. J. B. Deeds

372

Then there is a relatively dense set of integers S so that $p \, \epsilon S$ implies each summand in the finite sum is less than $\epsilon/2k$. Thus $||x_{n+p}-x_n||^2 \le k(\epsilon/2k) + \epsilon/2 = \epsilon$ and (x_n) is AP.

Among *U*-sequences, then, the almost periodic ones are the ones whose basis components are AP-scalar sequences, and $L^0(x_n) = \mathcal{E}_i[L(x_n, e_i)]e_i$, where $L(x_n, e_i)$ is the mean value of the sequence.

An immediate corollary to the above theorem is that a U-sequence is AP if and only if (x_n, y) is AP for each $y \in H$. Unfortunately, a complete analog of Theorem 3.1.1 cannot be proved. That is, we cannot drop the hypothesis that the sequence be in U already. Let $x_n = e_n$ whenever $k \equiv 2^n - 1 \pmod{2^{n+1}}$, $n = 0, 1, 2, \ldots$ This sequence has component sequences $a_k = (x_k, e_n)$, each with period 2^{n+1} . The vector sequence is not AP however, simply because it is not in U. It is also easy to see, that for each fixed y, (x_k, y) will be AP also. Hence, neither Theorem 3.2.4 nor its corollary will be true if we drop the assumption that the sequence has range contained in a compact set.

References

- [1] S. Banach, Théorie des opérations linéaires, Warszawa 1932.
- [2] S. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), p. 111-114.
 - [3] N. Bourbaki, Eléments de mathématique, Livre VI, Intégration, Paris 1952.
- [4] J. B. Deeds, The Stane-Öech operator and its associated functionals, Studia Math. 29 (1967), p. 5-17.
- [5] K. DeLeeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), p. 63-97.
- [6] G.G. Lorentz, A contribution to the theory of divergent sequences, ibidem 80 (1948), p. 167-190.

LOUISIANA STATE UNIVERSITY

Recu par la Rédaction le 17. 10. 1967

Uniformly convex and reflexive modulared variation spaces

b

HANS-HEINRICH HERDA (Salem, Massachusetts)

§ 1. Introduction. In chapter 11, entitled "Modular Spaces", of his treatise [3], Professor Hidegoro Nakano presents a theory of modulars on arbitrary (not necessarily semi-ordered) linear spaces. Namely, given any linear space X, a functional m(x) defined on X with values $0 \le m(x) \le +\infty$ is called a Nakano modular if

M. 1.
$$m(0) = 0$$
,

 $\mathbf{M.} \ \ 2. \ \ (\nabla x \in X) \ m(-x) = m(x),$

M. 3. $(\nabla x \in X)(\mathfrak{A} \geq 0) m(\lambda x) < +\infty$,

M. 4. $m(\xi x) = 0$ for all $\xi > 0 \Rightarrow x = 0$,

M. 5. $(\nabla x, y \in X)(\nabla \alpha, \beta \geqslant 0)$ $\alpha + \beta = 1 \Rightarrow m(\alpha x + \beta y) \leqslant \alpha m(x) + \beta m(y)$

M. 6. $(\nabla x \in X)$ $m(x) = \sup_{0 \le \xi \le 1} m(\xi x)$.

The space X associated with the functional m(x) is called a Nakano modulared space.

It is easy to see that, for example, the p^{th} power variations (as basic papers, see [4] or [2]) are special cases of Nakano modulars on generalized variation spaces. In this paper we are concerned with a new class of spaces which include the p^{th} power variation spaces. Let x be a real function in [a,b] such that x(a)=0, let p(t,s) be a real function of two real variables such that $t,s\in[a,b]$, t>s, and $1\leq p(t,s)<+\infty$; let $x:a=t_0< t_1<\ldots< t_n=b$ be a partition of [a,b]. Define

$$B_{p(t,s)} = \left\{ x \colon V_{p(t,s)}(x) = \sup_{\pi} \sum_{i=1}^{n} |x(t_i) - x(t_{i-1})|^{p(t_i,t_{i-1})} < + \infty \right\},\,$$

and denote by $B_{p(t,s)}^*$ the linear space generated by $B_{p(t,s)}$. Here, $V_{p(t,s)}$ is the Nakano modular on the space $B_{p(t,s)}^*$. If $p(t,s) \equiv p = \text{constant}$ $(1 \leq p < +\infty)$, we have the case of p^{th} variation. The spaces $B_{p(t,s)}^*$ generalize the idea of p^{th} variation in the same way as Nakano's $L_{p(t)}$ -spaces generalize the classical L_p -spaces (see [3], p. 234-240). In fact, the methods, employed in the present paper, although they are perhaps not widely known, are essentially due to Nakano.

