STUDIA MATHEMATICA, T. XXX. (1968)

On mappings of sequence spaces

bу

MICHAEL CAMBERN (Santa Barbara, Cal.)

In [2], p. 242, Banach defines, for two Banach spaces E and F, the number (E,F) by

$$(E, F) = \text{g.1.b.} \{\log(\|\varphi\| \|\varphi^{-1}\|)\},$$

where φ runs through all isomorphisms of E onto F. He calls E and F nearly isometric if (E,F)=0, and inquires whether the spaces c of convergent sequences and c_0 of sequences convergent to zero (with the usual sup norm) are nearly isometric.

It follows readily from a result of McWilliams [7] that $(c, c_0) \ge \log_{\frac{3}{2}}^2$, and hence that these spaces are not nearly isometric. In [4], p. 397, the sharper estimate $(c, c_0) \ge \log_2 2$ is given. This latter estimate was found quite independently by Gurarii in [6]. Indeed, the fact that $(c, c_0) \ge \log_2 2$ was previously proved by A. Pełczyński, who did not publish his result. Thus it would seem to be implied by [3], p. 55, (2.1), that actually we have equality: $(c, c_0) = \log_2 2$. In this paper, however, we establish that the exact value of (c, c_0) is, in fact, $\log_3 2$.

Aside from giving a precise answer to Banach's question, this fact is of interest in the following context. If X is a locally compact Hausdorff space, let us denote by $C_0(X)$ the space of continuous, complex-valued functions on X which are zero at infinity, with norm given by

$$||f|| = \sup_{x \in X} |f(x)|, \quad f \in C_0(X).$$

(If X is actually compact, then $C_0(X)=C(X)$, the space of all continuous, complex-valued functions on X). In [4] and [5] it is shown that if X and Y are any two locally compact Hausdorff spaces which are not homeomorphic, and φ is any isomorphism of $C_0(X)$ onto $C_0(Y)$, then $\|\|\varphi^{-1}\| \geqslant 2$. The analogous result for spaces of real-valued functions defined on compact X and Y was established by Amir in [1]. Now if we denote by N the set of positive integers, and by N^* the one-point compactification of N, then $c = C(N^*)$ and $c_0 = C_0(N)$. The fact that $(c, c_0) \geqslant \log 2$ thus follows from the more general result about spaces of continuous functions just cited.

74

In [1] Amir notes that there exist various examples of non-homeomorphic compact Hausdorff spaces X and Y, such that C(X) and C(Y)are isomorphic under a map φ with $\|\varphi\| \|\varphi^{-1}\| = 3$. However, no such examples with $\|\varphi\|\|\varphi^{-1}\| < 3$ seem to be known. Amir thus poses the problem: Do there exist non-homeomorphic compact Hausdorff spaces X and Y, and an isomorphism of C(X) onto C(Y) with $2 \le ||\varphi|| ||\varphi^{-1}|| < 3$? One may, of course, formulate this question for locally compact spaces, or one may ask a somewhat simpler variant: If X is a compact Hausdorff space, and Y is locally compact but not compact, must any isomorphism φ of C(X) onto $C_0(Y)$ satisfy $\|\varphi\| \|\varphi^{-1}\| \ge 3$? The result of this paper suggests to the author that the answer to this latter question may well be affirmative.

THEOREM. $(c, c_0) = \log 3$.

Proof. Throughout the proof we consider c as $C(N^*)$ and c_0 as $C_0(N)$. As was noted in [4], pp. 396-397, in order to prove that $(e, c_0) \geqslant \log 3$, it suffices to show that if φ is any given norm-increasing isomorphism of conto c_0 (i.e., $||f|| \le ||\varphi(f)||$, $f \in c$), then $||\varphi|| \ge 3$. Thus let φ be a norm-increasing isomorphism of c onto c_0 . We assume that $||\phi|| < 3$, and show that this assumption leads to a contradiction.

If $\|\varphi\| < 3$, we first choose a real number ε with $0 < \varepsilon < 1$ and such that

$$||\varphi|| < \frac{3-\varepsilon}{1+\varepsilon}.$$

Next, let l denote that element of c which is identically equal to 1 on N^* , and consider the element $\varphi(l)$ of c_0 . Since $\varphi(l)$ is zero at infinity on N, there exists an integer K such that $|(\varphi(l))(n)| < \varepsilon$ for all $n \in \mathbb{N}$ with n > K. We now define the element f of c_0 by

$$f(n) = \begin{cases} (\varphi(l))(n), & n \leq K, \\ 0, & n > K. \end{cases}$$

Then define $g \in c_0$ by $g(n) = (\varphi(l))(n) - f(n)$, $n \in N$. Note that since $||g|| < \varepsilon$, and φ^{-1} is norm-decreasing, we have

$$\|\varphi^{-1}(g)\| < \varepsilon.$$

Also, since $f = \varphi(l) - g$, $\varphi^{-1}(f) = l - \varphi^{-1}(g)$ and consequently for each $n \in N$.

