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I7”-multiplier theorems*
by

W. LITTMAN, . McCARTHY and N. RIVIERE (Minnesota)

Introduction. In 1939, J. Marcinkiewicz [12] published a multiplier
theorem for Fourier series. It gives a sufficient condition for a sequence
of numbers A, to have the property that multiplication of the Fourier
coefficients of a periodic function f by A, will yield a periodic funetion g
such that the mapping f-»g¢ is bounded in I”. Similar results are ob-
tained in higher dimensions.

Analogous and related theorems for Fourier transforms have been
obtained by a number of authors, among them Miblin [15,16], Hor-
mander [87, Lizorkin [11], and J. Schwartz [17 1. Of these Mihlin and
Lizorkin make nse of the theorem of Marcinkiewicz. Schwartz obtains
a direct analogue of Marcinkiewicz’s theorem for functions with values
in a Hilbert space. His multipliers are functions taking their values as
linear transformations in the Hilbert space. An advantage of his approach
is that vector-valued analogues of the Marcinkiewicz theorem as well
as of the Littlewood-Paley inequality are obtained as by-products of his
vector-valued extension of an inequality of Calderdén and Zygmund [3].
However, his results are obtained only in one space-dimension.

We obtain a generalization of Schwartz’s results to higher dimensions
by introducing an appropriate notion of variation. An important tool in
this is the Littlewood-Paley inequality for higher dimensional Buclidean
spaces.

We briefly summarize the contents of this paper. Section 1 ig devoted
to notation. Section 2 deals with multiplier theorems which are Fourier
transform analogues of results of Marcinkiewicz [12] and Zygmund [18, 20]
(ef. our theorems 2.2 and 2.1 respectively). Section 3 containg the Little-
wood-Paley inequality and a resulting stronger multiplier theorem.
Tn Section 4 we undertake a more detailed study of the properties of the
variation introduced in Section 2 and give some applications. Section 5
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gives a counter-example to a very reasonable-sounding stronger multi-
plier theorem.

Section 6 gives an axiomatic treatment of inequalities of Paley-
Littlewood type and includes an alternative method of obtaining theorems
for functions of many variables as concatenations of one-variable results.

1. Notation. R%, % will denote the d-dimensional real and complex
Tuclidean spaces respectlvely For =, yeRd or €% we define

zy =wa%;

i=1

|2|? = @-®.
12(8) will denote the Hilbert space with elements & = {@s}ss, @s¢C,

guch that )
= Z |ag? < o0
8eS

[l |l2(SJ

(this of course requires that @, = 0 for all but countable se¢S). For'§
countable we shall write 12(8) = i2. Let H be a Hilbert space; L”(H) (Rd)
is the space of H-valued functions f(#) defined in R? with norm

Illzogmy = Il If (@)

For f <L (H)(R?) we define the Fourier transform and the anti-Fourier
transform of f(x) by

— ff(m) e»«2‘inm-edm
R4

lellzege -

and

.;0(5) = fﬂ-’v)(ﬂmm‘edm
R

respectively.

OP (1) (R% iy the space of functions f = {f,(#)}, where all compo-
nents belong to C®(R%) and vanish outside a compact set, and where
only a finite number of components are non-zero.

yz(2) shall denote the characterigtic function of the set F.

2. Multiplier theorems. Let Qy = {#; || = 1, 20"} and do be an
element of surface on Qu.

LevMMA 2.1, For ae 0¥, we have

lal? = tpn f|a, (u|7 dor,

where ¢, 5 depends only on p and N .
Proof. Write a = |aa; aef2y and notice that
Con = fl|a~w|”dm

N
is independent of «.
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LEMMA 2.2(1). Let S be a bounded linear operation on LF (R% and let T
be the operator on LP(1*)(RY) given by T({f.}) = {S(fa)}; then [T| = |I8|l.

Proof. |Tj > ||8] follows immediately. To show the opposite in-
equality, note that elements for which all but a finite number of f, are
zero are dense in IP (I*)(R%), so it suffices to prove that

IT ({fa)lzoay < ISI {falzrgy

assuming f,, = 0 for » > N. Using lemma 2.1 and interchanging the order
of integration, we have

1T () By = {5‘|S(fn

}”/ 2 dm

= [l Ngﬂ 2 08 (fa) (o) [ do} do

R‘i N B=1

=y [{ f\s(ga;,f,,(m)) [ dz} dw
oy gid . n=l 3

< I8|Pep, Onfal ” gy deo

<1|chQJ{{R£12 fol) | da}

= [SIPI{fu}llzoa2)

as desired. Note that the above is valid for § defined on a subspaoe of
an arbitrary ILP-space L”(A,du), p >0.