§ 2. Basic results from the Nakano theory. Here we review as much of the theory of Nakano modulated spaces as is necessary for comprehension of the exposition in § 3. Proofs of the theorems here quoted and many additional concepts can be found in chapter 11 of [3]. However, Professor Nakano does not discuss explicitly the connection between Banach space and modular space concepts.

From M. 2 and M. 5 we obtain

(1)
$$m\left(\sum_{\nu=1}^{\kappa} a_{\nu} x_{\nu}\right) \leqslant \sum_{\nu=1}^{\kappa} |a_{\nu}| m(x_{\nu}), \quad \text{provided } \sum_{\nu=1}^{\kappa} |a_{\nu}| \leqslant 1.$$

DEFINITION 1. A sequence $\{a_r\} \subset X(v=1,\,2\,,\,\ldots)$ is modular convergent to a limit $a \in X$ (written $m-\lim_{r \to \infty} a_r = a$) if $\lim_{r \to \infty} m\{\xi(a_r-a)\} = 0$ for every $\xi \geqslant 0$.

DEFINITION 2. If every sequence $\{a_{\nu}\}\subset X(\nu=1,2,...)$ subject to the condition

$$\lim_{\mu,r\to\infty} m\{\lambda(a_{\mu}-a_{\nu})\} = 0$$
 for every $\lambda \geqslant 0$

is modular convergent, then X is modular complete.

Definition 3. A real valued linear functional φ on X is modular bounded if $\sup_{x\in [x]}|\varphi(x)|<+\infty$.

Let X be a modulared space and \overline{X} the set of modular bounded linear functionals on X. Clearly, \overline{X} is a linear space; if we set

(2)
$$(\nabla \overline{x} \in \overline{X}) \ \overline{m}(\overline{x}) = \sup_{x \in X} \{ \overline{x}(x) - m(x) \},$$

then we can show that \overline{m} satisfies the conditions M.1-M.6, so that \overline{m} is by definition a modular on \overline{X} .

DEFINITION 4. \overline{m} is called the adjoint modular of m and the linear space \overline{X} is called the modular adjoint space of X.

For \overline{m} we have obviously by (2)

$$(3) \qquad (\nabla \overline{x} \, \epsilon \, \overline{X})(\nabla x \, \epsilon \, X)|\overline{x}(x)| \leqslant \overline{m}(\overline{x}) + m(x).$$

Theorem 1. For every $x \in X$ we have $m(x) = \sup_{\overline{x} \in \overline{X}} \{\overline{x}(x) - \overline{m}(\overline{x})\}.$

THEOREM 2. For a subset \overline{A} of the modular adjoint space \overline{X} of X, if $\lim_{r\to\infty} \overline{x}(a_r) = \overline{x}(a)$ for every $\overline{x}\in\overline{A}$ and $m(a) = \sup_{\overline{x}\in\overline{A}} \{\overline{x}(a) - \overline{m}(\overline{x})\}$, then $m(a) \leq \lim_{x\to a} m(a_r)$.

Given a modulared space X, every linear subset A of X can be considered as a modulared space associated with the same modular of X. In this sense, A is termed a *subspace* of X. Since the modular adjoint

space \overline{X} of X is also a modulared space (with the adjoint modular \overline{m}), we can also consider the modular adjoint space \overline{X} of \overline{X} with the adjoint modular \overline{m} of \overline{m} . Because of Theorem 1, X may then be considered as a subspace of \overline{X} under the convention

$$(\nabla x \, \epsilon \, X)(\nabla \overline{x} \, \epsilon \, \overline{X}) \ x(\overline{x}) = \overline{x}(x).$$

DEFINITION 5. If X coincides with \overline{X} under the above convention, then both X and the modular m of X are called *reflexive*. (Nakano uses the term "regular" instead of "reflexive".)

