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1. A gequence {#,} in a Banach space E is called a basic sequence
(respectively, an unconditional basic sequence) if it is a basis (vespectively,
an unconditional basis) of its closed linear span [,] in B (see [1]). It
is well known that {z,} is a basic sequence (respectively, an uncondi-
tional basic sequence) if and only if there exists a constant K >1 (re-
spectively, K, >1) such thab

) I i‘ s

for any scalars ay, ..., Onym (respectively, such thatb

@ |3 ] < ] 3

for any Sealars oy, ..., Ony 01y -cr) On with 64 <1, ..., [8,] <1); some
authors call this the K-condition. The least sueh constant O ({zn})
= minK (respectively, Cu({z,}) = minkK,) is called the comstant (respec-
tively, the unconditional constant) of the basic sequence {z,}; obviously
we have 1 < 0 < 0,. In the particular case whers ¢ = 1 (respectively,

. =1) {m,} is called a monotone (respectively, an orthogonal [5]) basic
sequence.

Tt is well known [4] that if {#,} is & basis (respectively, an uncondi-
tional basis) of a Banach space E, then the sequence of coefficient function-
als {fu} < E*(i.e. for which filz;) = 8y) is a basic sequence (vespectively,
an unconditional basic sequence) in the conjugate space E* (but, in
general, [f,] # B*). Therefore it is natural to ask what are the relations
between the constants of {z,} and {fx}, and the present note is devoted
o this problem. We shall give upper and lower evaluations of C({f.})

n+m
<K H 2 525
=1
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by means of C({z,}) and we shall show that although they are the best
possible (in the sense that for some bases they all become equalities),
they are, in general, strict. We shall also give an example of a biortho-
gonal system (%, f,) with [2,] = E and {f,} total on E such that {f,}
is an unconditional basic sequence but {z,} is not a basis of Z. Finally,
we shall show that if {w,} i3 a basis of B, then the constant (respectively,
the unconditional constant) of the sequence of coefficient functionals
associated with the basis {f,} of [f,] coincides with C({f.}) (respectively,
Cu({fa})-

2, We recall that the characteristic of a linear subspace V of a con-
jugate Banach space E* ig the gleatest number 7 = 7(V) such that the
unit cell {fe V||Ifll <1} of V is o(B*, B)-dense in the r-cell {f<Z*|||f|| < 7}
of E* (see [2]). Obviously, 0 < (V) < 1. By [2], theorem 7, we have

(3) 7(V) = inf sup .f( v )
s el

Hence, whenever (V) > 0, the canonical mapping ¢ of B into 7*
(defined by [p(2)1(f) = f(») for all wel, feV) is an isomorphism and

(4) el < llolf < ”97”17 (wel),

where we use the notation

flly = llp (@) = sup If ()]
111
We have proved ([6], theorem 1 and remark 1) that if {x,} is a basis
of a Banach space B and {f,} = B* is the associated sequence of coeffi-
cient functionals, then r([f,]) > 0 (%) and

_r
r(Tfa))’

whence the canonical mapping ¢ of B into [f,]*
we have (4) with V = [f,].
Thig being recalled, we can now prove
TeworEM 1. Let {#,} be a basis of « Banach space 1 and let {f,} = B*
be the associated sequence of coefficient functionals. Then

(6) E<r([u])O({mn}) < O({Fa}) < O({ma}).

(8) O({m}) =

is an isomorphism and

(1) Independently, Gapolkin and Kadec ([3], theorem 2) have proved, by
a different method, that the inequality »([fx]) > 0 is also valid for the more general
“operatorial bases” {x.} of K.
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If {w,} is an unconditional basis of E, we also have
(7) 1< (o)) Cul{nd) < Cul{Fad) < Cul{za))-

Proof. It is well known (and immediate) that O({z,}) = sup|s.ll,
where s, i8 the n-th partial sum operator, i.e. "

= Zfi(w) z;

d=1

(8) 8 (%) (weB,n=1,2,..).

Now, for the adjoint s of s, we have

= Zf(m'i)fi

whence, in particnlar,

(9) sn(f) (feBYn=1,2,..),

(10) shlyy(N = D f(@dfs = D) lp(@)I(Nf;  (Felfil, m =1,2,..),
i=1 g=1

where ¢ denotes, as before, the canonical mapping of ¥ into [f.]*. Hence,
since {p(xy)} is the sequence of coefficient functionals associated with
the basis {f.} of [fal,

(11) 0({fn}) = s‘up nsu |[f,] ”

and, taking also into account (4) for V = [ful,
(12) O({fa}) = sup lIsgzall = sup sup sup Lsa(H)1 ()]
llfll<1 ll-’l>i|<1
= Sup Sup Sup [flsal@)]l = sup supllsn(w Iz

n feqf]
ﬂf1[<1 i<t

> r(lfy])sup Sup llsn (@)l = 7 ([f;1) O({#a})-

SUPII&:»H = SUP lsall = C({mn}),

Conseq_uently, by (5), (12) and (11) we have (6). The proof of (7)
i similar, considering instead of {s,} the operators

= Zﬂ' ifi(w)m;

i=1

(@eE, 18, <1, ...

