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Now {T; = 0} occurs with probability (in Y)
o)
and in the complementary case |T%]>2. Thus

28
(nb) B(8 [nTe]) < As™ 4 A5~ 3'p~ < By~ Plogs.
D=l
Here we used the fact that for any p, {I) = p} occurs with a smaller
probability than {Ij = 0}.
Define s = s(n) for n >3 by the inequality
s < logn/loglogn < s4+1,
so that for large =,
1
log(Bs(n)"*logs(n)) < — -é-loglogn.

Also

1< nb, for 1<k<blogn/loglogn,

whence

.
og [ ()PP (a) < — g logn, 1>,

Still following Salem [4], we use the fact that for every M

D) M [[ju(m)[*P(do) < oo,
n=1

5O
limsup | Mu(n)| <1

[n}—o00

for almost all #, and the proof is complete.
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Modular spaces of generalized variation
by

HANS-HEINRICH HERDA (Salem, Mass.)

In this paper the author continues investigations by J. Musielak
and W. Orlicz ([2] and, especially, [3]) about modular funectionals of
gengmh’zed variation. Some fundamental lemmas are first established.
Ratio characterizations of inclusions among variation spaces, convex
and concave variation, and modular spaces of generalized variation are
then treated in succession. The last topic includes the study of locally
b‘mmdBd and locally convex linear topological spaces of generalized varia-
tion having the Musielak-Orlicz F-norm topology. Finally, some examples
are listed. It is my pleasure here to express my thanks to Dr. Takashi
It6 for his excellent advice.

LN t‘“ variation and some fundamental lemmas, Given a real, even,
right-continuous function I (u), non-decreasing for « > 0, with M (0) = 0
and M(u) > 0 for u > 0 (such a function will be referred to as a variation

Sfunction) and a real funetion z(t) defined in a finite closed interval [a, D],
the value
M

Vau(x) = sup Z M (t)— 2 (t:_1)]1,
7=l

‘where A= t.o < <...<tyn =20 is an arbitrary partition of the
interval [a, b], is called the M™ variation of 2(t) in [a, b]. It can be shown
that

M(artpy) < aM(z)+BM(y) iff
while

M (ux+ By) = alM(x)+pM(y) iff ar (04 Py) = aViar(z)+ BV a(y),
for a, f# 2> 0 and a+p = 1; that is, M is convex (coneave) iff V,,is convex
(concave). For a more detailed discussion, see [2]. Let X be the class
of all real functions defined on [@, b] which vanish at a. For o, yeX,
it is easy to verify that Vi (s) = 0 iff o = 0, Vy(—2) = Vi(z), and
if «,f>0 and a+pf =1, then Varlazw+By) < V(@) + Var(y). Define

By = {weX: V() < 400}

Var(az -+ By) < aVar(2)+BVar(y),


GUEST


29 H.-H. Herda

By is convex and symmetric. Also define
By = {meX: Vy(aw) < + oo for some a > 0, where o depends on #}.

B, is the linear space generated by the space By of functions of
bounded M variation. If M (x) = |@|, denote By by B and Vy by V. B
is the linear space of functions of ordinary bounded variation. Space B
should not be confused with condition B defined below.

LuvMA 1. Let M and N be variation functions. If

i . M(u)
(Ho > 0) lim — < a,

frave N (u)

then (VK > 0) there exists a sequence {w,}{0 such that

o =S ‘ _K
D M(u) =K and DN () > —

=1 r=1

Proof. We have

(Vo > 0) int
) inf ——

s<usy IV (“)

Detine B = {1 > 0: M (u)/N(u) < a}. Then 0B~ because B contains
arbitrarily small positive numbers. Choose from B a sequence {v,} such
that #,40. Then M (v,){0 because M is continuous at 0. Then there exist

positive integers m, and a subsequence v, of v, such that K = > m,M (V).

r=1

By a suitable relabeling, we get K = 3 M(w,), where u,eB and ,}0.
r=1

On the other hand, K = Y M(w) < Y N (u,), so that Y N(u,) > Kja.
r=1 y=1 =1
LeuMA 2. Let M and N be variation functions. If

. M(w)
lim ~———— =0
=5 (%) ’
then there ewists o sequence {1,}0 such that

o2 oo

le[(um) =K and ZN(um) = J-o0.
m=1 M=l
Proof. By Lemma 1, for each n > 0 there exists a positive sequence
3,440 such that

0

D) M(uip) = Kf2"  and Z‘N(ui,n) >n.

i=1 te=]

icm
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Then

718

;M(ui,n) =K and Z Z.N('Il/%n) = o0,

[ % N=1 =1

]
-

Bach of these iterated series has only non-negative terms, so that
any rearrangement of the first converges to the limit K and any rearran-
gement of the second diverges. Because the first iterated series converges,
the sets

