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1. Introduction. An operator U, that maps a Banach space X into
itself, is called a Lipschitz operator, it U0 = 0 and if {Uf— Uy < K||f—gll
(f,geX) for some K > 0. The smallest K in this inequality is called the
bound of U. By Lip(X; K) we denote the class of all Lipschitz operators U
from X into itself with the bound not exceeding K. Let I' and ™ be
the space of Lebesgue measurable functions on a (finite or infinite) interval
(0,1). In his papers [9,10] Orlicz proved the following theorem (in the
case when [<C +-o0):

TrmoreM A. If UeLip(L'; Ey) ~ Lip(Z®; Ky), U is a Lipschitz
operator on an arbitrary Orlicz space Y, that is,

|Uf— Uglly < Eself—glaes  Frgel™,

where |||y is the morm of the space LY.

"fThis theorem was generalized by several authors to the case ‘where
the Orlicz spaces LY are replaced by rearrangement invariant Banach
function spaces X. For operators U given by an integral transformation
it was proved by Lorentz [2]; for the case when L is dense in X and U
is linear by Mitjagin [6]; for general case, but for quasi-linear operators
by Calderén [1], and for Lipschitz operators by Lorentz and Shimogaki
[4,5]. The present paper is concerned with interpolation theorems for
operators U of weak type (1,1) (see [11]). By o-Lip(Z'; K) we denote
the class of operators U satisfying U0 =0 and

(1.1) |Of— gl < Elf—gli, frgel

where || is defined for a measurable k by

(1.2) I = igg{ydn(y)}, duly) = mes{t: [h(®)] >y}
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Sinee {-Jf <|I-], holds, Lip(L'; K) ¢ w-Lip(L';K) stands, but
the converse does not hold. Now we call a Banach space X to have the
interpolation property for the class o-Lip(L'; K,) ~ Lip(L®; K,), if,
for each Uew-Lip(I'; K,) ~ Lip(L®; K,), U can be considered as
a Lipschitz operator from X into itself. The aim of this paper is to obtain
a necessary and sufficient condition in order that a Banach function
space X has the interpolation property for the class w-Lip (LY Ky ~
~ Lip(L~®; K.,). In what follows, 2 Banach space (X, |- ||), whose elements
are complex-valued integrable functions over the interval (0, 1), will be
called a Banach function space, if it satisfies the following conditions:

(1.3)
(1.4)

lgl < Ifl (3 feX implies geX and lgl < |fl;
0 <ful, Il S (n=1,2,...) implies fo = UfueX and ||fyl
= supf. B

It follows that the norm of X is always semi-continuous, that is,
0 < fu 4 f implies |f] = supl||f.ll. The space (X, [|-]|) is called rearrange-
n

ment invariant, if 0 < feX implies geX and [|f]] = |g|| for each ¢ equi-
measurable with f. Orlicz spaces and Lorentz spaces A(®P) and M (D)
(see [3]) are rearrangement invariant spaces. For non-negative number
a >0 the function f, is given by fa(z) = f(az), if ax <1, f,(x) =0 if
az >1. We write also

(1.5) 6af = fa-

It is easy to see that o, is a bounded linear operator on X, if X is
rearrangement invariant. The main theorem is the following:

C'EHEOREM 1. Let (X, ||I-) be a rearrangement invariant Banach
fulnc.twn 1spcwe. In order that X has the interpolation property for the class
m-L.lp(L 3 Ky) ~ Lip(L®°; K,.), it is mecessary ond sufficient that there

eaist positive numbers K and p (0 < p << 1) such that (2)
(1.6)

loalx < Ka™®, O0<a<1.

We ecall a ]?anach function space X to have the Hardy-Littlewood
Property and write X ¢HLP (see [3]), if feX implies 6,¢X, where

Y
1
0;(2) = sup _L( ) dt,
o<1/<lx y—x

(1.7 o<z<l.

