Then there is a relatively dense set of integers S so that $p \in S$ implies each summand in the finite sum is less than $c/2k$. Thus $|x_{n+1} - x_n| < c/k + c/2 = \varepsilon$ and (x_n) is $A-\varepsilon$.

Among U-sequences, then, the almost periodic ones are the ones whose basis components are $A-\varepsilon$-scalar sequences, and $U'(x_n) = E\{L(x_n, e_0)\} e_0$, where $L(x_n, e_0)$ is the mean value of the sequence.

An immediate corollary to the above theorem is that a U-sequence is A-periodic if and only if (x_n, y_n) is A-periodic for each $y \in H$. Unfortunately, a complete analog of Theorem 3.2.1 cannot be proved. That is, we cannot drop the hypothesis that the sequence be in U already. Let $x_n = e_0$, whenever $k \equiv 2^n - 1$ (mod 2^{n+1}), $n = 0, 1, 2, \ldots$ This sequence has component sequences $a_n = (x_n, e_0)$, each with period 2^{n+1}. The vector sequence is not A periodic, simply because it is not in U. It is also easy to see, that for each fixed $y_n (x_n, y_n)$ will be A-periodic. Hence, neither Theorem 3.2.4 nor its corollary will be true if we drop the assumption that the sequence has range contained in a compact set.

References

LOUISIANA STATE UNIVERSITY

Reçu par la Rédaction le 17. 10. 1967

Uniformly convex and reflexive modulated variation spaces
by
HANS HEINRICH HERDA (Salem, Massachusetts)

§ 1. Introduction. In chapter 11, entitled “Modular Spaces”, of his treatise [3], Professor Hideo Nakano presents a theory of modules on arbitrary (not necessarily semi-ordered) linear spaces. Namely, given any linear space X, a functional $m(x)$ defined on X with values $0 \leq m(x) \leq +\infty$ is called a Nakano modular if

M. 1. $m(0) = 0$,
M. 2. $(\forall y \in X) m(-x) = m(x),$
M. 3. $(\forall y \in X) (\exists \lambda > 0) m(\lambda x) < +\infty,$
M. 4. $m(tx) = 0$ for all $t > 0 \Rightarrow x = 0$,
M. 5. $(\forall y \in X) (\forall \alpha, \beta > 0) \alpha m(x + \beta y) \leq \alpha m(x) + \beta m(y),$
M. 6. $(\forall y \in X) m(x) = \sup_{t \in \mathbb{R}} m(tx),$

The space X associated with the functional $m(x)$ is called a Nakano modular space.

It is easy to see that, for example, the p^th power variation (as basic papers, see [4] or [2]) are special cases of Nakano modules on generalized variation spaces. In this paper we are concerned with a new class of spaces which include the p^th power variation spaces. Let x be a real function in $[a, b]$ such that $x(a) = 0$, let $p(t, s)$ be a real function of two real variables such that $t, s \in [a, b], t > s$, and $1 \leq p(t, s) < +\infty$; let $n: a = a_0 < a_1 < \ldots < a_n = b$ be a partition of $[a, b]$. Define

$$B_{p(t, s)} = \{x: V_{p(t, s)}(x) = \sup_n \sum_{k \in n} |x(t_k) - x(t_{k-1})|^p(x)(t_k - t_{k-1}) < +\infty\},$$

and denote by $B_{p(t, s)}^\alpha$ the linear space generated by $B_{p(t, s)}$. Here, $V_{p(t, s)}$ is the Nakano modular on the space $B_{p(t, s)}$. If $p(t, s) = p = \text{constant}$ (1 \leq p < +\infty), we have the case of p^th variation. The spaces $B_{p(t, s)}$ generalize the idea of p^th variation in the same way as Nakano's L_p-spaces (see [3], p. 234-240). In fact, the methods, employed in the present paper, although they are perhaps not widely known, are essentially due to Nakano.
§ 2. Basic results from the Nakano theory. Here we review as much of the theory of Nakano modular spaces as is necessary for comprehension of the exposition in § 3. Proofs of the theorems here quoted and many additional concepts can be found in chapter 11 of [3]. However, Professor Nakano does not discuss explicitly the connection between Banach space and modular space concepts.

