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In [2], p. 242, Banach defines, for two Banach spaces E and F, the
number (¥, F) by

(B, ) = g1.b. {log(llgli eI}

where ¢ runs through all isomorphisms of E onto F. He calls ¥ and F
nearly isometric it (B, F) = 0, and inquires whether the spaces ¢ of con-
vergent sequences and ¢, of sequences convergent to zero (with the usual
sup norm) are nearly isometrie.

It follows readily from a result of McWilliams [7] that (e, 6o) = 10g§,
and hence that these spaces are not nearly isometric. In [4], . 397, the
sharper estimate (c, ¢,) > log2 is given. This latter estimate was found
quite independently by Guraril in [6]. Indeed, the fact that (¢, ¢) > log2
was previously proved by A. Pelezyfski, who did not publish his result.
Thus it would seem to be implied by [3], p. 55, (2.1), that actually we have
equality: (c, ¢) = log2. In this paper, however, we establish that the
exact value of (¢, ¢) is, in fact, log3.

Aside from giving a precise answer to Banach’s question, this fact
is of interest in the following context. If X is a locally compact Hausdortf
space, let us denote by C,(X) the space of continuous, complex-valued
funetions on X which are zero at infinity, with norm given by

Al = sup |f (=), feCo(X).

(If X is actually compact, then C,(X) = C0(X), the space of all
continuous, complex-valued functions on X). In [4] and [5] it is shown
that if X and Y are any two locally compact Hausdorff spaces which
are not homeomorphic, and ¢ is any isomorphism of Cy(X) onto Co( X)),
then |l¢ifjlg" " = 2. The analogous result for spaces of real-valued functi-
ons defined on compact X and Y was established by Amir in [1]. Now
if we denote by N the set of positive integers, and by N* the one-point
compactification of N, then ¢ = C(N*) and ¢, = Oy(N). The fact that
(¢, ¢) =log2 thus follows from the more general result about spaces
of continuous functions just cited.
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In [1] Amir notes that there exist various examples of non-homeo-
morphic compact Hausdorff spaces X and Y, such that O(X) and ¢(Y)
are isomorphic under a map ¢ with lelllg~ "l = 3. However, no such
examples with lelllg™ < 3 seem to be known. Amir thus poses the
problem: Do there exist non-homeomorphic compact Hausdorff spaces
X and ¥, and an isomorphism of C(X) onto C(Y) with 2 < Jjpll ™" < 31
One may, of course, formulate this question for locally compact spaces,
or one may ask a somewhat simpler variant: If X is a compact Haus-
dortf space, and Y is locally compact bub not compact, must any isomorp-
hism ¢ of O(X) onto 0,(¥) satisty [ipll fle~l = 3% The result of this paper
suggests to the author that the answer to this latter question mmay well
be affirmative.

THEOREM. (¢, ¢) = log3.

Proof. Throughout the proof we consider ¢ as C(N*) and ¢, as Co(N).
As was noted in [4], pp. 396-397, in order to prove that (¢, o) == log 3,
it suffices to show that if p is any given norm-increasing isomorphism of ¢
onto ¢, (i.e., |fl < llg(Pl, feo), then |lp| = 3. Thus let ¢ be a norm-incre-
aging isomorphism of ¢ onto ¢. We assume that llgll < 3, and show thatb
this assumption leads to a contradiction.

If |lgll << 3, we first choose a real number ¢ with 0 < & <1 and such
that

3—e
@ el <5

Next, let I denote that element of ¢ which is identically equal to 1 on
N*, and consider the element (1) of ¢,. Since (1) is zero at infinity on W,
there exists an integer K such that |[(p(1))(n)| < & for all ne N with # > K.
We now define the element f of ¢, by

(@) (),
o,

) n< K
fln) = ’
n>K.

Then define gee, by g(n) = (p(1)) (n)—f(n), neN. Note that since |4l < &
and ¢~ is norm-decreasing, we have
(2) o= (9)l < e.

Also, since f=g()—g, ¢~ (f) =l—¢'(g) and consequently for
each neN,

(3)  Relp ' (N)(m) = 1—Relp™ (9))(n) > 1—[¢~ (9)) (W] > 1—e.
Note also that

(4) o™ (AIF< I+ o™ (9)] < L-e.
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Now for each nelN, let f,, be that element of ¢ such that Tn(k) = Onrs
LeN. With each neN we associate two subsets 8, and T, of N as follows.
8, is the maximum set of the function [p(fa)|: Sn= {ksN:](qa(f,L))(k)!
= [jp( fn)][}. In order to define T,, we first fix a positive integer p such that

1 < 3—(&+ llel)) ,
P 2

and then set T, = {keN :|(p(fu))(k) >1/p}. Again recalling the faet
that ¢ is norm-increasing, we observe that [3— (e [lpl)]/2 < 1, and that
on Sy, |(@(fu)) (k)| > 1. Hence 8, < Ty, for all n.