(13) S, (@)

Jeal <1,m=1,2,..).

COROLIARY 1. If {&,} is a monotone (respectively, orthogonal) basis
of B, then {fu} = E* is a monotone (respectively, orthogonal) basic sequence
and r([fu]) = 1.

CoROLLARY 2. Let {&,} be a basis of a Banach space B and let {f»} < B
be the associated sequence of coefficient. functionals. If r{[fa]) = 1 (in par-
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ticular, if [f,] = B*, i.e. the basis {w,} is shrinking) or, equivalently, if Bv (16). for T ! ) ) )
the camonical mapping @ of B into [f,1° is an isometry, then have y (16), for any positive integer n and any sealars ay, ..., a, we
(14) O({fa}) = O({ma}). v
If {&,} is an unconditional basis of B and r([f»]) =1, then we also HZ”’% = ("A - 2 2 ) €1+ asls + (ag—ag)es+ 26%61
have i=3
(15) Ou({fa}) = Cul{mn})-

%1——2 |+|a21+1a3—a4+ } .

Remark 1. Let us mention separately a part of formula (12) which
may be useful for applications:
Hence, since for Z las) 0 (n 23), m =1,2,..., we have

(12%) 0({fn}) == jup sup “sn(w)“[f;;] .
% i<l

3. Corollary 1 above shows that inequalities (6) and (7) are the a - s L Ny o
best possible. Let us now show that they are, in general, strict inequalities. T Z N Iy Z o] < 17 - 2 e
For this purpose we shall give an example in which simultaneously all o= o+ =3
of them are strict. 1] a, nim o 1 »

Example 1. Let {z,} be the following (unconditional) basis of the STl 2 7T (7 —1 ( [+ joa— aoH-Z !aazl),
space B =1: i=3 i=4

1 1 we obtain
(16) mlziely Ly = bp— 03, Ly == _761“‘3% (n=3,4,...);
{es} denotes the natural basis of the space I and 4 is an arbitrary number (20 ” Z a'imil o .7 ] +lagl 4 lag — ol + y los]
such that 0 < 4 <1. We have, for the f,<E* and h,eE* satistying fi(a) =t e = o
= ly(e;) = 8y (4,5 =1,2,...) 1 e a . : 1
SO <7(~;—Z—[]+[aa|+iaa—a21+21ad)=ﬂ[2m
a7 Ji= 171'1'}'2 hiy fa=the, fo=lathy, [fo=Ty =3 ‘ = =t
=2 n
(n =4,05,...), whenever Y o] # 0 (n >38), m =1,2,... Since obviously
i=3
where 3™ denotes the sum for the weak® topology o(E*, B), i.c. ol 1o
= (21) lal =5 < T +2 | = |] 2 aiai),
@) = My @)+ 3 hao)
G} 3 ¥4
Jagl 1{la
for all zel = 1. We have proved in [6] that (22)  flag] '=—;:1" ST( 71 - 2 +lagl + lea— s + 2 l‘hi)
) i=3 i=4

(18) 7([fal) = 4 e
and we shall h, tha == 7

we shall now show that ngalwl% p = 3),
(19) O({wa}) = 2 "}7, O({fu}) =

2
. . it remains to consider || 3w Taking in the inequalities
which will prove our assertion, since for 0 < A <1 we have i=1 : - ‘

<x|Yeal @32

\z(2+%); 22+1 < 3 <2—|—%- (23) ||Zw

Studia Mathematica XXXI2 . 9
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the sealars a; = a3 =1, ap = (n—1)/n, ay = ... = ap = 0, we get

<KH 2 ad;

2(%—

Lo HZM

—vK

)K,

whence, for # — oo, we obtain 1/2+42 < I, and thus, taking also i

account (20), (21) and (22), O({z,}) = minI > 1/A--2.
However, we have here the equality sign, since from

»
lay _ [aal oy — g O _Oii_ __’l‘l ! 7 [(ILI
2 2 T <17 g 2| + a
1 a L o 2
1 v . ] X
<(7+2)(7—g7 g awg‘m)
we obtain
2
HZ o 210y
=1
1 O, = 271 L
<(7 +2)( = -—237\ +|a2|+|aa~a2x+;4 z:m)

p>2).