From M 2 and M 5 we obtain

\[m\left(\sum_{n=1}^{\infty} a_n x_n\right) \leq \sum_{n=1}^{\infty} |a_n| m(x_n), \quad \text{provided} \quad \sum_{n=1}^{\infty} |a_n| < 1. \]

Definition 1. A sequence \((a_n) \subset X (n = 1, 2, \ldots) \) is modular convergent to a limit \(a \in X \) (written \(m - \lim n a_n = a \)) if \(\lim_{n \to \infty} \{ (a_n - a) Ù \xi \} = 0 \) for every \(\xi \geq 0. \)

Definition 2. If every sequence \((a_n) \subset X (n = 1, 2, \ldots) \) subject to the condition

\[\lim_{n \to \infty} m(\lambda a_n - a) = 0 \quad \text{for every} \quad \lambda > 0 \]

is modular convergent, then \(X \) is modular complete.

Definition 3. A real valued linear functional \(\varphi \) on \(X \) is modular bounded if \(\sup_{x \in X} |\varphi(x)| < \infty. \)

Let \(X \) be a modularized space and \(X \) the set of modular bounded linear functionals on \(X \). Clearly, \(X \) is a linear space; if we set

\[(\forall x \in X) \| \varphi(x) \| = \sup_{x \in X} |\varphi(x)|, \]

then we can show that \(\bar{m} \) satisfies the conditions M 1-M 6, so that \(\bar{m} \) is by definition a modular on \(X \).

Definition 4. \(\bar{m} \) called the adjoint modular of \(m \) and the linear space \(\bar{X} \) is called the modular adjoint space of \(X \).

For \(\bar{m} \) we have obviously by (2)

\[(\forall x \in \bar{X})(\forall \varphi \in X) \| \varphi(x) \| \leq \bar{m}(\bar{\varphi}) + m(x). \]

Theorem 1. For every \(x \in X \) we have \(m(x) = \sup_{\bar{X}} |\varphi(x) - \bar{\varphi}(x)|. \)

Theorem 2. For a subset \(A \) of the modular adjoint space \(X \) of \(X \), if \(\lim x(a_n) = \bar{x}(a) \) for every \(x \in A \) and \(m(a) = \sup \{ (a_n - a) Ù \xi \} \), then \(m(a) = \lim_{n \to \infty} m(a_n). \)

Given a modularized space \(X \), every linear subset \(A \) of \(X \) can be considered as a modularized space associated with the same modular of \(X \). In this sense, \(A \) is termed a subspace of \(X \). Since the modular adjoint space \(\bar{X} \) is also a modular space (with the adjoint modular \(\bar{m} \)), we can also consider the modular adjoint space \(\bar{X} \) of \(X \) with the adjoint modular \(\bar{m} \) of \(m \). Because of Theorem 1, \(X \) may then be considered as a subspace of \(\bar{X} \) under the convention

\[(\forall x \in X)(\forall \varphi \in \bar{X}) \| \varphi(x) \| = \bar{m}(\varphi). \]

Definition 5. If \(X \) coincides with \(\bar{X} \) under the above convention, then both \(X \) and the modular \(m \) of \(X \) are called reflexive. (Nakano uses the term "regular" instead of "reflexive".)

In the modular space \(X \), for every \(\lambda > 0 \), putting

\[U_\lambda = \{ x : m(x) \leq \lambda \}, \]

we obtain a unique linear topology \(\mathcal{J}^m \) on \(X \) such that \(U_\lambda \) is a basis of \(\mathcal{J}^m \).

This linear topology is the same for every \(\lambda > 0 \).

Definition 6. \(\mathcal{J}^m \) is called the modular topology of \(X \).

Since \(U_\lambda \) is symmetric and convex for every \(\lambda > 0 \), each \(U_\lambda, \lambda > 0 \), is a basis of \(\mathcal{J}^m \), and \(\mathcal{J}^m \) is of single vicinity, locally convex and separated, it follows that the pseudo-norm of \(U_\lambda \) is a Banach norm on \(X \) and that the modular topology of \(X \) coincides with the norm topology by this norm.

Definition 7. The pseudo-norm of the 1-sphere \(U_1 \) of \(X \) is called the modular norm of \(X \) and is denoted by \(\| x \|_m \) for all \(x \in X \).

It is evident that a linear functional \(\varphi \) on \(X \) is modular bounded iff \(\varphi \) is bounded by the modular norm. Hence

Theorem 3. The modular adjoint space of \(X \) coincides with the adjoint space of \(X \) by the modular (Banach) norm.

This very important theorem means that the modular dual of \(\mathcal{B}^m \) coincides with the usual Banach dual of \(\mathcal{B}^m \) by the modular norm.