1
y+1

v=1,2,3,..., are all finite. They are also mutually disjoint and if
aeC,and feC, ., then a > B. Thus, the elementsin each C,v=0,1,2,..,
can be arranged in descending order and then listed in that order begin-
ning with those from C,, then those from Cy, from C,, ete., thus forming
a rearrangement {u,} of {u;,} for which u,{0. Hence

©

Mu,) =K and
1

OD = {u'i,n: JI(ui,n) = 1} and C, = {’l&i’n: < ﬂl(um) < —];},
v

D, N () = +o0.

M= Prome

LEMMA 3. Given any sequence {un}{0,

(@zeX)(V > 0) Var(Bo) = 3 M (Btm)

for all variation functions M.
Proof. Set

0 S — < e

Now, define the following step function x(f) for a <t < b:

a-+b
2

<t<b,

a(2F1—1)+b

a(2F—1)+b
oF+1 [

2k !

a(t) = a— 2(—1)”‘*1%” for

M=l

k=1,2,3,..,
and #(a) = 0. Clearly, hr&m(t) = 0. For this function # any refinement
tsa

of a given partition can only increase the M™ variation of # or leave it
unchanged, because

I
k Z(~—1)’”+1fum < U
=8
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for any s, ¢ with s <7. Hence

Tarla) = ) M ()
m=1
for any variation function 2. Working instead with the function pux(f)
and the sequence {fu,,}, which does not change the nature of the argument,
one obtains the original assertion

o0
Var(Be) = D) M (Bun).
=1
2, Ratio characterizations of inclusions among generalized variation
spaces. Now we prove ‘
THEOREM 1. If M and N are variation functions, then

lim M ()
u-07F N (u)
iff By < By.
Proof. «: If
tim, 22
ousali s !
a0t )

then by Lemma 2 there exists a sequence {u,}{0 such that

D Mu,) =1 and D) N (ttm) = o0.
Mm=1 m=1
By Lemma 3,
@z eX) Var(a) = Y M(un) =1,
- Me=1
80 that weBjyr, but
V() = Y N(up) = +oo,
M= 1
80 that SU{BN and B}y[ ¢ .BN. '
—: We have
M (4
(@) inf LY _ g0

0<u<Yy .N(’N/)

Hence (Vu, 0 < u < 2N (u) < M(u)/K. Let ®eBy. Then w i
a bounded function on [a, ], say || <T. Moreover, there is an upper
bound 4 = [V (x)/M (v,)] (independent of the partition x) on the number

of expressions |o(f;)—®(t;-1) >, in the sum 2 N{w(t)—x(t_.,)] for

=1

icm

©
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any partition =z of ['a, b]. Let ¢ =1',2’, ..., m’ be that subset of the indices
in 13316 sum for which |u(t;)—x(f_,)| < v,. Note also that | (%) — 2 (t;_ 1)
< 27 for arbitrary ¢ =1, 2, ...y, m. Then )

gJ\T[w(ti)“m(ti_l)] < Z‘N[m(ti)_w(tl—l)]'l‘fi:N(ZT)

2 Ma(t)—2(ti_y)]
< =1

< = +A-N(2T),

so that Vv (r) < Vi (@)/K+4 N (2T) < +oo and zeBy. Hence By = Bx.
M (u) < Im M (u)

COROLLARY 1. 0 < lim < 4o iff By = By.

ot JV(“) = 2wt N(u)
. . . M (u)
COROLLARY 2. i —
Y ].1]]1 ]1[(2%) >0 ’Lff By = B;I‘

» Proof. —: Let N(u) = M(2u) in Theorem 1, which implies By,
< Bipy = 3Byy,. Hence 2By < By, and thus

o0

B = U 2" By < Byy.

N=1

; t«: If By = Bjy, then Vyy(2) < +oco = Vp(2@) < +oo, which means
Na

M
B_M(A) < B;.[(g.) or lim ——ﬂ
— M (2u)
U0’

by Theorem 1.
TuvorEM 2. If M and N are variation functions, then

Lim M,_
ot N(}_ u)
W

for some positive integer n iff By = Bi.
Proof. —: By Theorem 1,

lim A (w)

wt N L u
n

implies By © Bygpy = nBy(y < By, 50
implies B}, = BXy.