) e

Therefore O({mn}) = 1/A+2.
Finally, let us compute O({f.}). By (17), for any positive integer »

and any scalars a,,..., @, We have
m*
S

At 1

@4) || D af] = ||oatlnt- (ot aat o) et D) (ot )it o
1=l 1e=3
= max(lay], lay+ az-+ agl, Jog -+ ).
s<cign

nw

Hence for ) ol #0 (n >

=3
E
|Sre
=1

3), m=1,2,...,, we have

(25)

= 3]:2?5;“&1[’ [+ aptaql, log+ ail)

< max (fogl, ey oa+aaly layt al
signtm

=13
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Since obviously

?
lafdl = lasl <[| Y aifi] 0 >2),

(26)

. . . 2

it remains to consider || } a;fj]. Taking in the inequalities
i=1

| S| <] S

the sealars o; =1, ay =2, az = —2, o, = ...

K“Z abfu

K and thus, taking also into account (25)

(p 22)

=a, =0, we get

= Kmax(1,1,1),

max(1,3) = || 3 aifi
i=1
whence 3 < and (26),
C({f.}) =minK >3

However, we have here the equality sign, since

13 s = max(lal, log+ aal) < las] + las
i=1

< 8max (log], lay+ @+ gl laa+ a])

s<i<p

<o, 2

D
=3 Hg wfil (p=2);
indeed, if |ap|/2 < lail, then |ay|+las] < lagl +2ay| = 3lay], while if

lasl/2 3= |ayl, then ja;l+las) < |aol/24|ez] = 3iasl/2 and, on the other
hand,
]

s 1
— = E [(ay+ e+t as)—

2

(oy+ ap)| < max(|a;+as+agl, lag+aal).

Therefore C({f,}) = 3, which completes the proof of our assertion.
For inequalities (7) one can use similar arguments.

4. Example 1 above shows that there exist (unconditional) bases
{,} with C({fa}) = 3 and O({z,}) taking any arbitrarily large preassigned
value (2). It is natural to ask whether the limit ease C({#,}) = oo is also
possible, i.e. whether there exists a biorthogonal system (a,,fa) with

(2) Let us mention that for the unconditional basis {xn} of 1 constructed in [6],
§ 1, section 2, which differs from (16) ouly in the term zs = Al‘lel-i-z;g, we have

r([fal) = 4 C({wn}) = 1A, O({fu}) =1 (but Cul{fn}) > 1).


GUEST


132 I. Singer
[#,] = B and {f,} total on & such that {f,} is an (unconditional) basic
sequence, but {z,} is not & basis of B. We shall show that the answer is
affirmative.

Example 2. Let () B = (B, ><L‘ X .=l where By =1 (j =1,
2,...) and for each j let {{)} be the basis (16) of B =1, with 1 = 1/j.
Since the seb

00

U u{0,...,

f=1 M=l

0, 2, 0,...}

F-1
in B is countable, let {z,} be an arbitrary numbering of it, and let {f,}
be the corresponding numbering of the functionals

{0,...,0, 7,0,.. Je(BY x B} X
AL

J-1

e ¥ en
=B o=m,

where {f{} is the basic sequence (17) in B = m, with A = 1/j. Then
the biorthogonal system (z,,f.) has the required properties.

Indeed, it is obvious that [#,] = F and that {f,} is total on Z. Since
by (19) we have O({a{'}) =244 (j =1,2,...), it follows that {m,)
is not a basis of B. Finally, since {#{)} is an unconditional basis of ;,
{f is an unconditional basic sequence in E}, and by (24) its un(*omh-
tional constant C,({f{}) does not depend on j. Since for

- {G1s Gay -+ F (B XHG X o)
we have

H{gla G2y - }“ = S?p ”97'”7

it follows that {f,} is an unconditional basic sequence in E* with the same
unconditional constant C,({f.}) = Cu({f9}), which completes the proot
of our assertion. Let us also mention that »([f,]) =

5. If {z,} is a basis of a Banach space B with the associated sequence
of coefficient functionals {f,}, then, as we have already mentioned above,
r([fx]) > 0 and the eanonical mapping ¢ of ¥ into [£,]* is an isomorphism.
Since {fn} is a Dasis of [f,] with the associated sequence of coefficient
functionals {p( wn)}, by virtne of theorem 1 we have

(27) ([‘P(wn ) ({fn}) /O({(P (n) ) O({fu})

and a similar relation for the constants C, if {v,} is unconditional. Tt
is natural to ask whether one can say more about the constants O({p(,)}),
Gu({<p(mn ) We shall now show that this is indeed the case, namely,
that for the couples (C({fu}), O({p(@a)})) and (Cu({fa}), Cul{p(an)})) we
always have the situation of corollary 2 above.