We claim that there can be at most a finite number of integers 2
such that T, ~ {1,2, ..., K} is non-void. For if more than Bp—1)K of
the T\, have non-void intersection with {1,2,..., K}, then at least one
integer me{l,2, ..., K} must belong to 3p of the sets Ty, 58y Tays Tnys
ceny T'"'ap' ‘We might then define the complex numbers A, 4 = 2,3,..., 39,
by A =1 and arg Ay=argle (fy)) () — g (@ (fny)) (). Consequently,

3p
b= fnl+ 2 }'Lfnl
=2

would be an element of ¢ with ||afj =1, and

3p

e (1= (@) m)] = llplad) i)+ 3 Aelp(Fang) ()]
i=2

3D 1

= |l (fa)) ()| + 2 |24 (fag)) (m)] > 3p(p ) =3,

which contradicts the fact that [lg]| < 3.

We thus may define the integer M as follows. If the set {n eN: T,
~{1,2,..., K} # @} is void, let M =0. If this set is non-void, let I
=max{neN: Ty~ {1,2,.., K} @). Now let m be an integer with
n > M, and consider the element F429(fa) of ¢ Since Sy ~ {1,2,..., K}
= @, and f(k) = 0 for all k > K, it follows that for all ke N with k& > K,
we have |f(k)+2(p(fa)(k)| = 2| (F)) (B)] < 2 llp(fa)ll, With equality hol-
ding for keS8 Thus

I+ 2 (F)ll = max (2 llp(f)ll, [fR) 2 (@(F)) (B)| B =1, 2, ... E}.

Tf we now apply ¢~ ' to this element, we obtain
|]‘P_1(f+2‘77(fn))n = g~ )+ 2fall = l(?’—l(f))(”)+2fﬂ(n)]
> Rel(p™ () (n) +2fu(n)],
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a quantity which, by (3) and the definition of fu, is greater than 3—e.
Since ¢~ is a norm-decreasing map, we conclude that |[f 420 (f,)| is greater
than 3—e, and thus either
(a) 2lg(falll >3—¢,
or
(b) [f(k)+2(p(fu) (k)] > 38—, for some ke{l,2,..., K}. (Or (a) and
(b) may both be valid.)
Let us suppose that (a) is true, and consider the element oM ) —2f
of ¢. For keN, &k # n, fo(k) =0, and thus )
o™ () (k) —2fa(B)] = (@™ (F)) (B) <l ()] < L+,
by (4). Moreover, we have
o7 () (m) — 2fu(n)] = [1— (¢ (@) (m)— 2 < o7 (9) (W] -+ 1 < L-e,
by (2). Hence |o~ () —2full < 1+e.
But again employing the fact that f(k) = 0 for k> I, and that
Sp~{1,2,..., K} =@, for keS8, we have
((ole™(F)—2£) ()] = |f(0) — 2 () (8)] = | =2 (p(£) (R)]
= 2p(fu)ll >3—e.
Consequently (p~*(f)—2fn)/(1+¢) is an element of ¢ with norm less
than 1, and
! (p(¢“1<f)"'2fn 3—e
14¢ 1-+e¢ !

which contradicts (1).
Now suppose that (b) is true. Then for some ke{l,2,..., K} we
would have
(R 2|( (Fa)) ()] = |£(F) 42 (@ (f)) (k)] > B8 —e,
50 that

[F(k)] >3 —s—2 |(p(fu)) (k)] > 3—e—2 (%)> 3—5—2 (

3—(e

“

Ie) _

But since ¢ << 1 and ¢ is norm-increasing, the maximum set of |p(l)]
is necessarily contained in {1,2,..., K}. And as ¢(I) =f on this latter
set, we have |p(D)| = |Ifll = |f(%)| > |l¢|, which again is a contradiction.
Therefore, we must conclude that our initial assumption that |¢|| < 3
i false. Hence (¢, ¢,) = log3.

. Finally, in order to show that (¢, ¢,) = log3, we exhibit a norm-
-increaging isomorphism ¢ of ¢ onto ¢, with |jp|| = 3. We denote the point
at infinity of N* by my, and define ¢ as follows. For fec,

(p(N)L) = 3f (1),
(@) (n) =§(f(n——1)——f(nw)), neN, n>1.
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Then ¢ maps ¢ onto ¢, and is clearly of norm 3. The fact that it is
norm-increasing may readily be seen by noting that for gec,

1
gn+1)+—=9@),  nel,

w|w

(e () () =

so that flp~ < 1.
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