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Then there is a relatively dense set of integers S so that p S implies
each summand in the finite sum is less than e/2k. Thus |[@.p— 2|2
< k(g/2k)+¢/2 = ¢ and (z,) is AP. ‘

Among U-sequences, then, the almost periodic ones are the ones
whose basis components are AP-gealar sequences, and L (@) = Zi[L(x,,
¢:)]€;, where L(w,, ¢;) is the mean value of the sequence.

An immediate corollary to the above theorem is that a U-sequence
ig AP if and only if (2,, y) is AP for each y<H. Unfortunately, a complete
analog of Theorem 3.1.1 cannot be proved. That is, we cannot drop the
hypothesis that the sequence be in U already. Let @, = e, whenever

=9"—1 (mod 2"*Y),n =0,1,2,... This sequence has component
sequences a; = (&, €;), each with period 2"+ The vector sequence i
not AP however, simply because it is not in U. It is also easy to see,
that for each fixed v, (vz, y) will be AP also. Hence, neither Theorem 3.2.4
nor its corollary will be true if we drop the assumption that the sequence
has range contained in a compact set.
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Uniformly convex and reflexive modulared variation spaces
by

HANS-HEINRICH HERDA (Salem, Massachusetts)

§ 1. Introduction. In chapter 11, entitled “Modular Spaces”, of his

.treatise [8], Professor Hidegoré Nakano presents a theory of modulars

on arbitrary (not necessarily semi-ordered) linear spaces. Namely, given
any linear space X, a functional m(z) defined on X with values 0 <m(w)
< + oo is called a Nakano modular if

m(0) = 0,

. (VeeX) m(—a) = m(a),

. (VzeX)(HA > 0) m(iz) < + oo,

.m(éx) =0 for all §>0=>2=0,

. (V2,4 eX)(Va, f20) atpf =1=m(ax+py) < am(z)+ pm(y),
. (VzeX) m(z) =021§1<plm(§m).

L N N

The space X associated with the functional m(x) is called a Nakano
modulared space. ‘ C

It is easy to see that, for example, the ™ power variations (as basic
papers, see [4] or [2]) are special cases of Nakano modulars on generalized
variation spaces. In this paper we are concerned with a new class of spaces
which include the p*® power variation spaces. Let = be a rea.lhfunct'ion
in [a,b] such that z(a) = 0, let p(t,s) be a real function of two real
variables such that ¢, se[a,b], t>¢, and 1< p(t,8) < + oo; let =
a4 =1 <t <..<tl, =b be a partition of [a, b]. Define

n
By = {m: Vo (@) = sup 3| (t)— oty P4 < + °°}’

i=1

and denote by B;’,(,,,,) the linear space generated by Bpgs. Here, Vo)
iy the Nakano modular on the space Bpus. If p(t,8) =p = constant
(1 <p < + o), we have the case of p® variation. The spaces B;(t,,)
generalize the idea of p™ variation in the same way as Nakano’s Lpg-
-spaces generalize the classical L,-spaces (see [3], p- 234-240). In fact,
the methods, employed in the present paper, although they are perbaps
not widely known, are essentially due to Nakano.
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§ 2. Basic results from the Nakano theory. Here we review as much
of the theory of Nakano modulared spaces as is necessary for compre-
hension of the exposition in § 3. Proofs of the theorems here quoted and
many additional concepts can be found in chapter 11 of [3]. However,
Professor Nakano does not discuss explicitly the connection between
Banach space and modular space concepts.

From M. 2 and M. 5 we obtain

@ m(Z”avwv) < 2 oy m (),

DeriNITION 1. A sequence {a,} < X (v =1,2,...) is modular con-
vergent 10 a limit ae<X (written m—lim o, = a) if lim m{é(a,—a)} =0
for every £ > 0. 1mree e
- DErINITION 2. If every sequence {g,} = X(v=1,2,.
the condition

provided 2 la| < 1.
r=1

..) subject to

lim m{A(a,—

B0

@)} =0 for every 4 >0
is modular convergent, then X is modular complete.

DEFINITION 3. A real valued linear funetlona.l @ on X is modular
bounded if sup lp ()] < + oo.
)

) Let X be a modulared space and X the set of modular bounded
linear functionals on X. Clearly, X is a linear space; if we set

2) (VZeX) m(Z) = sup{@(w) —m ()},

then we can show that # satisfies the conditions M. 1-M. 6, so that m
is by definition a modular on X.