- >0

that By = By which
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< If o
lim M) - _ 0 for all »,
=5
"

then by Lemma 2, there exists a double sequence {u,;} such that w0
for fixed u,

)

> M(u) =1[2"

i=1

for each n,

and

]

S_‘N (l un,,;) = 4oo for each n.
Zi 7 \n

i=1

But

oo
Z M () =1,
=1

2
g0 that (as in the proof of Lemma 2) a rearrangement {30 of {4}
can be constructed, and

“Ms

-

oo

ZM () =1
M=1
but
le >§N(£u )—-}-oo
(V"L)”LZ:: (“ Ugn| = £ n Ina) = .
By Lemma 3
(@0 X) Varle) = 3 M(um) =1,
Me=1
but

(\m)VN( ) ZN(——um)-——i—oo

Hence weBy < B but z¢nBy for any n, so that n¢By.
* K
BY & BY.
COROLLARY. B}y < By iff (In > 0)By = nBuy.

[Hence

3. Convex variation and concave variation. Two clagses of variation
functions, each element of which satisfies one of the following two con-
ditions, are studied in this section:

L (@K > 1)(¥0 < % < v < y) My) <K Mé”);
D. ("[rIK21)(‘6’0<u<'u<vo)1(—€(bl 15). ‘

icm°®
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THEOREM 3. (i) Condition I holds iff

1
— M (u)
(@v, > 0)inf inf -~ _ >0,
% 0<uULY) M(i ’M)
"
and (ii) condition D holds iff
1
— M (u)
n
(fvy > 0)sup sup —— < +oo.
n 0-<“Sl'u ,II lu
An
Proof. (i) —
. M M(:
(BE > 1)(V0 < 1 < v < o) %) < ¢ 2O
%
means
1 w M) K
M|—u <I{—- = — N
(n, ) po— - M(u) for u<Cw,.
Hence
1 1
M () _.%. (ﬂt)
inf inf - Sinf ing X\ _ 1y
n 0<us1ﬂ0 .;’]I(}— ’M,) n 0<u<v° M(iu) 1(
n n
<« If
1
;M(u)
inf int =@>0, and 0<u<o<7,
n0<ygYy M —]—:'tl,
n
then
1 % 1
K - =
@n =)= n-+1 < n’
hence
1 1
- M (v) — M (v)
: " >Q,

M (u) 2’J'I(1 )
| —v

27
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M)~
Putting K = 2/Q, we get
M(w) < K

=

M (v)
u T
The proof. of (ii) requires the same types of caleulations and is omitted.
A variation function A/ is said to satisfy condition B itf

n

l)((t[v(,>0)(‘7‘%1,...,u“>0:§ut<vo) (2) KZM(m.

=1 q=1

(AK >

TuroreM 4. Condition D holds iff condition B holds.
Proof. —: By D,

' M
" M () (L% i)
(Vui >0,i=1,2,...,m: )< %) (@K > DE—= > — =,
i=1 i 21 o
i==l
so that
n
K » M(w) = W
Sartu > t(3w),
which is condition B. .
<«: In the statement of condition B, let wu; =w, ¢ =1,2,...,%
so that nw << v, yielding M (nu) < nKM (u), or
K M) = M for mu < v,.

=
w na

Now, suppose generally that 0 <u <v < v(,/ Then there oxists
a unique integer m >1 such that mu <o < (m41l)w, and since
mu <0< 02, (m+L)u < 2mu < by, or (m41)u < v,. Hence

M (v) < M{(m-+1)u
v ma "

m+1 M((m-+1)u) < m+1 jc.lE_(jZ".). <ok ﬂ!gt)
= v T w

(m—+1)u m

50
M (u)
u

qufu) <ok

=

and condition D holds with constant X' = 2I.

icm

is a positive constant for u = v,.
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In a quite similar way one can prove
THEEOREM 5. Condition I holds iff

I(Zn'ul)

n n
(EK >1)(Hw, > 0) (Vul, Ugy ooy Un >0 g < g} 3 M () <KD
=1 i=1 1=1
TI-IEOBEM 6 (i) If By = By for some convex function _ZfI then con-
dition I holds; zf condition 1 holds, then there exists a convex function a
such that BM = BM.

Proof. (i) By Corollary 1 of Theorem 1, By = Bj implies

[ —
0 < I = tim 2™ o g 2@
w0t A ()

= L < “+oo.
@M(u)

This means

(Evy > 0)(V0 < u < 0) KM (u) < M (u)< LM (u).

Hence

v <y M;u) cp M@ M) L M)

0 < :
(VO <u< % v K o '

the middle inequality holds because M(u)/u? for convex functions 37I,
and hence condition I holds for M with constant L/K > 1.