In the modulared space X, for every $\lambda > 0$, putting

$$U_{\lambda} = \{x \colon m(x) \leqslant \lambda\},\,$$

we obtain a unique linear topology \mathscr{I}^m on X such that U_{λ} is a basis of \mathscr{I}^m . This linear topology is the same for every $\lambda > 0$.

DEFINITION 6. \mathcal{I}^m is called the modular topology of X.

Since U_{λ} is symmetric and convex for every $\lambda > 0$, each U_{λ} , $\lambda > 0$, is a basis of \mathscr{I}^m , and \mathscr{I}^m is of single vicinity, locally convex and separated, it follows that the pseudo-norm of U_{λ} is a Banach norm on X and that the modular topology of X coincides with the norm topology by this norm.

DEFINITION 7. The pseudo-norm of the 1-sphere U_1 of X is called the *modular norm* of X and is denoted by |||x||| for all $x \in X$.

It is evident that a linear functional φ on X is modular bounded iff φ is bounded by the modular norm. Hence

THEOREM 3. The modular adjoint space of X coincides with the adjoint space of X by the modular (Banach) norm.

This very important theorem means that the modular dual of $B^*_{p(t,s)}$ coincides with the usual Banach dual of $B^*_{p(t,s)}$ by the modular norm.

By investigating modulars on quotient spaces of X we can prove

THEOREM 4. For a finite number of elements $\overline{a}, \epsilon \overline{X}$ and real numbers $a, (\nu = 1, 2, ..., \varkappa)$, if

$$\sum_{r=1}^{\kappa} \xi_r \bar{a}_r = 0$$

implies

$$\sum_{\nu=1}^{\kappa} \xi_{\nu} a_{\nu} = 0, \quad \forall \nu, \dots, \nu, \dots$$

and (for $\gamma > 0$) if

$$\sum_{\nu=1}^{\kappa} \xi_{\nu} a_{\nu} \leqslant \gamma + \overline{m} \left(\sum_{\nu=1}^{\kappa} \xi_{\nu} \overline{a}_{\nu} \right)$$

for every finite number of real numbers $\xi_{\nu}(\nu=1,2,\ldots,\varkappa)$, then for any $0 < \varepsilon < 1$ there exists $x \in X$ such that $m\{(1-\varepsilon)x\} \le \gamma$, $\overline{a}_{\nu}(x) = a_{\nu}$ $(\nu=1,2,\ldots,\varkappa)$.

DEFINITION 8. If X is a modulared space and $(\nabla x \in X)$ m(x) = 0 $\Rightarrow x = 0$, then X is called *simple*. X is called *uniformly simple* if

$$(\nabla \xi > 0) \inf_{m(x) \geqslant 1} m(\xi x) > 0.$$

Every space $B_{p(t,s)}^*$ is uniformly simple.

DEFINITION 9. If X is simple, a sequence $\{a_{\nu}\}\subset X(\nu=1,2,\ldots)$ is conditionally modular convergent to a limit $a\in X$ if $(\Re a>0)\lim_{r\to\infty} m\left\{a(a_{\nu}-a)\right\}=0$.

THEOREM 5. X is uniformly simple iff conditional modular convergence coincides with modular convergence.

DEFINITION 10. A modulared space X and its modular m are uniformly convex if $(\nabla \varepsilon > 0)(\nabla \gamma > 0)(\boxtimes \delta > 0)m(x) \leqslant \gamma$, $m(y) \leqslant \gamma$ and $m(x-y) \geqslant \varepsilon \Rightarrow \frac{1}{2}\{m(x)+m(y)\} \geqslant m\{\frac{1}{2}(x+y)\} + \delta$.

This definition provides a modular parallel to the concept of uniform convexity in Banach spaces first considered by Professor James A. Clarkson [1].

§ 3. Main theorems.