((;; ﬁﬁ[ b ?eans that g(f) < f(f) holds almost everywhere.
0al|y denotes the norm of the linear operator vy, on X. (1.6) i i-
valent to the condition alloafly < 1 for an a > 1 [8]. ‘ PO out
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In course of the proof of Theorem 1 it is shown that the interpola-
tion property considered here is actually equivalent with that of HLP.
In Section 2 we use the following theorems:
TaEOREM B. X cHLP if and only if (1.6) holds. Furthermore, in this
case,

K
(1.8) =

1

104 < [ todsda) 151 <
0

for all mon-negative decreasing feX.

This theorem was proved in [3, 7] in case of 1 < +oo. It i, how-
over, easy to see that the result remains valid for an arbitrary rearrange-
ment invariant Banach function space X of integrable functions (or, more
generally, X of locally integrable functions) over 0,0, 0<l< +o0
(ef. [81, (9), and [7], Theorem 1). In Section 2 the proof of Theorem 1
is given. In Section 3 supplementary results are stated and a theorem
analogous to Theorem 1 for quasi-linear operators is proved.

9. Proof of Theorem 1. For a > 0, f denotes the e-truncation of f,
that is, f9(z) = f(2) if |f(®)] <a, fO(2) = asign f(z) #H [f(@) >
For a measurable iﬁmction f, f* is the decreasing rearrangement of |fi-
We write g 2 f, if 6" 20t < teal, for every 0<a< I, where
L. 18 the characteristic function of the interval (0, a). By D we denote
the set of all non-negative decreasing functions belonging to L'

LeMMA 1. There exisis a j)ositive number y such that gl < ylIfll holds
for each g, f with g 3 f, feX, if and only if (1.6) hglds.

Proof. Suppose first that (1.6) holds for X. By f we denote the fune-
tion defined by

; 17
(2.1) fx) =—w—jf(t)dt, o<a<l.
0
If feD, f coineides with 6. By Theorem B, X<HLP, hence feX.
Furthermore, on account of (1.8) we have

= K
Il = losdl < rﬁ;‘“f“-
We have also
(2:2) Ifzealt = [f@)de = Ifzoal-
0
Now assume that g = f, feX. For every a (0 < a< 1) one has

I9* zoallt < 172l = 17 2ol -
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From this and (2.2) it follows that
a
ff* )dz,
]
< K|filia—

et o

hence ¢* <i Since f «X and ||f Il p), we see that geX

and [lg) < [ < K)f/(1—p).

Conversely, if such a y exmts, then f must belong to X for each feD,
because f 2 f, as is shown ‘above. Therefore, X ¢ HLP ([3], Lemma).

The next lemma is analogous to that of [5].

LeEMMA 2. For Uew-Lip(L'; 1) ~ Lip(L™®; 1) and for feI' we have
Uf 3 f-

Proof. For each 0 < a <l we put 8 = (Uf)*(a). For arbitrary, but
fixed y with ¥ > f, we can find a measurable set e, such that mes(e,)
= dys(y) < a and yyz, <|Ufl. We can also find a measurable set e,
such that mes(e,) = a and

[frwat = [|f@)a

If y <f*(a), then

a4

< [fwar.

0

ydy(y) < f*(a)a

On the other hand, if « = f*(a)< y, then

(4 — @) doy(y) < (¥— @) dyvpap, (¥ — @) <N Uf~(UHOT.
Since Uew-Lip(L'; 1) ~ Lip(L®; 1),
1T (e <NTF)— T0Jleo < [1f9llee < @
which implies
|Tf— (T <
Therefore we obtain
(y—a)dyy) < | Tf—(UNHONT <N TF—-T

We have also adp;(y) = ames(e) <

|Tf =T (f)].

(FMT < I —Fs.
aa. Consequently, we get

a

<NF=1Oltaa = [1f~F|(0)dt-+ames(es) = [ *(1)ds.

