent here another proof
of Krabbe’s result.

It one can show directly that |llalll, < |llallle (|llallls < |lal]laze)
for all ael'; then it follows from Theorem 4.3 that sp(lt) = sp(l}) and
another proof of Theorem 4.1 was obtained. The final result would follow
then in the form of Theorem 5.3. For general Young functions I have
not been able to prove the above inequalities directly, i.e., without using
Theorem 4.1. If, on the other hand, we deal with P-spaces (1 < p < oo),
then these inequalities follow immediately from the celebrated M. Riesz
convexity theorem (see [15], p. 95). Indeed, from the M. Riesz convexity
theorem it follows thait there exists a constant § = 6( p)such that 0 < << 1
and [llalil, < |||e/][}|llalllz™", where 1/p+1/g = 1, and so by Theorem 3.3
we obtain |||a]||, < [||al|l, for all 1 < p < co. This proof bages Krabbe’s
result on the basic properties of the convolution algebra I, the spectral
radius theorem, the classical Riesz-Fischer theorem and the M. Riesz
convexity theorem.

6. On certain Laurent operators on veflexive Orlicz spaces I”. In [3],
P. Hartman determines the spectrum of the following kind of Laurent
operators.
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Let F(f) (Jt] <=) be a complex-valued function of bounded variation
and let F have the Fourier expansion

+00
Py~ Y fm)e™ (] <)

‘We shall assume that F is normalized as to be right continuous for
—= <t<x and left continuous at ¢ = =. We can assign to every such
F a Laurent operator L; as follows:

+00
y(n) = Y fn—ha(k), neZ.

According to a result of Stedkin [12], the Laurent operator L, is a
bounded operator on I° whenever 1 < p < oo, which is a consequence of
the faet that the Hilbert tramsform is a bounded operator on all 1"-spaces
with 1< p << oco. For such Laurent operators on the I*-spaces (1 << p < o)
Hartman showed that sp(ZLy, [I7]) = closure of the range of T.

A Young funetion @ is said fo have the property d, whenever @(u) >0
for all # > 0, and there exists two constants %, > 0 and m > 0 such that
O (2u) < m®(u) for all 0 < uw K uy. An Orlice space 1° (IM°) is reflemive
if and only if @ and ¥ have the property &, (see [7], p. 60).

If 1° (1) is reflemive, then the Laurent operator L, as defined above
is @ bounded operator on I°. This immediately follows from the result of
Ste¢kin for the -spaces (1< p<< co) and Theorem 6.1 in [1]. Then
essentially the same argument as given in Hartman’s paper [3] shows
that for every normalized F and for every reflexive Orlicz space 1%, sp (Ly,
[I°)) = closure of the range of F.

Finally, we would like to point out that a slight modification of
the proof of Theorem 4.3 shows that also in this case the spectral radius
of I; is equal to

[Fllle = sup([lf o], : (=], <1).

As'a consequence we obtain the well-known result that if H denotes

the Hilbert transform
+oo

ym) = D ak)/(n—k) (nez),
where 3" means that the terms with % = n are omitted, then the norm
1H]l, (1< p< oo) of the Hilbert transform satisties [[H llo = I1H|\q = (|1 H]|2
=, Where L<p< oo and 1/p+1/g = 1. Of course, for every reflexive
¥, we have also |Hlp > = and |Hyy >
Remark. In an oral communication D. Boyd pointed out to me the

following converse: If the Hilbert transform H is bounded on 1°, then 1°
8 reflexive.
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