(ii) I

M M
(EE >1)(V0 <u <v <w0)-1£i)<1z#,
define
M(t
(Ve < m)p(u) = sup 0
o<t T
and
Mt )
(Vu = n)p(u) = sup ——
o<i<yy, ©

p(u) is well-defined because 0 < p(u) < KM (u)fu for u < v, and ¢ (%)
o(1)4 by the definition. Now define

= [ e(0ds;

the function M is convex because p(u)4. By definition of ¢(u), if u < v,

then M (du)/ju < @(%u), hence
(—QE) < M(u) < up(u) < KM (u);

% u [
JM(E') <§9’
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the inner two inequalities hold because of the 1nteg1a1 definition of Al
and because g(u)t and is positive. M (u/2) < M(u) for « < v, means

o ()
= M (Gu)

U

->=1>0,

or B < By by Theorem 2. M(u) < KM(w) for « < v, means

M (u) < 1

m - 2
ot M(w) I
or By < Bjy by Theorem 1, hence B} = Bj.
Similarly, one can prove
TunorEM 7. By = Bl for some convew function I iff
M (u)
<K

=
U v

J[(wfv)

LI(VO < u < v < 1y)

(ALK > 1)(Ho, > 0)(Hn =

TrEOREM 8. (i) If By = Biy for some concave function M, then
condition D holds; (ii) if condition D holds for M, then there cxisis a concave
Function M such that Bl = Bjg.

Proof. (i) This proof is quite similar to that of Theorem 6 (i) and
is therefore omitted.

(ii) ) I N is a variation function, then the function Nt defined
for % > 0in the usual way, except that any interval on which & is constant
is replaced by a discontinuity of N~! and any discontinuity of N is replaced
by an interval on which N~' ig constant, in such a way that ¥~'is also
right-continuous for % > 0 and N~' is defined for w < 0 by requiring
that it be an even function, ig also a variation function.

b) Let M Dbe a variation function satistying D; it will be shown that
M~ satisfies I. Define

(Vu > 0)M(u—) = sup M(w).

I<w<u
D implies
M (w— M

(K > 1)(V0 < 4 <0 < v.,)K—(Z—l > f@“’l,
Let M™'(s) =u, M~'(t) =v. Then
(Vo<u <o<vo)Mu—)<s < Mu)y, Muv—)<t<<Mw.
Now, for f, = minf{t: M) = vy}, and 0 < s <t <1y,

M1
) _ B ¥ g " K»——]’M HUN
8 s M(u—) M (v) 1

icm
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Hence M~' satisfies I.

¢) Next we show that B} = Bjy implies Bj-1 = By-1. By sym-
metry, it suffices to prove that B} < By implies By-1 < Bj—1; but
this is true by Theorem 2 if

01

T =
"

1
fim Y L

=
smot -t (i 3) "
m

implies

which is now proved:

M
lim (u) > 1
ol
)
means
1 1
(Hry > 0) (V0 < u < vo) M () > WN gu ,

hence

1
(VO < u < 9) M (u—) > ——_ZV(i u—).
m- \n

Also, (Ht, > 0)M (1) < vy, and (VO < s < )M~ (s) = u < v,, 50
that M (u—) < s < M(u). Now,

1 1
N (ms) = N"HmM(u—)) = N~ (m— N (-V—L u—))
m

= N"I(N(}—u-—)) > —l—u,
n n

NY(ms) _ 1
0 $ 1)) —————
(VO < s <ty e T or

1
== M(s).
n

Henee,

Nt 1
lim ——l—~—————(8) =

80t It is "
m

d) Finally, if condition D holds for M, b) shows that condition I holds
for M~'. By Theorem 6, (ii), there exists a convex funetion M such
that BY = Bj-1. By ¢), Bf-1 = Bj;. But M is a concave function BM.
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4. Modular spaces of generalized variation. Given any linear space X,
a functional o(x) defined on X with values —oo < ¢(#) < oo iy called
a modular if

(i) o(®) =0 iff # =0,

(ii) o(—2) = o(x), and

(i) if «,f =0 and a-+p =1, then o(ur+py) < o(@)+ o (y).,

On the linear subspace

Xy = {weX: g(aw) < oo for some >0 depending on x}

)

which has the fundamental properties 0 < |zf, < 4o, |, =0 iff
o =0, oyl < Il le, and [oal, — 0 iff g(az,) — 0 for all o> 0.
I ll, induces an addition-invariant metric topology on X;. In our case, X
is the class of real functions defined on [a, b] which vanish at a, V7 is
the modular (which is convex or concave itf M is), and B}, is the sub-
space X; (for details, see [3]). The Musielak-Orlicz F-norm detined by Vy,
on Bj will be denoted by |-l

THEOREM 9. By = By implies |@yllzr = 0 = |[ty/ly ~> 0.