By investigating modulars on quotient spaces of \(X \) we can prove

Theorem 4. For a finite number of elements \(\bar{n}, x \in X \) and real numbers \(a_n (n = 1, 2, \ldots, n) \) if

\[\sum_{n=1}^{m} \bar{\xi}_n \bar{a}_n = 0 \]

implies

\[\sum_{n=1}^{m} \xi_n a_n = 0, \]

and (for \(\gamma > 0 \)) if

\[\sum_{n=1}^{m} \xi_n a_n \leq \gamma + \bar{m}(\sum_{n=1}^{m} \xi_n \bar{a}_n) \]
for every finite number of real numbers \(\xi, (\xi = 1, 2, \ldots, k) \), then for any \(0 < \epsilon < 1 \) there exists an \(x \in X \) such that

\[
m\{1 - \epsilon\}|x| < \gamma, \quad s_i(x) = a_i (i = 1, 2, \ldots, n),
\]

DEFINITION 8. If \(X \) is a modular space and \((\forall x \in X) m(x) = 0 \Rightarrow x = 0 \), then \(X \) is called simple. \(X \) is called uniformly simple if

\[
(\forall x > 0) \inf_{m \geq 0} m(\xi x) > 0.
\]

Every space \(B_{\text{mod}}^{\mathcal{R}} \) is uniformly simple.

DEFINITION 9. If \(X \) is simple, a sequence \(\{a_n\} = X (r = 1, 2, \ldots) \) is conditionally modular convergent to a limit \(a \in X \) if \((\exists a > 0) \lim_{r \to \infty} m(a(a_n - a)) = 0 \).

THEOREM 5. \(X \) is uniformly simple iff conditionally modular convergence coincides with modular convergence.

DEFINITION 10. A modular space \(X \) and its modular \(m \) are uniformly convex if \((\forall \epsilon > 0, \forall \delta > 0) \forall m(x) \leq \gamma, m(y) \leq \gamma \) and \(m(x - y) \geq \epsilon \Rightarrow \frac{1}{2}(m(x) + m(y)) \leq m\left(\frac{1}{2}(x + y)\right) + \delta \).

This definition provides a modular parallel to the concept of uniform convexity in Banach spaces first considered by Professor James A. Clarkson [1].

§ 3. Main theorems.

THEOREM 6. Every space \(B_{\text{mod}}^{\mathcal{R}} \) is modular complete.

Proof. If

\[
\lim_{\nu \to \infty} V_{\nu}(\xi(a_n - a)) = 0 \quad \text{for every } \xi > 0,
\]

then there exists a subsequence \(a_{\nu_\xi}(\nu = 1, 2, \ldots) \) of \(a_n (r = 1, 2, \ldots) \) such that \(V_{\nu}(\xi(a_{\nu_\xi} - a)) = 0 \). Then we can assert, by (1), that

\[
\sum_{\nu = 1}^{\infty} \frac{1}{2^\nu} \cdot 2^\nu(a_{\nu_\xi} - a) \leq \sum_{\nu = 1}^{\infty} \frac{1}{2^\nu} \cdot V_{\nu}(\xi(a_{\nu_\xi} - a))
\]

\[
\leq \xi < 1 \quad \text{for } \nu = 1, 2, \ldots
\]

Hence \(\sum_{\nu = 1}^{\infty} (a_{\nu_\xi} - a) \) is convergent to a function \(y \) such that \(y(a_n) = 0 \) and generally

\[
y(r) = \sum_{\nu = 1}^{\infty} (a_{\nu_\xi}(r) - a(r)) \quad \text{for all } r \in [a, b].
\]

Setting

\[
x(r) = z(r) + \sum_{\nu = 1}^{\infty} (a_{\nu}(r) - a(r))
\]

we have \(V_{\nu}(\xi(a_n - a)) \leq 1 \) and hence \(\xi \in B_{\text{mod}}^{\mathcal{R}} \). Since \(V_{\nu}(\xi(a_{\nu} - a)) \leq 1 \), we infer, again by (1), that

\[
V_{\nu}(\xi) \leq \sum_{\nu = 1}^{\infty} \frac{1}{2^\nu} \cdot 2^\nu(a_{\nu} - a) \leq \sum_{\nu = 1}^{\infty} \frac{1}{2^\nu} \leq \frac{1}{2^\nu - 1} \quad \text{for } \nu = 1, 2, \ldots
\]

