A remark on the weak-star topology of l^∞

by

DONALD S. ARASON (Berkeley, Calif.)

The purpose of this note is to present examples of a certain phenomenon associated with weak-star topologies. Although the phenomenon has been understood abstractly since the time of Banach, the literature contains few concrete examples.

Let M be a linear manifold in the dual of a separable Banach space. Let $M^\alpha = M$, and for each countable ordinal number α, let M^α be the set of all limits of weak-star convergent sequences in $\bigcup M^\alpha$. Then the set $M^- = \bigcup M^\alpha$ is the weak-star closure of M, and there is a least countable ordinal ξ, called the order of M, such that $M^- = M'$ (12, p. 213).

Marcinkiewicz was the first to exhibit a linear manifold of order greater than 1; his manifold is in $l^\infty (\sim c_0)$ and it has order 2 [8]. Later Banach constructed linear manifolds in l^∞ of all finite orders [2], p. 209, and recently McEachin has shown that l^1 contains linear manifolds of all orders [7]. The present author has shown that the spaces H^∞ and l^∞ contain linear manifolds of all orders [8].

The examples to be presented here are of linear manifolds of all orders in the space l^∞; they are much simpler than any of the examples mentioned above. A modification of the construction produces analogous examples in the space $L^\infty [0, 1]$.

The construction is based on a theorem about polynomial approximation. To prove this theorem we need the following special case of a theorem of Banach [2], p. 213):

Theorem. Let B be a separable Banach space and M a linear manifold in B^*. Let M^- be the weak-star closure of M. Assume that for each f in B,

\[
\sup \{ |\langle \Phi, f \rangle | : \Phi \in M, \| \Phi \| \leq 1 \} = \sup \{ |\langle \Phi, f \rangle | : \Phi \in M^-, \| \Phi \| \leq 1 \}.
\]

Then each Φ in M^- is the weak-star limit of a sequence of elements in M whose norms are uniformly bounded by $\| \Phi \|$.\(^*\)

\(^*\) Research supported in part by National Science Foundation Grant GP-5888.
Short proofs of this result can be found in [3], p. 1062, and [1], Appendix I.

We now state and prove the approximation theorem. Let \(C \) be the unit circle and \(D \) the open unit disk in the complex plane.

Theorem. Let \(\mu \) be a finite, positive, singular Borel measure on \(C \). Let \(\varphi \) be any function in \(L^p(\mu) \) and \(\psi \) any bounded analytic function in \(D \). Then there is a sequence \(\{p_n\} \) of polynomials, uniformly bounded on \(C \) by \(\max(\|p_n\|, \|\psi\|) \), such that \(p_n \rightarrow \varphi \) in the weak-star topology of \(L^p(\mu) \) and \(p_n \rightarrow \psi \) pointwise in \(D \).

Proof. Let \(m \) be Lebesgue measure on \(C \) and let \(\lambda = m + \mu \). We regard \(L^p(\lambda) \) as the direct sum \(L^p(m) \oplus L^p(\mu) \) and \(L^p(\lambda) \) as the direct sum \(L^p(m) \oplus L^p(\mu) \). Let \(M \) be the set of all polynomials, regarded as a linear manifold in \(L^p(\lambda) \). If \(h \) is a function in \(L^p(\lambda) \) that annihilates \(M \), then it follows by the F. and M. Riesz theorem that the measure \(h\lambda \) is absolutely continuous with respect to \(m \), in other words, \(h \) is in \(L^q(m) \). Hence \(h \) annihilates \(H^p(m) \), and, as the latter subspace is weak-star closed, we can conclude that \(M^* = H^q(m) \oplus L^q(\mu) \).

Because of the preceding equality and Banach's theorem, we can complete the proof by showing that (1) holds for each \(f \) in \(L^q(\lambda) \). Let \(f \) be given, and let \(L \) and \(R \) denote the quantities on the left and right sides of (1). By the Hahn-Banach and Riesz Representation theorems, there is a measure \(\nu \) on \(C \) such that \(\|\nu\| = 1 \) and

\[
\int \varphi d\nu = \int f d\lambda, \quad \nu \in M.
\]

The F. and M. Riesz theorem implies that the measure \(\text{d}v = \text{d}\lambda \) is absolutely continuous with respect to \(m \), and therefore \(v \) is absolutely continuous with respect to \(\lambda \). Thus we can conclude from (2) and the weak-star density of \(M \) in \(M^* \) that

\[
\int \varphi d\nu = \int f d\lambda, \quad \Phi \in M^*.
\]

It follows that \(\text{R} < \|\nu\| = L \), and hence \(\text{R} = L \). The proof is complete.

We shall need the following special case of the approximation theorem:

Corollary. Let \(\varphi \) be a bounded analytic function in \(D \), \(\{z_n\} \) a sequence of distinct points on \(C \), and \(\{w_n\} \) a bounded sequence of complex numbers. Then there is a sequence \(\{p_n\} \) of polynomials, uniformly bounded on \(C \) by \(\max(\|p_n\|, \sup |w_n|) \), such that \(p_n \rightarrow \varphi \) pointwise in \(D \) and \(p_n(z_n) \rightarrow w_n \) for each \(n \).

The above proof of the approximation theorem is an adaptation of the proof in [1], Appendix II. The corollary is a special case of the theorem proved in [1], Appendix II, and also of a related theorem of Glicksberg [4].

We can now give the promised examples.

Theorem. There exist in \(\mathbb{F} \) weak-star dense linear manifolds of all possible orders.

Proof. We consider in detail the case of order 2; the construction here was used by Wermer [9] for a similar purpose. The general case is based on the same ideas and will only be sketched.