THEOREM 6. Every space $B_{p(t,s)}^*$ is modular complete.

Proof. If

$$\lim_{\mu,\nu\to\infty} V_{p(t,s)}\{\xi(x_\mu-x_
u)\} = 0 \quad \text{ for every } \xi\geqslant 0\,,$$

then there exists a subsequence $x_{\nu_{\mu}}(\mu=1,2,\ldots)$ of $x_{\nu}(\nu=1,2,\ldots)$ such that $V_{\mathcal{D}(t,s)}\{2^{\mu}(x_{\nu_{\mu+1}}-x_{\nu_{\mu}})\} \leq 1$. Then we can assert, by (1), that

$$\begin{split} V_{p(t,s)} \Big(\sum_{\mu=1}^{\kappa} \frac{1}{2^{\mu}} \cdot 2^{\mu} |x_{\nu_{\mu+1}} - x_{\nu_{\mu}}| \Big) \leqslant \sum_{\mu=1}^{\kappa} \frac{1}{2^{\mu}} \cdot V_{p(t,s)} (2^{\mu} |x_{\nu_{\mu+1}} - x_{\nu_{\mu}}|) \\ \leqslant \sum_{\mu=1}^{\kappa} \frac{1}{2^{\mu}} < 1 \quad \text{for} \quad \kappa = 1, 2, \dots \end{split}$$

Hence $\sum_{\mu=1}^{\kappa}|x_{r_{\mu+1}}(r)-x_{r_{\mu}}(r)|$ is convergent to a function y such that y(a)=0 and generally

$$y(r) = \sum_{\mu=1}^{\infty} |x_{r_{\mu+1}}(r) - x_{r_{\mu}}(r)|$$
 for all $r \in [a, b]$.

Setting

$$x(r) = x_{r_1}(r) + \sum_{\mu=1}^{\infty} \{x_{r_{\mu+1}}(r) - x_{r_{\mu}}(r)\},$$

we have $V_{p(t,s)}(x-x_{r_1}) \leq 1$ and hence $x \in B^*_{p(t,s)}$. Since $V_{p(t,s)}\{2^{\mu}(x_{r_{\mu+1}}-x_{r_{\mu}})\} \leq 1(\mu=1,2,\ldots)$, we infer, again by (1), that

$$V_{p(t,s)}\left\{2^{\varrho}\sum_{\mu=2\varrho}^{\kappa}\frac{1}{2^{\mu}}\cdot 2^{\mu}(x_{\nu_{\mu+1}}-x_{\nu_{\mu}})\right\}\leqslant \sum_{\mu=2\varrho}^{\kappa}\frac{2^{\varrho}}{2^{\mu}}\leqslant \frac{1}{2^{\varrho-1}}\quad \text{ for } \kappa=1,2,\ldots$$

Hence we have

and thus

$$V_{p(t,s)} - \lim_{\mu \to \infty} x_{\nu_{\mu}} = x$$
.

Given $\varepsilon > 0$ and $\xi > 0$, because

$$\lim_{r\to\infty} V_{p(t,s)}\{\xi(x_r-x_\mu)\} = 0 \quad \text{ and } \quad V_{p(t,s)} - \lim_{\mu\to\infty} x_{r_\mu} = x,$$

we can find $x_{\nu_{\mu}}$ and x_{ν} such that $V_{\mathcal{D}(t,s)}\{\xi(x_{\nu}-x_{\nu_{\mu}})\}<\varepsilon$ and $V_{\mathcal{D}(t,s)}\{\xi(x_{\nu_{\mu}}-x_{\nu_{\mu}})\}<\varepsilon$; hence

$$\begin{split} V_{p(t,s)} \left\{ &\frac{\xi}{2} \left(x - x_{r} \right) \right\} = V_{p(t,s)} \left\{ &\frac{\xi}{2} \left[\left(x_{r_{\mu}} - x \right) + \left(x_{r} - x_{r_{\mu}} \right) \right] \right\} \\ &\leqslant &\frac{1}{2} V_{p(t,s)} \left\{ \xi \left(x_{r_{\mu}} - x \right) \right\} + \frac{1}{2} V_{p(t,s)} \left\{ \xi \left(x_{r} - x_{r_{\mu}} \right) \right\} < \varepsilon \,. \end{split}$$

This shows that $V_{p(t,s)} - \lim_{r \to \infty} x_r = x$, i.e., $B^*_{p(t,s)}$ is modular complete.