Proof. |jwylar — 0 implies (Va > 0) Vy{aw,) - 0. By theorem 2,
By = By implies

one can define the Musielak-Orlicz I'-norm

#

llelly = inf{a >0: 0 (%) E

1
(m > 1) (K > 0) (80, > 0)(V0 < u < o) M (u) > KN (W “)
But (Vo > ) |awn| < 9, because Vir(aw,) — 0. Hence

(Ve 2= ny) Var(azy) = BEVy ('7:7507»)

and thus

a .
Va %—mﬂ -0 a8 %> oo.

But m is fixed and « is arbitrary, and therefore |u,|y -+ 0.

COROLLARY. By, = By implies ||y ~ ||l

This corollary shows that if B}, = Bk, then the topologies on these
spa;;s are also the same, i.e., do not depend on the particular form of M
or N.

The ||-|la-topology is a linear topology on Bj iff (VaeBj)a, — 0
implies Vi (a,®) - 0. This fact prompts the definition of condition

Bl ay —0 implies Vi (a,o) >0 for some element weB%,.

@ ©
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Remark. Taking a,% = @, in Theorem 9, it i3 evident that if Bl
is satistied throughout B}, (with respect to. M™ variation), then, if B}, = By,
B1 is also satisfied in B}, ~ By with respect to N variation.

No characterization of variation functions M satisfying condition B1
in B}, is known; for this reason it is useful to consider the following
stronger condition:

B1* (Hd > 0)(HO0 < a < 1)(VoeBiy) |z < 6 = Vir(an) < 3V (o).

Condition Bl applies generally to elements of B}, but condition
B1* applies only to the whole space Bj;.

Ag a final condition on variation functions M we define

C. sup {lim M) -}> 1.
" oot M(» u)

n
TUEOREM 10. Condition C holds iff condition B1* holds.
Proof. —: C means

(&N > 1)(Ev, > 0) inf MW g,

o<uYy M(—ilv ’M)
Hence
1
(AN = 1)(Hv, > 0)(VO < u < v) M (u) = KM (-ﬁ u)

or, putting & = 1/K <1,
M 1 w) < kM (u)
M\ 5] <kl .

Now, let # be a real-valued function in [a, )] with x(a) = 0 and
such that |#] < /2 = 8. Then |@(f;)—(t_,)| < v, for arbitrary points
1, t;_1€[a, b]. Hence, for any partition sum,

m

> M[%F (m(ti)——as(ti_l))] < k;’ Mlo(t)—alte )],

=1

go that

. 1 .
) VM(Fw) <kVy(s) with k<1.
By induction,

1
Vﬁl(ﬁm)gkpvﬂl(m) for p=1,2,3,...

Studia Mathematica, t. XXX, z. 1
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For a suf_ﬁmenbly large p,, k0 < }; take o = 1/N™, thus getting
Var(aw) < K0 V() < 3Var(w) which shows that condition B1* holds.

~: If
M
sup { lim ip(l@”} =1,
Y et (-« u)
N
then
. M (u) 3
(Vo =1) lim ——— =1 < o

¥ .:l.u
n

Now construct a double sequence {u;,} by Lemma 1, such that
Uit 0, 0 < ug, <0, and for each =,

=) o0 R
0< V=1 e > (}_ w.n) > 2
i=1 ~ n 3

For each n, by Lemma 3, use the sequence {u;,}i; to construct
a funetion w,, where |2,(?)| < 6 for te[a, b] and

fro

._

9 00
2‘7 . 1 N 1
TIM(mﬂ/) == M (%1,7,) =1, while Vu (—-» mn) = Zﬂ[ (~ Uy "‘) b
w w ’

=1 Gl

Thus |,| < 6 and
2 1
EVM(%) Vzu( -’Lw)
n

as *Well ag VJ.u(wn) =1 for any fixed n. Assuming now that condition
31 holds with a certain constant «,0 < a < 1, choose n, a positive
integer such that 1/n, < a. By B1%,

1 .
Vu g o < 3V ()

sinee |a, | < &, But from above,
2 . 1
3 Valon) < Vi ('E" f”no)v

Hence %VM(w,,o <V u( mn ), which is a contradiction because VM(J,; } = 1.
Thus, if condition C does no‘u hold, then condition B 1* also fails to hold.

TurorEM 11. If condition 1 holds, then condition B1* holds.
Proof. If

(@K > 1)(V0 < u < < o) ) ¢ g 2O
w L))
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then
o
(Vo < 1) (Va: 0 < a < 1) ;:”) <K

M(z)
z b

or M{ax) < oK M (x). Then, for o < 1/2K <1andz < v, M{a») < $M (%),
and thus for |@] < v,/2,

m m

3 Mlafotty—ofh-)] <33 Mlo(t)—ol)]-
= iz

Hence Valer) < 3Vy(e) for o <12K and |#| < v,/2, and thus
condition B1* holds.