Let \(C_1 \) and \(C_2 \) be circles in the complex plane centered at the origin, with \(C_2 \) having the larger radius. Let \(S \) be a countable subset of \(C_1 \cup C_2 \) that is dense in \(C_1 \) and has at least one limit point on \(C_2 \). The space \(\mathbb{F} \) can then be identified with \(\mathbb{F}^\circ(S) \), the space of bounded complex-valued functions on \(S \). We can regard \(\mathbb{F}^\circ(S) \) as the direct sum \(\mathbb{F}^\circ(S \setminus C_1) \oplus \mathbb{F}^\circ(S \cap C_1) \).

Let \(M \) be the set of functions on \(S \) that are restrictions of polynomials. Suppose \(\Phi \) is a function in the manifold \(M \). Then there is a sequence \(\{p_n\} \) of polynomials such that \(p_n|S \rightarrow \Phi \) in the weak-star topology of \(\mathbb{F}^\circ(S) \). This means that the sequence \(\{p_n\} \) is uniformly bounded on \(S \) and converges to \(\Phi \) at each point of \(S \). Since \(S \) contains a dense subset of \(C_1 \), the polynomials \(p_n \) must be uniformly bounded on \(D_1 \), the interior of \(C_1 \). Hence \(\Phi|S \setminus C_1 \) is the restriction of a function in \(\mathbb{F}^\circ(D_1) \) (the space of bounded analytic functions on \(D_1 \)) and we have the inclusion

\[
M \subset \mathbb{F}^\circ(S \setminus C_1) \oplus \mathbb{F}^\circ(D_1)|S \cap C_1|.
\]

From the above corollary it is immediate that the inclusion is actually an equality. It is easy to see that, because \(S \) contains a limit point on \(C_1 \), the manifold \(M \) does not contain the restriction to \(S \) of the function \(\bar{z} \); thus \(M \neq \mathbb{F}^\circ(S) \).

A second application of the corollary shows that every function in \(\mathbb{F}^\circ(S) \) is the pointwise limit of a bounded sequence in \(M \), so that \(M = \mathbb{F}^\circ(S) \), as desired.

To prove the theorem in general, let \(\nu \) be a countable ordinal number. Then we can find a one-to-one order reversing map \(\alpha \rightarrow \alpha \) from the set of ordinals \(\lessdot \alpha \) into the positive real axis. For each \(\alpha \) let \(C_\alpha \) be the circle with center at the origin and radius \(\alpha \), and let \(D_\alpha \) be the interior of \(C_\alpha \). Let \(S \) be a countable subset of \(C \cup C_\alpha \) such that \(S \cap C_\alpha \) is dense in \(C_\alpha \) for every \(\alpha < \nu \), and such that \(S \) has at least one limit point on \(C_\alpha \). (If \(\nu \) is a limit ordinal the last condition can be deleted.) As before, we can identify \(\mathbb{F}^\circ(S) \). Let \(M \) be the set of functions on \(S \) that are restrictions of polynomials. By the reasoning used above for the special case \(\nu = 2 \), one can show by induction that

\[
M = \mathbb{F}^\circ(S - D_\alpha) \oplus \mathbb{F}^\circ(D_\alpha)|S \cap D_\alpha|, \quad \alpha < \nu,
\]

Thus we have

\[
M = \mathbb{F}^\circ(S).
\]
It is easy to check that $M^* \neq L^\infty(S)$ for $a < \nu$, and therefore M has order ν, as desired.

A similar construction gives the following result:

Theorem. There exist in $L^\infty([0,1])$ weak-star dense linear manifolds of all possible orders.

Proof. Let ν be a countable ordinal number, and let circles C_α and disks D_α be defined as in the preceding proof. Let μ be a purely nonatomic Borel probability measure on $S = \bigcup C_\alpha$ such that for each α, the restriction of μ to C_α is singular with respect to Lebesgue measure on C_α, and has support equal to all of C_α. The measure space (S, μ) is then isomorphic to the unit interval with Lebesgue measure ([3], p. 173), so that $L^\infty([0,1])$ can be identified with $L^\infty(\mu)$. For each α let μ_α be the restriction of μ to $S - D_\alpha$; we thus have direct sum decompositions $L^\infty(\mu) = L^\infty(\mu_\alpha) \oplus \bigoplus L^\infty(\mu - \mu_\alpha)$.

Let M be the set of all polynomials, regarded as a linear manifold in $L^\infty(\mu)$. Suppose Φ is a function in M. Then Φ lies in the weak-star closure, and therefore in the weak $L^\infty(\mu)$ closure, of some ball in M. Hence Φ is in the strong $L^\infty(\mu)$ closure of the same ball in M, so that there is a sequence (Φ_n) of polynomials, uniformly bounded on S, which converges to Φ almost everywhere modulo μ. The polynomials Φ_n are then uniformly bounded in D_α, and thus $\Phi(S \cap D_\alpha)$ is the restriction of a function in $H^\infty(D_\alpha)$. We therefore have $M^* \subseteq L^\infty(\mu_\alpha) \oplus H^\infty(D_\alpha)(S \cap D_\alpha)$, and an application of the approximation theorem shows that the inclusion is actually an equality. Using the same reasoning, one can show by induction that $M^* = L^\infty(\mu_\alpha) \oplus H^\infty(D_\alpha)(S \cap D_\alpha), \quad a < \nu, \quad M^* = L^\infty(\mu)$.

It is easily seen that $M^* \neq L^\infty(\mu)$ for $a < \nu$, and thus M has order ν, as desired.

References