Hence we have

\[
V_{\nu}(\xi) \leq \frac{1}{2^\nu - 1} \quad \text{for every } \nu = 1, 2, \ldots
\]

and thus

\[
V_{\nu}(\xi) - \lim_{\nu \to \infty} \xi = 0.
\]

Given \(\epsilon > 0 \) and \(\xi > 0 \), because

\[
\lim_{\nu \to \infty} V_{\nu}(\xi(a_n - a)) = 0 \quad \text{and} \quad V_{\nu}(\xi - \lim_{\nu \to \infty} \xi) = 0
\]

we can find \(a_\nu \) and \(z \), such that \(V_{\nu}(\xi(a_n - a)) < \epsilon \) and \(V_{\nu}(\xi(a_n - a)) < \epsilon \); hence

\[
V_{\nu}(\xi(z - a)) = V_{\nu}(\xi(a_n - a)) + V_{\nu}(\xi(z - z))
\]

\[
\leq \frac{1}{2} \cdot V_{\nu}(\xi(a_n - a)) + \frac{1}{2} \cdot V_{\nu}(\xi(z - z)) < \epsilon.
\]

This shows that \(V_{\nu}(\xi) - \lim_{\nu \to \infty} \xi = 0 \), i.e., \(B_{\text{mod}}^{\mathcal{R}} \) is modular complete.

THEOREM 7. If

\[
1 < p = \inf_{t > 0} p(t, s) \leq \sup_{t > 0} p(t, s) = p_0 < +\infty,
\]

then \(B_{\text{mod}}^{\mathcal{R}} \) is uniformly convex.

Proof. Let \(x \) be the characteristic function of \(\{(t, s) ; p(t, s) > 2\} \) and \(X \) that of \(\{(t, s) ; p(t, s) < 2\} \). Hence \((\forall x \in B_{\text{mod}}^{\mathcal{R}}) V_{\nu}(x) + V_{\nu}(X) = V_{\nu}(a) \). Given real numbers \(y \geq 0, z > 0 \), assume \(V_{\nu}(y) < 2 \), \(V_{\nu}(x - z) \geq \epsilon \). Then either

(i) \(V_{\nu}(y - z) \geq 2^\nu \) or

(ii) \(V_{\nu}(a) \geq 2^\nu \).

If (i) holds, then it follows from the inequality (for a proof, see [3], p. 275)

\[
(\forall p \geq 2) \frac{|\xi + \eta|^p}{2} \geq \frac{\xi + \eta}{2} + \frac{\xi - \eta}{2} + \epsilon.
\]
that
\[\frac{1}{2} \langle V_{\nu, \delta}(c \cdot d) \rangle \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c \cdot d) \cdot d) \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c \cdot d) \cdot d) \cdot d > \frac{\varepsilon}{2} \nu. \]

Since
\[\rho_\nu = \sup_{t \geq 0} \{ p(t, s) \} < + \infty, \]
we have
\[V_{\nu, \delta}(\frac{1}{2} (c \cdot d) \cdot d) \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c \cdot d) \cdot d) \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c \cdot d) \cdot d) \cdot d > \frac{\varepsilon}{2} \nu. \]

Furthermore, by M.5,
\[\frac{1}{2} \langle V_{\nu, \delta}(c \cdot d) \rangle \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c \cdot d) \cdot d) \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c \cdot d) \cdot d) \cdot d > \frac{\varepsilon}{2} \nu. \]

Hence we obtain
\[\frac{1}{2} \langle V_{\nu, \delta}(c \cdot d) \rangle \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c \cdot d) \cdot d) \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c \cdot d) \cdot d) \cdot d > \frac{\varepsilon}{2} \nu. \]

If \((ii) \) holds, set
\[\varepsilon' = \min \left\{ \frac{\varepsilon}{2}, \frac{1}{4} \right\} \]
and denote by \(\chi \) the characteristic function of
\[\{ (t, s) : p(t, s) < 2 \} \]
and \(\{ (t, s) : p(t, s) < 2 \} \) then we have
\[V_{\nu, \delta}(\chi \cdot d) \Rightarrow V_{\nu, \delta}(\chi \cdot d) \Rightarrow V_{\nu, \delta}(\chi \cdot d) \cdot d > \frac{\varepsilon}{4}, \]
and therefore
\[V_{\nu, \delta}(\chi \cdot d) \cdot d > \frac{\varepsilon}{4}. \]