Next it will be shown that condition D for M implies condition Bl
throughout Bj,. For this purpose, the following lemma, a gsharpened
version of Musielak-Orlicz’s Theorem 2.21 ([3], p. 58) is useful. This
lemma may also be interesting in its own right.

LeMMA 4. If

T M(u)

lim

u—sot U
and »(t) is continuous in [a, f] = [a, b], then = (1) is constant i [a, f1.

Proof. Assume that x(¢) is continuous in [a, 81, #(a) = ¢, x(f) = 4,
where (without loss of generality) ¢ < d, and take for each positive in-
teger n a partition ¢ =1, <t, < ... <tm = f of [a, 8] such that x ()
= {i-27"(d—¢)}+¢. Since

= +oo, @eBy,

— M
lim ——(—ﬂ = 400,
2ot w
there exists a sequence {v;} such that ;40 and
M (v;
1im 22 _ oo
jsco Uy

Now let u; = 2v;/(d—¢), so that also u;0 for the sequence {u;}. Also,
(Vo) (B 3> 1)27™ <y < 27"
Construct the above-mentioned partition for # = n;. Then

27u]~

Valo) > 3 Mlot)—o(t)] =27 M 27(@—0}

_ (@—e)M{"(@—0) _ 3d— o) M {Jus(d— o)}
27" (d— c) = (3us(d— o))
=£d;0).i1%@__> oo as  j— too,

contradicting the hypothesis @eBy.
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COROLLARY. B < By iff there is a function ®e<Bp such that z is
continuous and non-constant on some interval [a, ] <= [a, b].

The non-trivial part of this corollary immediately follows by appli-
cation of Theorem 1.

TaEOREM 12. If condition D holds for a variation function M, then
condition B1 holds with respect to M™ variation throughout Bjy.

Proof. D implies

lim -Jl%(—qi)— >0,

w0t
and hence by Theorem 1, By = B. Now, if
= M(u)

i lim ———~ =

( ) w0t U ]‘OQ,

then use of Lemma 4 together with Musielak-Orlicz’s Theorems 2.29

and 2.23 ([3], p. 59-60), which may be used here because a) B, < B

(so that @By, implies that # is of ordinary hounded variation); b) con-
n

dition D implies our condition B, which is their condition (B) for 2 Uy << Dy,
fmal

by Theorem 4 (in order to justify applying B instead of (B) it suffices

to replace 8, by v,5,/3V (#) in the proof of Theorem 2.22 and to replace %

by w22V (%) in the proof of Theorem 2.23, obtaining their original con-

clusions); and c) the weaker hypothesis '

w0t U
can everywhere be used instead. of their condition (A) ([3], p. 58), shows
that the subset of B}, on which condition BI holds with respect to M™
variation coincides with BY. It
(i) fim, M) oo,

M (u)

then (since also lim
. ot
B.M. = By = B; by the Remark following the definition of the BL con-
d1t1on,. condition Bl which trivially holds throughout B with regpect
to ordina.ry variation also holds with respect to M™ variation thmﬁg]v
out Bj,.
The final pair of theorems concerns locally bounded and locally

convex topological linear spaces of generalized variation having the
Musielak-Orlicz F-norm topology.

> 0) Corollary 1 of Theorem 1 shows that

icm
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THEOREM 13. The Musielak-Orlicz F-norm topolbgy imtroduced in By
is a locally bounded linear topology iff condition B1* holds in Bjy.

Proof «: Condition B1* means: (@d; > 0)(Ha: 0 < a < 1)[z(t)|
< ¢, implies Vy(aw) < $Vie(x). Since M is a variation function, (aé,
> 0)M(u) < J, implies u < d,. Fix such a ¢, throughout this proof;
then V() < &, implies M(]w(t)]) < 0y, which implies |#(?)] < é,. Hence,
Var(z) < 6 implies Var(ow) < 3Vu(2) < $8,. By induction,

(ve > 0)(@n = n(e) > 1) Var(d"s) < (3)" V(o) < ()" < e.

Fix such an %, and let § = ea"[d,, so that
86,2

£

VM( ) = Vy(dx) < e.

Therefore Vi (2) < é, implies Vi (8d,5/e) < &.
we have

Writing o' = 8,4,

, .
(ade > 0) (e > 0)(@d = b(e) > 0) VM(ﬁg—) < 6, implies Vy (i) <s,
0

&
which holds iff
(@ > 0)(ve > 0)(@d = 8(c) >0) sup [|da'llar < e,
'l ar<dg
and this is true iff (@ > 0){z': ||l < S} is & bounded neighborhood
of zero, i.e., the norm topology (which is linear because B1* implies Bl
throughout Bj,) is loeally bounded.