THEOREM 7. If

$$1 < p_1 = \inf_{t > s \in [a,b]} p(t,s) \leqslant \sup_{t > s \in [a,b]} p(t,s) = p_0 < +\infty,$$

then $B_{p(t,s)}^*$ is uniformly convex.

Proof. Let χ_0 be the characteristic function of $\{(t,s)\colon p(t,s)\geqslant 2\}$ and χ_1 that of $\{(t,s)\colon p(t,s)<2\}$. Hence $(\nabla x\in B^*_{p(t,s)})V_{p(t,s)}(x\chi_0)+V_{p(t,s)}(x\chi_1)=V_{p(t,s)}(x)$. Given real numbers $\gamma>0$, $\varepsilon>0$, assume $V_{p(t,s)}(c)\leqslant \gamma$, $V_{p(t,s)}(d)\leqslant \gamma$, and $V_{p(t,s)}(c-d)\geqslant \varepsilon$. Then either

(i) $V_{p(t,s)}\{(c-d)\chi_0\} \geqslant \varepsilon/2$ or

(ii) $V_{p(t,s)}\{(c-d)\chi_1\} \gg \varepsilon/2$. If (i) holds, then it follows from the inequality (for a proof, see [3], p. 275)

$$(\forall p \geqslant 2) \frac{|\xi|^p + |\eta|^p}{2} \geqslant \left| \frac{\xi + \eta}{2} \right|^p + \left| \frac{\xi - \eta}{2} \right|^p$$

that

$$\label{eq:poisson} \begin{array}{l} \frac{1}{2}\{V_{\nu(t,s)}(c\chi_0) + V_{\nu(t,s)}(d\chi_0)\} \geqslant V_{\nu(t,s)}\{\frac{1}{2}(c+d)\chi_0\} + V_{\nu(t,s)}\{\frac{1}{2}(c-d)\chi_0\}. \\ \\ \text{Since} \end{array}$$

$$p_{0} = \sup_{t>s\in[a,b]} p(t,s) < +\infty,$$

we have

$$|V_{p(t,s)}\{\frac{1}{2}(c-d)\chi_0\}\geqslant \frac{1}{2^{p_0}}\cdot V_{p(t,s)}\{(c-d)\chi_0\}\geqslant \frac{\varepsilon}{2^{p_0+1}}$$

Furthermore, by M.5,

$$\frac{1}{2}\{V_{p(t,s)}(c\chi_1)+V_{p(t,s)}(d\chi_1)\}\geqslant V_{p(t,s)}\{\frac{1}{2}(c+d)\chi_1\}.$$

Hence we obtain

$$\frac{1}{2}\{V_{p(t,s)}(c) + V_{p(t,s)}(d)\} \geqslant V_{p(t,s)}\{\frac{1}{2}(c+d)\} + \frac{\varepsilon}{2^{p_0+1}}.$$

If (ii) holds, set

$$arepsilon' = \min \left\{ rac{arepsilon}{8 \gamma}, rac{1}{2}
ight\}$$

and denote by χ_2 the characteristic function of

$$\{(t,s)\colon p(t,s)<2\ \text{ and } (\exists r\colon t\geqslant r\geqslant s)\,|c(r)-d(r)|\geqslant \varepsilon'(|c(r)|+|d(r)|)\};$$
 then we have

$$V_{p(t,s)}\{(c-d)(\chi_1-\chi_2)\} \leqslant V_{p(t,s)}\{\varepsilon'(|c|+|d|)\}$$