(3)
$$\operatorname{Re}(\varphi^{-1}(f))(n) = 1 - \operatorname{Re}(\varphi^{-1}(g))(n) \ge 1 - |(\varphi^{-1}(g))(n)| > 1 - \varepsilon.$$

Note also that

(4)
$$\|\varphi^{-1}(f)\| \le \|l\| + \|\varphi^{-1}(g)\| < 1 + \varepsilon.$$

Now for each $n \in N$, let f_n be that element of c such that $f_n(k) = \delta_{nk}$, $k \in \mathbb{N}$. With each $n \in \mathbb{N}$ we associate two subsets S_n and T_n of \mathbb{N} as follows. S_n is the maximum set of the function $|\varphi(f_n)|: S_n = \{k \in N: |(\varphi(f_n))(k)|\}$ $=\|\varphi(f_n)\|$. In order to define T_n , we first fix a positive integer p such that

$$\frac{1}{p} < \frac{3 - (\varepsilon + ||\varphi||)}{2},$$

and then set $T_n = \{k \in N : |(\varphi(f_n))(k)| > 1/p\}$. Again recalling the fact that φ is norm-increasing, we observe that $[3-(\varepsilon+\|\varphi\|)]/2<1$, and that on S_n , $|(\varphi(f_n))(k)| \ge 1$. Hence $S_n \subseteq T_n$ for all n.

We claim that there can be at most a finite number of integers nsuch that $T_n \cap \{1, 2, ..., K\}$ is non-void. For if more than (3p-1)K of the T_n have non-void intersection with $\{1, 2, ..., K\}$, then at least one integer $m \in \{1, 2, ..., K\}$ must belong to 3p of the sets T_n , say T_{n_1}, T_{n_2} , ..., $T_{n_{2n}}$. We might then define the complex numbers λ_i , $i=2,3,\ldots,3p$, by $|\lambda_i| = 1$ and $\arg \lambda_i = \arg(\varphi(f_{n_i}))(m) - \arg(\varphi(f_{n_i}))(m)$. Consequently,

$$h = f_{n_1} + \sum_{i=2}^{3p} \lambda_i f_{n_i}$$

would be an element of c with ||h|| = 1, and

$$\begin{split} \|\varphi(h)\| \geqslant \big| \big| \big(\varphi(h)\big)(m) \big| &= \big| \big(\varphi(f_{n_1})\big)(m) + \sum_{i=2}^{3p} \lambda_i \big(\varphi(f_{n_i})\big)(m) \big| \\ &= \big| \big(\varphi(f_{n_1})\big)(m) \big| + \sum_{i=2}^{3p} \big| \lambda_i \big(\varphi(f_{n_i})\big)(m) \big| > 3p\left(\frac{1}{p}\right) = 3\,, \end{split}$$

which contradicts the fact that $||\varphi|| < 3$.

We thus may define the integer M as follows. If the set $\{n \in N : T_n\}$ $\{1, 2, ..., K\} \neq \emptyset\}$ is void, let M = 0. If this set is non-void, let M $=\max\{n \in N: T_n \cap \{1, 2, ..., K\} \neq \emptyset\}$. Now let n be an integer with n > M, and consider the element $f + 2\varphi(f_n)$ of c_0 . Since $S_n \cap \{1, 2, ..., K\}$ $=\emptyset$, and f(k)=0 for all k>K, it follows that for all $k \in N$ with k>K, we have $|f(k)+2(\varphi(f_n))(k)|=2|(\varphi(f_n))(k)|\leqslant 2||\varphi(f_n)||$, with equality holding for $k \in S_n$. Thus

$$\|f+2\varphi(f_n)\|=\max\left\{2\left\|\varphi(f_n)\right\|,\left|f(k)+2\left(\varphi(f_n)\right)(k)\right|:k=1\,,\,2\,,\,\ldots\,K\right\}.$$

If we now apply φ^{-1} to this element, we obtain

$$\begin{split} \left\| \varphi^{-1} \big(f + 2 \varphi(f_n) \big) \right\| &= \| \varphi^{-1} (f) + 2 f_n \| \geqslant \left| \big(\varphi^{-1} (f) \big) (n) + 2 f_n (n) \right| \\ &\geqslant \text{Re} \left[\big(\varphi^{-1} (f) \big) (n) + 2 f_n (n) \right], \end{split}$$

a quantity which, by (3) and the definition of f_n , is greater than $3-\varepsilon$. Since φ^{-1} is a norm-decreasing map, we conclude that $\|f+2\varphi(f_n)\|$ is greater than $3-\varepsilon$, and thus either

(a)
$$2\|\varphi(f_n)\| > 3 - \varepsilon$$
,

01

(b) $|f(k)+2(\varphi(f_n))(k)|>3-\varepsilon$, for some $k\in\{1,2,\ldots,K\}$. (Or (a) and (b) may both be valid.)