-~: Assume that the morm topology is a locally bounded linear
topology and that A = {x:|zly < 6} is a bounded neighborhood of
zero. Then

(Ve > 0) (@8 = 8(c) > 0) (Vo d) 80z < e.

Now assume that condition B1* does not hold. By Theorem 10,
this means
. M(u)
(yn > 1)lim

1 =1<2.
w0t ﬂ[(—u)

n

By Lemma 1, there exists a double sequence {u;,} such that wu;,d; 0
for each =,

= 8
Z M(ug,) =— for each a,
g=1 ’ 2
and
> (1 5
E M (——um) >-L  for each n.
£ n 4
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By Lemma 3, for each n there exists a function @, such that

wn, Z-Z'[(.u'm =" "'< 607

while

Now, choose ¢ so that 0 < &< é/4. Then
(@6 = o(e))(Vaed)|dmll <e.
Var(es) < 6, implies |8y@nlae < 8y, 80 that (Vn == 1)dywe 4. Then

88y,
(Vn = 1)160xnllar <&, O VM(“‘;‘*) <e

Now choose m, so large that 1/n, < d,/e. Then

1 &
VM(E'%"'O) <e< T

But, by the above reasoning, also

Ve (%0' Wno) = ‘ii’
whieh is & contradiction. Hence, if the norm topology is a locally bounded
linear topology, then condition B1* holds.

TarOREM 14. The following conditions are necessary and sufficient
for the Musielak-Orlicz T-norm topology introduced in B}, to be (i) a locally
convex linear topology:

(ii) there exists at least one neighborhood A =
which contains a convex neighborhood of zero;

(ifl) the topology is a mormable linear topology;

{@: |ollar < e} of eero

(iv) there ewists a convex funciion M such that By = B}ﬁ

M (w)

0 < )~ <1 III (m;)

(2 v

(v) (EK = 1)(Ev, > 0)(En > 1)(V0 < u <

Proof. (ii) = (iv). Suppose A = {u: |||y < &} containg a convex
neighborhood of zero; then
(@S > 0)|lwsllar < 6y for 4=1,2,...,p
implies
By B+ Ty
2T <.
p M

icm

Modular spaces of generalized variation 39

This in turn implies

(% (Vi > O)ZM( ) Z“

> 1 arbitrary, as follows. Divide the interval [a, b] into "an +1

y M <D
g —
( &M 2

i=1

for n; >

equal parts. Define a step function which is zero on every odd palt and
whose value on the even parts is successively wu, for the first », even
parts Ip; to I;n,, u, for the next n, even parts Loy 60 Iy oevs Uy for
the last 7, even parts In; t0 Lnn,-

Now, set

Yogooor (1) for all  te[a, b].

m
= Dluiz,, (1)
=1

Since for this step function any refinement of a partition can only

increase the M™ variation,
Yoo
VM( ZQM < by;

the lagt inequality is the assumption of (*). It is easy to verify that
(Viela, b])
1

Ny Mg es e My

Tm
N7 U,
= E — 1, ( +Z FAOR S 2,1 (1) -
= ™ = Tm

Since [, yllar < 8 and the left term in the last equation re-
presents the average of the y, . , application of the fact that A
contains a convex neighborhood of zero yields

Z

yvl,.“,vm
Ny R oo

1770y bin 1<y

A
1=1,2,...,0

|

|

< &,
M

so that
m

Y o . Uy ) -V ( 1 1 yvl,...,vm) <e
2 RIY: =Vul 77— 2 —_ 0
£ nye O N W

g M (
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This is the conclusion of (*). Because M is continuous at zero,

(Hve > 0) M (v,/8,) < 6,/2. Now define

DM (tu
(Vu > 0) L(u) = sup — (—--[f")—;

0<t<i1 t
L is not necessarily a variation function. Using (*) and the definition
of L, we obtain
by 2

“

M(fi) <2 L <.