" DEFINITION 4. 7 is called the adjoint modular of m and the linear
space~X is called the modular adjoint space of X.
For m we hewe obvmusly by (2)

(3) (VEeX) (Vo e X)|E(x)| < M(Z)+m(z).
THEOREM 1. For every seX we hcwe m(2) = sup {F(x)— ()}
ZX
THEOREM 2. For a subset A of the modular adjoint space X of X,
1f hmz(a,) =w(a ) Jor every Fed and m(a) = sup {T(a)— M (E)}, then
m(a) <limm(a,). ) e '

Py

Given a modulared space X, every linear subset 4 of X can be con-
sidered as ‘a modulared Space agsociated with the same modular of X.
In this sense, A is termed 2 subspace of X. Since the modular adjoint

icm
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space' X of X is also a modulared space (with the adjoint modular ),
we can also consider the modular adjoint space X of X with the adjoint
modular 7 of M. Because of Theorem 1, X may then be considered as
a subspace of X under the convention

(Vo eX)(VEeX) x(Z) = Z(x).

DEFINITION 5. If X coincides with X under the above convention,
then both X and the modular m of X are called reflexive. (Nakano uses
the term “regular” instead of “reflexive?”.) )

In the modulared space X, for every 1> 0; putting

U, = {z: m(x) <A},

we obtain a unique linear topology #™ on X such that U, is a basis of #™.
This linear topology is the same for every 4> 0.

DEFINITION 6. ™ is called the modular topology of X. :

Since U, is symmetric and convex for every i >0, each U, 1> 0,
is a basis of #™, and #™ is of single vicinity, loeally convex and separated,
it follows that the psendo-norm of U, is a Banach norm on X and that
the modular topology of X -coincides with the -norm topology by this
norm.

DEFINITION 7. The pseudo-norm of the 1-sphere U, of X is called
the modular norm of X and is denoted by |||z{|| for all zeX.

It is evident that a linear functional ¢ on X is modula.r bounded
iff ¢ is bounded by the modular norm. Hence

THEOREM 3. The modular adjoint space of X comcules with the adjoint
space of X by ﬂze ‘modular (Banach) norm.

This very important theorem means that the modular dual of Bpus
oomoldes with the usual Banach dual of By by.the modular norm.

By investigating modulars on quotient spaces of X we can prove

THEOREM 4. For a finite number of elements d,eX and real numbers

ar=1,2,... ) o ' v

i

.
Nsa, =

pal
implies

and (for y > 0) if
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“for every finite mumber of real numbers &,(v =1,2,..., %), then for any
0 <& <1 there ewists weX such that m{(1—e)a} <y, a,(2) = ¢, (v =1,
2, ..., %)

DErFiniTION 8. If X is a modulared space and (VzeX) m(z) =0
= g = 0, then X is ocalled simple. X is called uniformly simple if

(VE>0) inf m(éx) > 0.
mE)z=1
Bvery space By, is uniformly simple.
DepiniTioN 9. If X is simple, a sequence {a,} = X(v =1,2,...) is
conditionally modular convergent to a limit aeX if (Ho > 0)lim m {a(a,—
-0
—a)} =0.

THEOREM 5. X is uniformly simple iff conditional modular conver-
gence cotneides with modular convergence. ‘

DEFINITION 10. A modulared space X and its’modular m are wni-
formly convex if (Ve > 0)(Vy > 0)(HS > 0)m () < y, m(y) <y and m(x—
—¥) Ze=> {m@)+my)} > m{d@+y)i+6. o

This definition provides a modular parallel to the coneept of wuni-
form convexity in Banach spaces first considered by Professor James
A. Clarkson [1].

§ 3. Main theorems.