 $\leqslant \tfrac{1}{2}\{\boldsymbol{V}_{p(\boldsymbol{t},s)}(2\varepsilon'\,c) + \boldsymbol{V}_{p(\boldsymbol{t},s)}(2\varepsilon'\,d)\} \leqslant \tfrac{1}{2} \cdot 2\varepsilon'\{\boldsymbol{V}_{p(\boldsymbol{t},s)}(c) + \boldsymbol{V}_{p(\boldsymbol{t},s)}(d)\} \leqslant 2\varepsilon'\gamma \leqslant \frac{\varepsilon}{4},$ and therefore

$$V_{p(t,s)}\{(c-d)\chi_2\}\geqslant \frac{\varepsilon}{2}-\frac{\varepsilon}{4}=\frac{-\varepsilon}{4}.$$

If we set

$$\sigma = p_1 - 1 = \left\{ \inf_{t > s \in [a,b]} p(t,s) \right\} - 1,$$

it follows from the inequality (for a proof, see [3], p. 275-276)

$$(\nabla p \colon 1 \leqslant p \leqslant 2) \frac{|\xi|^p + |\eta|^p}{2} \geqslant \left| \frac{\xi + \eta}{2} \right|^p + \frac{p(p-1)}{2} \cdot \left| \frac{\xi - \eta}{|\xi| + |\eta|} \right|^{2-p} \cdot \left| \frac{\xi - \eta}{2} \right|^p$$

$$\tfrac{1}{2}\{V_{p(t,s)}(c\chi_2)+V_{p(t,s)}(d\chi_2)\}\geqslant V_{p(t,s)}\{\tfrac{1}{2}(c+d)\chi_2\}+\frac{\sigma}{2}\varepsilon'V_{p(t,s)}\{\tfrac{1}{2}(c-d)\chi_2\}.$$

On the other hand, we obtain

$$V_{p(t,s)}\{\frac{1}{2}(c-d)\chi_2\} \geqslant \frac{1}{4}V_{p(t,s)}\{(c-d)\chi_2\} \geqslant \frac{\varepsilon}{16}$$

and, by M.5,

$$\frac{1}{2}\{V_{p(t,s)}[c(1-\chi_2)]+V_{p(t,s)}[d(1-\chi_2)]\}\geqslant V_{p(t,s)}\{\frac{1}{2}(c+d)(1-\chi_2)\}.$$

Hence

$$\tfrac{1}{2}\{V_{p(t,s)}(c) + V_{p(t,s)}(d)\} \geqslant V_{p(t,s)}\{\tfrac{1}{2}(c+d)\} + \frac{\sigma\varepsilon'\varepsilon}{32}$$

and consequently

$$\tfrac{1}{2}\{V_{p(t,s)}(c)+V_{p(t,s)}(d)\}\geqslant V_{p(t,s)}\{\tfrac{1}{2}(c+d)\}+\min\!\left\{\!\frac{\varepsilon}{2^{p_{0+1}}},\frac{\sigma\varepsilon'\varepsilon}{32}\!\right\}$$

in both cases (i) and (ii). Hence $B_{p(t,s)}^*$ is uniformly convex.

THEOREM 8. If a Nakano modulared space X is at once uniformly simple, modular complete and uniformly convex, then X is reflexive.

Proof. Let \overline{X} be the modular adjoint space of the modular adjoint space \overline{X} . For any $\overline{x} \in \overline{X}$ satisfying $\overline{m}(\overline{x}) < +\infty$, using (2) we can find a sequence $\{\overline{x}_i\} \subset \overline{X}(\nu = 1, 2, ...)$ such that

$$\overline{\overline{x}}(\overline{x}_{\nu})\geqslant \overline{\overline{m}}(\overline{x})+\overline{m}(\overline{x}_{\nu})-\frac{1}{x}.$$

Since we get by (3) that

$$\sum_{{\scriptscriptstyle \nu}=1}^{\varkappa} \xi_{\scriptscriptstyle \nu} \bar{\bar{x}}(\bar{x}_{\scriptscriptstyle \nu}) \leqslant \overline{\bar{m}}(\bar{\bar{x}}) + \overline{m} \left(\sum_{{\scriptscriptstyle \nu}=1}^{\varkappa} \xi_{\scriptscriptstyle \nu} \bar{x}_{\scriptscriptstyle \nu} \right)$$

for any finite set of real numbers $\xi_r(\nu=1,2,\ldots,z)$, we can find by Theorem 4 a sequence $\{x_\varrho\}\subset X(\varrho=1,2,\ldots)$ such that $\overline{x}_r(x_\varrho)=\overline{\overline{x}}(\overline{x}_r)$ for every $\nu=1,2,\ldots,\varrho$, and such that

$$m\left\{\left(1-rac{1}{
ho}
ight)\!x_{\!arrho}\!
ight\}\leqslant\overline{\overline{m}}(ar{ar{x}}) \quad ext{ for every } arrho=1,2,\ldots$$