0

Ydo(y)

Since y > f is arbitrary, it follows that

Q% Toali < “f*X(o,u)”D
Again, ¢ being arbitrary, we see that Uf = f holds,
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Proof of Theorem 1. Sufficiency. Suppose that (1.6) holds,
and let

Uew-Lip(L'; Ky) ~ Lip(I®; K..).
We put K, = Max(K,,K,) and U, = U/K,.
and define the operator V by
V= Uy(f+h)— Uk, fel!o L™.

¥V belongs to w-Lip(L';1) ~ Lip(L®;1). Hence for each feX,
Vf 3 f. From Lemma 1 it follows that VfeX and [TVf] < EK|fl(1—p),
which means

We fix heX ~n L®

K
O (f+h)— Tk <—"fsn

hence

. K
1Uof— Tohl = HV(f—'h)lK—l*_? If—nll, feL'.

For arbitrary f,geX, we consider the trunecations f™,g"™. Then
Uo(f™) and T,(g™) converge to U,f and U,g, respectively, in measure,
since Ujew-Lip(L'; 1). Thus for a properly chosen sequence n;, U,(f("))
and U,(g"™)) converge almost everywhere to U,f and U,g¢ simultaneously.
Since

) - K o " K
1Ta(f™)— Ta (g™ < Eﬂf‘”"—g‘“"ﬂ <q f—alls
we have

F .

1Tof = Tsglh < g lif— gl

1—p
by virtue of Fatou’s Property, which is implied by the semi-continuity
of §j-|l. Consequently, we ha.ve

10f— Ugll <

frgeX.

Necessity. If (1.6) does not hold, then X ¢HLP, and furthermore,

as is shown in [7], Theorem 1, there exists an feX ~ D for which fo ¢xX.
Now we define a linear operator T, which maps feL' v L™ into f, that is,

- 17
(TN (@) = fla) = — [0@1, 0<a<l.
[}
This operator 7 obviously belongs to o-Lip(Z';1) and to
Lip(L*®; 1), but can not be a Lipschitz operator from X into itself.
Therefore, X has not the interpolation property.
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3. Supplementary results, We denote by I T]lix the bO'LlT'J.d of a Lip-
schitz operator U from X into itself. In [5] it is shown that if

U eLip (I Ky) ~ Lip(LZ>; Ky),

then, for an arbitrary rearrangement invariant X, |[||U]|l|lx < Kx
= K |ollx where ¢ = K,/K;. Moreover, Kx is the best possible.
For the class o-Lip(L'; K;) ~ Lip(L°; Ke) We similarly have

TmmorEM 2. If X satisfies (1.6) with K and p (0 <p<l),
we have

(31 Tl < == e, 0 = Bl

More precisely, if we put y =0i1¢1§)11f~|1/llf i

(3.2)  sup{|[|Tlllx: Uew-Lip(L'; K;) ~ Lip(L7; Ky} = 7Koo lloelx,
¢ = K |K,.

The proof is quite the same to that of [5]. So we omit it. Determina-
tion of |jo,||lx for some fundamental rearrangement invariant spaces is
also found in [5].

When X is one of the Orlicz spaces, 4(p)-spaces, and M (p)-spaces,
the :conditions equivalent to (1.6) (that is, equivalent to X <HLP) are
given in [3], [5]. Thus these conditions are also equivalent to the inter-
polation property considered here. For example, as for Orlicz spaces M,
I has the interpolation property for the class w-Lip (L'; K,) ~ Lip (L°; K)
it and only if &, the complementary function of M, satisfies the A,-con-
dition.

When ||-|| of X is continuous, that is, f, | 0 implies ||f,ll | 0, we can
extend Theorem 1 to spaces X of locally integrable functions. In fact,
we have

TusoreM 3. Let X be a rearrangement invariant Banmach function
space over (0, co) consisting of locally integrable functions. The stalement
of Theorem 1 remains true if U is replaced by the unique extension of U
onto X.