If we set
\[\varepsilon = p_\nu - 1 = \inf_{t > 0} \{ p(t, s) \} - 1, \]
it follows from the inequality (for a proof, see \[33\] p. 275-276)
\[(\forall p : 1 < p < 2) \frac{|A|^p + |B|^p}{2} \geq \frac{\varepsilon + \eta}{2} p + \frac{\varepsilon + \eta}{2} \left(\frac{|A|}{|B|} + \frac{|B|}{|A|} \right), \]
that
\[\frac{1}{2} \langle V_{\nu, \delta}(c \cdot d) \rangle \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c \cdot d) \cdot d) \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c \cdot d) \cdot d) \cdot d > \frac{\varepsilon}{2} \nu. \]

On the other hand, we obtain
\[V_{\nu, \delta}(\frac{1}{2} (c \cdot d) \cdot d) \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c \cdot d) \cdot d) \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c \cdot d) \cdot d) \cdot d > \frac{\varepsilon}{16}, \]
and, by M.5,
\[\frac{1}{2} \langle V_{\nu, \delta}(c \cdot d) \rangle \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c \cdot d) \cdot d) \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c \cdot d) \cdot d) \cdot d > \frac{\varepsilon}{16}. \]

Hence
\[\frac{1}{2} \langle V_{\nu, \delta}(c) \rangle \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c + d) \cdot d) \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c + d) \cdot d) \cdot d > \frac{\varepsilon}{32}, \]
and consequently
\[\frac{1}{2} \langle V_{\nu, \delta}(c) \rangle \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c + d) \cdot d) \Rightarrow V_{\nu, \delta}(\frac{1}{2} (c + d) \cdot d) + \frac{\varepsilon}{32}. \]

in both cases (i) and (ii), hence \(\mathcal{K}_{\nu, \delta} \) is uniformly convex.

Theorem 8. If a Nakaoru modular adjoint space \(\mathcal{X} \) is at once uniformly simple, modular complete and uniformly convex, then \(\mathcal{X} \) is reflexive.

Proof. Let \(\mathcal{X} \) be the modular adjoint space of the modular adjoint space \(\mathcal{X} \). For any \(\varepsilon, \mathcal{X} \) satisfying \(\mu(\varepsilon) < + \infty \), using (2) we can find a sequence \(\langle \xi_n \rangle \subset \mathcal{X}(n = 1, 2, \ldots) \) such that
\[\sup_{n} \{ \xi_n \} < \mu(\varepsilon) + \mu(\varepsilon) - \frac{\varepsilon}{4}. \]

Since we get by (3) that
\[\sum_{n} \xi_n \mathcal{E}(\xi_n) \leq \mu(\varepsilon) + \mu(\sum_{n} \xi_n \mathcal{E}(\xi_n) \]
for any finite set of real numbers \(\xi_n (n = 1, 2, \ldots, n) \), we can find by Theorem 4 a sequence \(\xi_n \subset \mathcal{X}(n = 1, 2, \ldots) \) such that \(\mathcal{E}(\xi_n) = \mathcal{E}(\xi_n) \) for every \(n = 1, 2, \ldots \), and such that
\[m \left(\frac{1}{n-1} \right) \mathcal{E}(\xi_n) \leq \mu(\varepsilon) \]
for every \(n = 1, 2, \ldots \) (3)

For such \(\xi_n (n = 1, 2, \ldots) \) we obtain
\[\lim_{n \to \infty} \left(1 - \frac{1}{n} \right) \mathcal{E}(\xi_n) - \left(1 - \frac{1}{n} \right) \mathcal{E}(\xi_n) = 0. \]