Let us suppose that (a) is true, and consider the element $\varphi^{-1}(f) - 2f$ of c. For $k \in \mathbb{N}$, $k \neq n$, $f_n(k) = 0$, and thus

$$|(\varphi^{-1}(f))(k) - 2f_n(k)| = |(\varphi^{-1}(f))(k)| \le ||\varphi^{-1}(f)|| < 1 + \varepsilon,$$

by (4). Moreover, we have

$$|(\varphi^{-1}(f))(n) - 2f_n(n)| = |1 - (\varphi^{-1}(g))(n) - 2| \le |(\varphi^{-1}(g))(n)| + 1 < 1 + \epsilon,$$

by (2). Hence $||\varphi^{-1}(f) - 2f_n|| < 1 + \epsilon.$

But again employing the fact that f(k) = 0 for k > K, and that $S_n \cap \{1, 2, ..., K\} = \emptyset$, for $k \in S_n$ we have

$$\left| \left| \left(\varphi \left(\varphi^{-1}(f) - 2f_n \right) \right)(k) \right| = \left| f(k) - 2 \left(\varphi(f_n) \right)(k) \right| = \left| -2 \left(\varphi(f_n) \right)(k) \right|$$

$$= 2 \left| \left| \varphi(f_n) \right| > 3 - \varepsilon.$$

Consequently $(\varphi^{-1}(f) - 2f_n)/(1+\varepsilon)$ is an element of c with norm less than 1, and

$$\left\|\varphi\left(\frac{\varphi^{-1}(f)-2f_n}{1+\varepsilon}\right)\right\| > \frac{3-\varepsilon}{1+\varepsilon},$$

which contradicts (1).

Now suppose that (b) is true. Then for some $k \in \{1, 2, ..., K\}$ we would have

$$|f(k)| + 2|(\varphi(f_n))(k)| \ge |f(k) + 2(\varphi(f_n))(k)| > 3 - \varepsilon,$$

so that

$$|f(k)|>3-\varepsilon-2\left|\left(\varphi(f_n)\right)(k)\right|>3-\varepsilon-2\left(\frac{1}{p}\right)>3-\varepsilon-2\left(\frac{3-(\varepsilon+\|\varphi\|)}{2}\right)=\|\varphi\|.$$

But since $\varepsilon < 1$ and φ is norm-increasing, the maximum set of $|\varphi(l)|$ is necessarily contained in $\{1,2,\ldots,K\}$. And as $\varphi(l)=f$ on this latter set, we have $||\varphi(l)||=||f||\geqslant |f(k)|>||\varphi||$, which again is a contradiction. Therefore, we must conclude that our initial assumption that $||\varphi||<3$ is false. Hence $(c,c_0)\geqslant \log 3$.

Finally, in order to show that $(c, c_0) = \log 3$, we exhibit a norm-increasing isomorphism φ of c onto c_0 with $\|\varphi\| = 3$. We denote the point at infinity of N^* by n_{∞} , and define φ as follows. For $f \in c$,

$$\begin{split} & \big(\varphi(f) \big)(1) \, = \, 3f(n_\infty) \,, \\ & \big(\varphi(f) \big)(n) \, = \, \frac{3}{2} \big(f(n-1) - f(n_\infty) \big), \quad n \, \epsilon N \,, \ n > 1 \,. \end{split}$$

Then φ maps c onto c_0 and is clearly of norm 3. The fact that it is norm-increasing may readily be seen by noting that for $g \in c_0$,

$$(\varphi^{-1}(g))(n) = \frac{2}{3}g(n+1) + \frac{1}{3}g(1), \quad n \in \mathbb{N},$$

so that $\|\varphi^{-1}\| \leq 1$.

References

[1] D. Amir, On isomorphisms of continuous function spaces, Israel J. Math. 3 (1965), p. 205-210.

[2] S. Banach, Théorie des opérations linéaires, Warszawa 1933.

[3] C. Bessaga and A. Pełczyński, Spaces of continuous functions (IV), Studia Math. 19 (1960), p. 53-62.

[4] M. Cambern, A generalized Banach-Stone theorem, Proc. Amer. Math. Soc. 17 (1966), p. 396-400.

[5] — On isomorphisms with small bound, ibidem 18 (1967), p. 1062-1066.

[6] V. I. Gurarii, Subspaces and bases in spaces of continuous functions, Dokl. Akad. Nauk SSSR 167 (1966). p. 971-973.

[7] R. D. McWilliams, On projections of separable subspaces of (m) onto (c), Proc. Amer. Math. Soc. 10 (1959), p. 872-876.

UNIVERSITY OF CALIFORNIA SANTA BARBARA, CALIFORNIA

Reçu par la Rédaction le 17. 7. 1967