The proof is derived from the fact that :We can prove that U is
a Lipschitz operator from Y = X ~ L' ~ L™ (equipped with the norm
of X) into itself. Since ||-|| of X is continuous, ¥ is denge in X, hence
there is a unique extension of U onto X, which is also a Lipschitz
operator from X into itself.
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‘Finally we give an interpolation theorem for quasi-linear operators
which is analogous to Theorem 1. An operator T is called guasi-linear,
it |T(AN)] = |2]|Tf] and

T+ o)l <ce{{Ifi+1Tgl}, f,ge Domain of T.

The following theorem is a special case of Theorem 10 of [1]. But,
for the convenience of readers, we show here a direct proof of it by
making use of the notion 3.

TuROREM 4. Let T be a quasi-linear operator of weak type (1,1) with
the bound K, and of type (co, oo) with the bound K. If a rearrangement
invariant Banach function space X satisfies (1.6), T is an operator from X
into itself and

2CK
1—p

(3.3) 17l < Max (Kyy Ko)-liffl,  fed,
holds, where K and p are the numbers appeared in (1.6).

Proof. ForfeX we prove that Tf 3 2¢K,f, where K, = Max(K,, K_),
which in turn implies (3.3) by Lemma 1. Putting T, = T/K,, we obtain
ITofI < [fl, 80d | Toglley < Iglo for feI' and geIL*, respectively. Since
[yt Rolly < 2[Rl + Ral}} holds, we have for fel,

ITofIf < 2¢{\T (F— F)E + TSI
For each a,0 < a<l, put « = f*(a) and take a measurable set e
such that mes(e) = a and [(ToN)*zpqli = N Tof 1eli- Then we get
ITof)* 200 = NTof) zelli < 26 {(IT0(f—F) 2elly + I Tof ) e}
< 26{lf —f)+ ames(e)},

because |7, < |flle- The last term iz equal to
a
2¢ [ £ (0@ = 2¢[f* 7.0l
o

Sinee o is arbitrary, we have T\f =2 2¢f, hence Tf 3 2¢Kf.

We note that condition (1.6) is also related fo an interpolation
property concerning with the complete continuity of linear operators.
This is studied in [8].
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A note on a Szegb type properties of semi-spectral measures
by

W. MLAK (Krakéw)

The present paper deals with some properties of semi-spectral
measures of representations of subalgebras of ('(X), provided such meas-
ures exist. The properties in question were first proved for representa-
tions associated with completely non-unitary contractions in [7]. We
try in the present paper to bring to light some prediction-free essential
points of the reasonings involved in the proofs of similar properties within
the frames of the general theory of representations of function alge-
bras. We also present some examples of operator-theoretic interpretation
of some simple features concerning funetion algebras in connection with
the above-mentioned properties of semi-spectral measures.

Let H Dbe a complex Hilbert space. The inner product of f, geH is
denoted by (f, ¢). Ifll stands for the norm of f induced by this product.
We write L{H) for the algebra of all linear bounded operators in H. {|T]]
stands for the norm of 7'eL(H), T for the adjoint of 7. I is the identity
operator in H.

Suppose we are given a compact Hausdorff space X. C(X) (Cr(X))
is the Banach algebra of all complex (real) continuous functions on X
with the norm

(*) flull = supju (@)
X

We say that 4 < C(X) is the algebra (strictly: subalgebra of C(X))
if the following conditions are satisfied:

(1) 4 is a closed subspace of ¢(X) which is closed under multiplica-
tion, ie. u,ved implies uved.

(2) The funetion u,(z) =1 belongs to 4.

(3) The functions of 4 separate the points of X.
The mapping ¢ : 4 — L(H) is called the representation of A if the
following holds true:

(4) ¢ is a homomorphism of 4 into L(H) such that ¢(u,) = I.
(8) llp(w)l < lluj] for every ued (jjul| is defined by (*)).

Studia Mathematica XXXI,3 16


GUEST