For such $x_o(\rho = 1, 2, ...)$ we obtain

$$\lim_{\mu,\nu\to\infty} m\left\{\left(1-\frac{1}{\nu}\right)x_{\nu}-\left(1-\frac{1}{\mu}\right)x_{\mu}\right\}=0.$$

Otherwise, if we could find $\varepsilon > 0$ and two subsequences λ_r , $\mu_r(\nu = 1, 2, ...)$ of $\{1, 2, ...\}$ such that

$$(\nabla v = 1, 2, \ldots) m \left\{ \left(1 - \frac{1}{\lambda_{\nu}}\right) x_{\lambda_{\nu}} - \left(1 - \frac{1}{\mu_{\nu}}\right) x_{\mu_{\nu}} \right\} \geqslant \varepsilon,$$

then, since X is uniformly convex,

$$\begin{split} (\mathbf{T}\delta > 0)_{\frac{1}{2}} \left\{ & m \bigg[\bigg(1 - \frac{1}{\lambda_{r}} \bigg) x_{\lambda_{r}} \bigg] + m \bigg[\bigg(1 - \frac{1}{\mu_{r}} \bigg) x_{\mu_{r}} \bigg] \right\} \\ & \geqslant m \left\{ \frac{1}{2} \bigg[\bigg(1 - \frac{1}{\lambda_{r}} \bigg) x_{\lambda_{r}} + \bigg(1 - \frac{1}{\mu_{r}} \bigg) x_{\mu_{r}} \bigg] \right\} + \delta \end{split}$$

for every $\nu = 1, 2, \dots$ On the other hand,

$$\tfrac{1}{2} \left\{ m \left[\left(1 - \frac{1}{\lambda_{\mathsf{v}}} \right) x_{\lambda_{\mathsf{v}}} \right] + m \left[\left(1 - \frac{1}{\mu_{\mathsf{v}}} \right) x_{\mu_{\mathsf{v}}} \right] \right\} \leqslant \overline{\overline{m}}(\overline{\bar{x}}) \,,$$

and by (2) for $\varrho \leqslant \lambda_{\nu}, \mu_{\nu}$

$$\begin{split} m\left\{\frac{1}{2}\bigg[\bigg(1-\frac{1}{\lambda_{\nu}}\bigg)x_{\lambda_{\nu}}+\bigg(1-\frac{1}{\mu_{\nu}}\bigg)x_{\mu_{\nu}}\bigg]\right\} \geqslant \overline{x}_{\varrho}\left\{\frac{1}{2}\bigg[\bigg(1-\frac{1}{\lambda_{\nu}}\bigg)x_{\lambda_{\nu}}+\bigg(1-\frac{1}{\mu_{\nu}}\bigg)x_{\mu_{\nu}}\bigg]\right\}-\overline{m}(\overline{x}_{\varrho})\\ &=\bigg(1-\frac{1}{2\lambda_{\nu}}-\frac{1}{2\mu_{\nu}}\bigg)\overline{x}(\overline{x}_{\varrho})-\overline{m}(\overline{x}_{\varrho})\,. \end{split}$$

Hence we obtain for such δ

$$\overline{\overline{m}}(\overline{\bar{x}})\geqslant \left(1-rac{1}{2\lambda_{
u}}-rac{1}{2\mu_{
u}}
ight)\!\overline{\bar{x}}(\overline{x}_{arrho})-\overline{m}(\overline{x}_{arrho})+\delta \quad ext{ for every } arrho\leqslant\lambda_{
u},\,\mu_{
u}.$$