THEOREM 6. Every space B;(m) s modular complete.
Proof. If

bm Vyyo{é(w,—z,)} =0 for every &3>0,
#,p—>00

then there exists a subsequence @, (w=1,2,...) of z(» =1,2,..)
such that V,,(,,g){Z”(w,” +1—%,)} <1. Then we can assert, by (1), that

. » . . 1"
1 1 . "
Vﬂm( 7 2l —wv,,l) < V@0~ )
=1 p=,
5 1
<2§<1 for x=1,2,..
B=1

Hence él [w,,“ H(r)—a;,,l‘ (r)] is converéent to a function y such that
y(a) = 0 and generally

y(r) = Zlm,,,+1(r)—'my”(r)| .forﬂjal{ll rela, b].

&
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Setting
o]
Ca(r) = &, (N4 D &, 1) —, (0},
=1

we have Vygq(#—a,) <1 and hence ch;(t_s). Since Vp(g,\,){z”(xvﬂﬂ—
_m,y)} <1(u=1,2,...), we infer, again by (1), that

RS o0 1
Vs {2 Z o RACTREL N ES 2'27< 51

u=20 p=20

for » =1,2,...

Hence we have

Vp(t,s){zg(w—m,,ze)} < for every o =1,2,...,

and thus
V,,(gls)—hmm,“ = .
D oo

Given & >0 and & > 0, because
lim Vyyq{é@,—a,)} =0 and
¥y 00
we can find Ly, and z, such that Vp(.«,,s){é(w,—w,p)} < g and Vp(,,,){é(a:v“——
— )} < &; hence

Vp(t,s)—]uiilom-‘, =,

Vogs {—;— (v— 93';)} = Vpug {g [(map — )+ (@, — mv,‘)]}

< %Vp(z,s){f(wu”‘—m)}‘i‘%vp(t,s){f(mf“mu“)} <e.
This shows that V,,(t,s)-—lim z, =z, i.e., B;(t,s) is modular complete.

THEOREM 7. If

sup  p(t, 8) =P < + o0,

i t,8) <
Inf p( ! ) = 1>8¢[3,0]

{>8¢[a,b]

1<p=

then By is uniformly conves.

Proof. Let g, be the characteristic function of {(t,s): p(t, s) = 2}
and y, that of {(t, s): p(t, 8) < 2}. Hence (Vo eByitsy) Vs (@20) + Vot (22}
= Vs (@)- Given real numbers y >0, a‘>0, assume Vg (c) < 7y
Vog(d) <y, and Vo (c—4d) > e Then either

(1) Vogs{lc—ad) xe} = /2 or ‘

(ii) VZ;(:,:){{(O-—d)xl} >¢/2. Tt (i) holds, then it follows from the
inequality (for a proof, see [3], D. 275)
|E1°+ Il _ | £+

R E

rd

(Vvp =2)

4 E—ﬂ
+\—2—
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that
#H sz(t,s) (exo)+ Vm(t,s) (dlo)} = Vi s e+ ad) o+ V;l(t,s){%‘ (e—d) yo}.
Since
Po= sup p(t,s) < + oo,
. t>8¢[a,b}
we have

Vouatd (0— ) %o} =
Furthermore, by M.5,
3 {Vp(t,.s) (exn)+ Vp(t,s) (dxa)} = Vaa(t,s){‘l‘ (e+a)z.}.

Hence we obtain

VP(’ ile— 'Z ) 2o} 2 = ool

%{Vp(t,s)(o)‘{‘vp(z,s)(d)} = ,,(“){%(H-d} opou :
If (i) holds, set S
| g = mm{ ,1}}
and denote by. ¥» the characteristic function of‘
= (le()|+12()};

{(t,8):p(t;8) <2 and (gr:t>r> s)[o(r)—d(r)|

then we have

2 2

Vatall6= ) 1)} < Ve’ (1ol + 1)}
S 3V (26°0)+ V(26 d)} < %'26"{17490,.9)(0)4—Vp(t,s) (d)} <2¢'y < Ey
and therefore -
e ¢
Tnaflo—dp) >3 —+ =72
If we set '
e=p;—1={inf p(fs}
. . t>ae[ab] .
it follows from the inequality (for a proof see’ [3], P. "75—27 6)
i .
(Vp:1<p <oy LI ;}ﬁ.ﬁ_, 1"@ =1) | E—n P E=n P

RS | 2|

that

HV o (022)+ YP(‘,G;! (d?fz)} 3 Vp(t,al){% (64 d) Zz}g‘f‘%’ﬁ' Vs {lc—d) xa}

icm
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On the other hand, we obtain