Otherwise, if we could find \(\varepsilon > 0 \) and two subsequences \(\lambda_n (n = 1, 2, \ldots) \) of \(1, 2, \ldots \) such that
\[(\forall n = 1, 2, \ldots) m \left(1 - \frac{1}{n} \right) \mathcal{E}(\xi_n) - \left(1 - \frac{1}{n} \right) \mathcal{E}(\xi_n) \geq \varepsilon. \]
then, since X is uniformly convex,
\[
\left(\exists \delta > 0\right) \left\{ \left(1 - \frac{1}{\lambda'}\right) s_n + m \left(\left(1 - \frac{1}{\mu'}\right) s_n\right) \right\} \geq m \left\{ \left(1 - \frac{1}{\lambda'}\right) s_n + \left(1 - \frac{1}{\mu'}\right) s_n\right\} + \delta
\]
for every $\nu = 1, 2, \ldots$. On the other hand,
\[
\frac{1}{\nu} \left\{ \left(1 - \frac{1}{\lambda'}\right) s_n + m \left(\left(1 - \frac{1}{\mu'}\right) s_n\right) \right\} \leq \frac{m}{\nu} (\tilde{\nu})
\]
and by (2) for $\varphi \leq \lambda', \mu'$,
\[
m \left\{ \left(1 - \frac{1}{\lambda'}\right) s_n + \left(1 - \frac{1}{\mu'}\right) s_n\right\} \geq m \left\{ \left(1 - \frac{1}{\lambda'}\right) s_n + \left(1 - \frac{1}{\mu'}\right) s_n\right\} - \frac{m}{\nu} (\tilde{\nu})\]
\[
= \frac{1}{2 \lambda'} - \frac{1}{2 \mu'} \frac{m}{\nu} (\tilde{\nu}) - m(\tilde{\nu}).
\]
Hence we obtain for such δ
\[
\frac{m}{\nu} (\tilde{\nu}) \geq \frac{1}{2 \lambda'} - \frac{1}{2 \mu'} \frac{m}{\nu} (\tilde{\nu}) - m(\tilde{\nu}) - \frac{1}{\nu} + \delta
\]
for every $\nu = 1, 2, \ldots$, contradicting $\delta > 0$. Since X is uniformly simple and modular complete by assumption, by Theorem 5 there exists $z \in X$ such that
\[
m - \lim_{v \to \infty} \frac{1}{v} s_n = z,
\]
and thus we have by Theorems 3 and 2,
\[
m(z) = \lim_{v \to \infty} m \left(\left(1 - \frac{1}{v}\right) s_n\right) \leq m(\tilde{\nu}),
\]
and $\tilde{\nu}(z) = \tilde{\nu}(\tilde{\nu})$ for every $\nu = 1, 2, \ldots$. For an arbitrary $z \in X$, the same process can be applied to $\tilde{\nu}, \tilde{\nu}, \tilde{\nu}, \ldots$ instead of $\tilde{\nu}, \tilde{\nu}, \ldots$, and then we obtain similarly $z \in X$ such that $m(z) \leq m(\tilde{\nu}), \tilde{\nu}(z) = \tilde{\nu}(\tilde{\nu})$ for every $\nu = 1, 2, \ldots$. For such z, if $m(z - x) > 0$, then, since X is uniformly convex, we can find $\delta > 0$ such that
\[
\frac{1}{\nu} \left\{ m(z) + m(x) \right\} \geq m \left(\frac{1}{2} (z + x)\right) + \delta.
\]
and then, by (3), for every $\nu = 1, 2, \ldots$,
\[
\frac{m}{\nu} (\tilde{\nu}) \geq \frac{1}{2} \frac{m}{\nu} (z + x) + \frac{1}{\nu} + \delta \geq \frac{m}{\nu} (z + x) + \delta
\]
\[
= \tilde{\nu}(x) - \tilde{\nu}(\tilde{\nu}) + \delta \geq \frac{m}{\nu} (\tilde{\nu}) - \frac{1}{\nu} + \delta,
\]
contradicting $\delta > 0$. Hence $m(z - x) = 0$ and therefore $z = x$, because X is uniformly simple. It follows that $\tilde{\nu}(z) = \tilde{\nu}(x) = \tilde{\nu}(\tilde{\nu})$. Since $\tilde{\nu}(X)$ is arbitrary, we have $(\forall \tilde{\nu}(X)) \tilde{\nu}(z) = \tilde{\nu}(\tilde{\nu})$, i.e., X is reflexive by Definition 5.

Theorem 9. $B_{\alpha_0}(\tilde{\nu})$ with $p(t, x)$ restricted as in Theorem 7 is reflexive as a Nakano modular space and as a Banach space.

Proof. Because $B_{\alpha_0}(\tilde{\nu})$ is a uniformly simple Nakano modular space, it follows by Theorems 6, 7, and 8 that $B_{\alpha_0}(\tilde{\nu})$ is reflexive in the sense of Definition 5. In view of Theorem 3, we finally obtain that $B_{\alpha_0}(\tilde{\nu})$ is reflexive in the usual Banach space sense.

References

WAYNE STATE UNIVERSITY
SALEM STATE COLLEGE

Reçu par la Rédaction le 23. 10. 1967