() By = we denote the canonical linear isometry.

icm°®

Basic sequences in Banach spaces 133

THEOREM 2. Let V be o linear subspace (*) of a conjugate Banach
space E* and lot ¢ be the canonical mapping of E into V*. Then
(28) *(p(B) = 1.

Henee, in particular, if {z,} is a basis of « Banach space E and {fy}
is the associated sequence of coefficient functionals, we have

(29) 'r([qz(mn)}) =1,

(30) 0({¢(mn)}) = G({fn}):

and, if {x,} is an unconditional basis of B, then we also have
(81) Culfp(a)}) = Cul{fa})-

Proof. By formula (3) applied to ¢(E) and the relations [¢(2)]|
= |lully < floll (z<B) we have

. 7
o) =t e o) 1w |y
750 {lpli<1
>]§3f i Ilfli”] Al ”

whence, since the characteristic of any subspace is always <1, we in-
fer (28).

The second assertion of theorem 2 follows from the first one if we
take into account that [p(s,)] = ¢(B) whenever {z,} is 2 basis of B
and ¢ the canonical mapping of E into [f.]* and apply corollary 2 above
to the couple ({fn}, {p(2a)}). This completes the proof of theorem 2.

Remark 2. Formula (28) is equivalent to the statement that the
canonical mapping » of V into ¢(E)* defined by

u(f)[p@)] = lp@)I{) =fl@) (FeV

is an isomefry, i.e.

(32) sup If @)l = ()l = Ifi =
Izl <1
and this latter formula follows also directly from the relations ||y
< |2l (zeB) and |lu]| <1.
Combining theorems 1 and 2, we obtain the following relations be-
tween the constants of {.; and {p(z.)}:

s () etp( )]

suplf(z)]  (fe¥),
zel

<t

(%) We need not assume that »(V)> 0. Let us mention that the semi-norm
lzllp i8 & norm on E if and only if V' is total on F (or, equivalently, iff @ is one-to-one).
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COROLLARY 3. Let {#,} be @ basis of & Banach space B with the as-
sociated sequence of coefficient functionals {fu}, and let @ be the canonical
mapping of B into [f1". Then

(33) 1 <r([fa]) OUma}) < Ol{p(@a)}) < O({mal})-
If {wn} is an wnconditional basis of H, we also have
(34) 1 < r([fa)) Cu((@a}) < Cul{p(@n)}) < Ou({mn}).

Remark 3. Let us also mention that by (10) and (12') we have
the following formula for the computation of O({p(w.)}):

(35) C{p(en)}) = sup sup l185 () oty = sup sup lIs (@ Mlysy -
il <t

With the aid of (35) it is easy to obtain again, directly, formula (30).
In fact, by (35), flllyy < |l (zeE) and (12') we have

Ol{p(@)}] > sup sup [lsn (@)l = OC{ah),
o<1

whence, since by theorem 1 we have C({p(z.)}) < O({fa}), We obtain (30).
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If (B, 7) is a topological space, the class of Baire sets generated by =
plays a fundamental role in innumerable problems. The present paper
investigates questions which arise from the circumstance that many
topologies = on E lead to the same class of Baire sets. The group of Baire
equivalences seems to play a fundamental role in this investigation.
Clearly, the group is unique for all these topologies. The problems con-
sidered lead quickly to deep questions concerning Baire gets and pro-
jective sets. For this reason, we limif ourselves to topologies v which
are metric and compact and where classic topology provides some
answers to these deep questions. No particular gain would be obtained
by considering complete separable metric spaces instead of compact
ones and the present procedure has the advantage of setfing the stage
for the mon-metric ease. It may also be pointed out that the pre-
ponderance of the objects favored in many branches of mathematics
(algebraic topology, for instance) have a metric structure. By virtue
of classical theorems on generalized homeomorphisms, the present
paper presents a background for the comparative study of all compact
metric spaces.

The proper structure to be placed on the collection of topologies =
is, paradoxically enough, a topological structure! In fact, at least three
such topologies can be introduced, of which one in particular is domi-
nant. Ag for the group of Baire equivalences, there is a uniform topology
assigned to it for each 7. A principal result of this paper is to show that

* The researches here published were supported in part by a grant from the
National Science Foundation. ‘
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