Now, letting $\nu \to \infty$, we conclude

$$\overline{\overline{m}}(\overline{\bar{x}})\geqslant \overline{\bar{x}}(\overline{x}_{\varrho})-\overline{m}(\overline{x}_{\varrho})+\delta\geqslant \overline{\overline{m}}(\overline{\bar{x}})-\frac{1}{\varrho}+\delta \quad \text{ for every } \varrho=1,2,\ldots\;,$$

contradicting $\delta>0$. Since X is uniformly simple and modular complete by assumption, by Theorem 5 there exists $x \in X$ such that

$$m - \lim_{\nu \to \infty} \left(1 - \frac{1}{\nu}\right) x_{\nu} = x,$$

and thus we have by Theorems 3 and 2,

$$m(x) \leqslant \lim_{r \to \infty} m \left\{ \left(1 - \frac{1}{r}\right) x_r \right\} \leqslant \overline{\overline{m}}(\overline{x}),$$

and $\overline{x}_{\nu}(x) = \overline{\overline{x}}(\overline{x}_{\nu})$ for every $\nu = 1, 2, \ldots$ For an arbitrary $\overline{x} \in \overline{X}$, the same process can be applied to $\overline{x}, \overline{x}_1, \overline{x}_2, \ldots$ instead of $\overline{x}_1, \overline{x}_2, \ldots$, and then we obtain similarly $x_0 \in X$ such that $m(x_0) \leqslant \overline{\overline{m}}(\overline{x}), \overline{x}(x_0) = \overline{\overline{x}}(\overline{x}), \overline{x}_{\nu}(x_0) = \overline{\overline{x}}(\overline{x}_{\nu})$ for every $\nu = 1, 2, \ldots$ For such x_0 , if $m(x - x_0) > 0$, then, since X is uniformly convex, we can find $\delta > 0$ such that

$$\frac{1}{2}\{m(x)+m(x_0)\} \geqslant m\{\frac{1}{2}(x+x_0)\}+\delta,$$

and then, by (3), for every $\nu = 1, 2, \ldots$

$$\begin{split} \overline{\overline{m}}\,(\overline{\bar{x}}) &\geqslant m\{\tfrac{1}{2}(x+x_0)\} + \delta \geqslant \overline{x}_{\mathbf{r}}\{\tfrac{1}{2}(x+x_0)\} - \overline{m}\,(\overline{x}_{\mathbf{r}}) + \delta \\ &= \overline{\overline{x}}\,(\overline{x}_{\mathbf{r}}) - \overline{m}\,(\overline{x}_{\mathbf{r}}) + \delta \geqslant \overline{\overline{m}}\,(\overline{\overline{x}}) - \frac{1}{r} + \delta, \end{split}$$

contradicting $\delta > 0$. Hence $m(x-x_0) = 0$ and therefore $x = x_0$, because X is uniformly simple. It follows that $\overline{x}(x) = \overline{x}(x_0) = \overline{x}(\overline{x})$. Since $\overline{x} \in \overline{X}$ is arbitrary, we have $(\nabla \overline{x} \in \overline{X})$ $\overline{x}(x) = \overline{x}(\overline{x})$, i.e., X is reflexive by Definition 5.

THEOREM 9. $B_{p(t,s)}^*$ with p(t,s) restricted as in Theorem 7 is reflexive as a Nakano modulared space and as a Banach space.

Proof. Because $B^*_{p(t,s)}$ is a uniformly simple Nakano modulared space, it follows by Theorems 6, 7, and 8 that $B^*_{p(t,s)}$ is reflexive in the sense of Definition 5. In view of Theorem 3, we finally obtain that $B^*_{p(t,s)}$ is reflexive in the usual Banach space sense.

References

[1] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), p. 396-414.

[2] E.R. Love and L.C. Young, Sur une classe de fonctionnelles linéaires, Fund. Math. 28 (1937), p. 243-257.

[3] H. Nakano, Topology and linear topological spaces, Tokyo 1951.

[4] L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936), p. 251-282.

WAYNE STATE UNIVERSITY SALEM STATE COLLEGE

Reçu par la Rédaction le 23. 10. 1967