&
Vs {3(e—a) 22} = 1 Vg5 {(c—d) 12} >F
and, by M.5,
HV sy [e(X— 20) 1+ Vipge ) [A{L— )T} = Vg, {3 (4 @) (1 — x2)} -
Hence

ge'e

3{ Vo5 (0)+ Vg ()} 2 Vopg{dle+ d)}+

and consequently

H Vs (©) -+ Vo (@)} > w@@w+d}+mm{£ “8}

0B+l ? 39

in both cases (i) and (ii). Hence By, is uniformly convex.
THEOREM 8. If a Nakano modulared space X is at once uniformly
simple, modular complete and uniformly conver, then X is reflexive.

Proof. Let X be the modular adjoint space of the modular adjoint

space X. For any & X satistying - m (%) < + oo, using (2) we can find
sequence {z,} =« X(» =1,2,...) such that
= = 1
x(z,) = m(x)+ m(z,)——.
. v

Since we get by (3) that

ZEw(x

for any finite set of real numbers &(» =1,2,...,%), we can find by
Theorem 4 a sequence {w,} = X(¢ =1,2,...) such that Z () = z(%,)
for every » =1,2,..., 0, and such that

1
m{(l———)m
4
For such #,(0 =1,2,..
1 1
lim m {(1——)50,*(1———)%} = 0.
Hp—00 v “

Otherwise, if we could find ¢>0 and two subsequences Ayy iy (¥
) of {1,2,...} such that

e () =
z; — | 1—— =&
Al wl T

®

<m@)+m ()Y EE)

p=1

}gﬁi for every p =1,2,...

o

.) we obtain

=1,2,..

(Vv =1,2, ...)m{(<
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then, since X is wuniformly convex,

ool )
N

for every » = 1,2, ... On the other hand,

b=l 2 <5

[

and by (2) for o <14,

T P s

My
1 1\
= (1— TR 27Lj)ao(azﬂ)— m(Z,).

Hence we obtain for such 4

= = 1 1\=._ ‘
m(z) > (l-—Z/T,_ Tm)m(zg)—m(ig)+5 for every o < 4,, u4,.

Now, letting » - oo, we conclude

m(m) ?w(xe)—m(fcg) é } m(m)--—{— 8 or © ery 0 = 1, 5
+ f v 2, ... y
c()ntvl'adicbing 6 > 0. Sl’nce X is unify Ormly

simpl
by assumption, by Theorem 5 T sach o ComBlete

there exists @¢X such that

m—lim (1— 1)% = 2,
v

r—00

and thus we have by Theorems 3 and 2,

b

m(z) <limm{( —i)m,,} gﬁ(é)
V00 4

and 7, (z) = E(i,) for every y = 1,2,.

brocess can be applied to Ty By, B, ..

obtain similarly x,¢X such that m(%,)
for every v =1,2,. :

.- For an arbitrary zX, the same
- instead of Z,, #,, ..., and then we

< (), B(w,) = B(7), 7, (2,) = 3(Z,)

-« For such ,, if m(z—g i i
N —&,) > 0, th
uniformly convex, we can find 4 >70 such thatt)s) ) e sinee & 8

Hm@)+m(@g)} > m{E(o+a)}+ 6,

e ©
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and then, by (3), for every »=1,2,..

ty

«)—7;(5) = m{3 @420} + 06 = 7, {k(x+x)}—m(Z,)+ 6

I
81l

(%,)—M(T,)+ 6 = :ﬁ(é)_7+ s,

contradicting 6 > 0. Hence m (2—,) = 0 and therefore # = 2,, because X
is uniformly simple. It follows that Z(®) = Z(z,) = %(%). Since FeX is
arbitrary, we have (VZeX) Z(z) = (%), i.e.,, X is reflexive by Defini-
tion 5.

THEOREM 9. B;(t,s) with p(t, s) restricted as in Theorem T
as a« Nokano modulared space and as a Banach space.

Proof. Because By is a uniformly simple Nakano modulared
space, it follows by Theorems 6, 7, and 8 that B;(t,s) is reflexive in the
sense of Definition 5. In view of Theorem 3, we finally obtain that B;(t,s)
ig reflexive in the usual Banach space sense.

s reflewive
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