Directly from the definition of I, we obtain

(VO < u < ’U)M gnLﬁ)»)‘.
% v
Now let

2%

(Vu > O)M(u) = f

]

2O 4.
3

M is a convex variation function, and
. u %
(Vu 2 0)L(u) > M(u) > L(-—) = M|~}
2 2¢,
Hence Bjf; < Bj;. Conversely,

) 2
(Voe B3 (@a > 0)laallse <=2, or Vi (-;-m) <
S <%

Therefore, for all partitions m:a =1, <t, < ... <1y = b,

O [ 2a{o(t)—a ()} ] b
| 228 —2(a)} ] _
2 [ N ]< 2"

=1
By (%),
n
(V0 < 8 < 1)28;11”[@1@@.)_’;.
i1 &

hence by definition of L,

m

D Ll2afo(ty—n ()] <=2,

qasl 2
so that also

ZMlza(w(ti)‘—w(t‘i-d))] <i2°— and Vi (2aw) <2,
=1 o

&

Hence weBj, and thus BY, = BY.

icm°®
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Note that condition (ii) is analogous to condition b’) of It6’s Theo-
rem 3 ([1], p. 230).

(iv) = (ili). If there exists a convex function 27 such that Bl = B,
then define the homogeneous B-norm

Nl =inf{a >0 vﬂ(_j_) <1}

on B} (see [2], p. 32, and also [4], p. 192). We have k| 3¢ ~ |l@ll5r by
Theorem 9, and |@|5~|||#]||5 by direct calculation using the convexity

of M ; hence the topology introduced by || in B} is a normable linear
topology.
(iii) = (i) and (i) = (ii) are obvious, and (iv) < (v) is Theorem 7.
5. Examples of variation functions.
ExampLe 1. Define M (u) as follows:

for 1<u< +oo;

1 1 n{n!—1)+4+1
— f —_— K —
M(u) = n! O GrSUS (nh2 7
n(n!—1) n(n!—1)+1 n
nlu— pr e SUSoT n=2,3,...,

and M(—wu) = M (u) for v < 0. It is clear that

— M
lim M (u) =1 and lim M w)

w0t U u—-—>0 3 wu

This function does not satisfy conditions B1* or D but does satisfy
condition B1; no variation function which does mnot satisty condition
B1 is known. By Theorems 4, 10 and 11, conditions B, C, and I do not
hold for M either.

Exampre 2. Consider M(w) = ¢~ and N(u) = —1/lnu (u >=0),
and M(—u) = M(u), N(—u) = N(u). M is convex but tends to zero
faster than any power p of u, since

M (u)

lim »— =0
w0t U

H

similarly, N is concave but tends to zero slower than any power p of u,
because
»

. [
lim ——— = 0.
u—ot N (1)
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For u >0, M~ =N, yet M satisfies the B1* condition but N
does not. N satisfies D, but M does not; and M satisfies I, but N does not.

WxAMPLE 3. Let M(u) = |u[*®. M satisfies both conditions € and D,
but not condition I.
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Sur des théorémes de S, Banach et de L. Schwartz
concernant le graphe fermé

par

A . MARTINEAT (Nice)

11 s’agit ici d'une généralisation du théoréme du graphe fermé dans
la direction suggérée par A. Grothendieck dans sa thése [6].

La premiére solution & ce probléme a été fournie par W. Stowikow-
ski [14] suivi de D. A. Raikov [11] une aufre solution a été donnée par
Laurent Schwartz [13] qui s’appuie sur sa théorie de l'intégration et
un lemme de A. Douady, mhais qui ne recouvre pas exactement la con-
jecture de Grothendieck. Le premier pas dans le sens de la conjecture
de Grothendieck a été fait par M. Stowikowski, puis M. Raikov a donné
une solution compléte. L’énoncé de Schwartz est particuliérement sug-
gestif et ma principale confribution [9] a été d’en fournir une nouvelle
démonstration puisée dans l’ouvrage de Banach [1]. Je donne ici la plus
grande extension possible & cette méthode.

1. Remarques sur la théorie de la catégorie. Dans la suite, sauf
mention expresse du contraire, tous les espaces que je considére sont
séparés (terminologie Bourbaki). Je suis généralement la terminologie
et les notations de cet auteur.

Une partie ¥ d’un espace topologique X est dite rare si elle est
incluge dans un fermé sans point intérieur; elle est maigre si elle est réu-
nion dénombrable de parties rares (1-ére catégorie chez Baire et chez
les Polonais). L’espace X est dit non maigre s’il n’est pas un sous-ensemble
maigre de lui-méme. L’espace X est dit espace de Baire si tout ouvert
non vide de X est non maigre.

TugorEME 1. Soit Y une partie de X. On désigne par D(Y) Pensemble
des points ® de X tels que pour tout voisinage V de z Densemble V ~ ¥
soit non maigre. On a:

(«) D(Y) =Y.

(B) 81 ¥y = X,y D(Yy) = D(Xy).

(y) D(Y) est fermé. o

(3) Pour que O(Y) = D(Y) =@ il faut et il suffit que ¥ soit un
ensemble maigre.
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