Remark. Lemma 2.2 extends to the case where the role of LP(R%
is replaced by I?(H)(R%Y, and that of LP(P)(RY by LP(P(H))(EY, H
being a Hilbert space. If H = I* and S is a diagonal operator, i.e. acts
as the same scalar operator on each component, the same proof applies
with minor modifications (one first works with %). In the case where §
is & more general operator, lemma 1.1 in.the proof should be replaced
by lemma 6.1 of Section 6. Here it also suffices to take H = . Theorem
2.1 stated below also holds for functions feCP (1) (H)(R‘z) In the proof
it is only necessary to apply the vector-valued form of lemma 2.2 in the
case where § i3 diagonal.

Let & = {I;, b, ..., l,} be a finite family of real-valued affine funecti-
onals on R Set

In={s; () <aP, j=1,...,7}.
THEOREM 2.1. Let feCP(12)(RY); define

T(f) = {Tulf)}, XI fn)v( @).

where T (fn) (@

(I) ef. Zygmund [18], p. 224.
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Then.
HT(f)HLﬂ(lz) <

where ¢, will denote the norm of the Hilbert transform on IP(RY), for the
remainder of this section.
Proof. Observe that ‘

p | lzmg)

=[] %—ﬂ—sgn(lf af)}.
7=1

Pick 4™ eR® such that L (ygm) = of” and denote with “ ' the oper-
ations and sets defined above with % replaced by £ = {li, Ly, ..., L}
Then

1

To(fu) @) = 5T~ V0T HY (T (f)) (),

where I ig the identity and
H(f) (=) )7 (&) (@)

is a 1-dimensional Hilbert transform in the direction of grad /.

= (Sgn lr(
‘We have

IT (Fllzraz < 5 (HT’ (Dlizoz,+ [ HF(T ()|,
where H¥*(f) = {ei”(")"“’H(fn)}. Using lemma 1.2 and the fact that H is
a 1-dimensional Hilbert transform (see Zygmund [18]), we obtain

1H* ()llzegzy = IH (f)llzey <

The theorem now follows by induction on the number r of linear func-
tionals.
To. state the next multiplier theorem we shall need the following
definition of #-variation:
Definition 1. Let # = {I,,...,
urable function g(x) set Ve(g)
of functions

Op “fHLl’(l?y

1.} be as above. Then for any meas-
= inf { M}, such that there exists a sequence

(’m) Z ckmxl}cm
k=—00
where Ip, = {o; (o) < off™, §=1,....,7}, satisfying:
1. %‘ ]ckml < M

2. K™ (z) - g(2) a.e.
Clearly |g(z)| < Ve(g) a.e. We postpone a more detailed discussion
of the #-variation until Section 4.
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Definition 1'. For (=) taking values in a Banach space B, we simply
pick cpmeB, replace absolute values by norms and convergence by con-
vergence in the Banach space.

THEOREM 2.2. For feCP(1*)(R%) define T(f)
= (gufu)V- If Velgn) < M for all n, then

T (Nllzegz < M Ifllzegz ,
Proof. Let

= {-Tn(fn)}7 where Tn(fn)

1< p<oo.

T (@ Z h% 1r,(n

be an element of the sequence approximating g,(#) according to defi-
nition 1. Let

Sn(fn) = (hujn)v and
We first show that

) » 9 lare, <

Namely, using Schwarz’s inequality,

|8 (fu) ()2 = \Zok )(XI n) fn \

S(f) = {Sn (fn)} .

p M [iflzeae) -

<M {2 et} 1z, (1), Vi }
Therefore, by Theorem 2.1,
“S(f)ngp(ﬂ) = f[z iSn(fn) (w)lg]mi dz

24

w¥ [ [ Sz, ()¢

RrRE Mk

3 ] 3 05

<GP [ 310 1fal@)]" do < 67 2P | flEnee,
RrRE Nk .

//\

]plz dz

I

} ]'D/Zdw

thus establishing (x). That § may be replaced by T in (x) can be seen
direct by using the Lebesgue dominated convergence theorem and Fatou’s
lemma.

THEOREM 2.2°. The above theorem remains true if the functions f,(x)
take values tn a Hilbert space H, and g, (x) take values in & (H , H).

3. Inequalities of the Littlewood-Paley type. Combining theorem 2.2
(or 2.2') with a Littlewood-Paley type inequality will result in a strength-
ened multiplier theorem. We begin by quoting a 1-dimensional version
of this inequality:
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. Tymormm 3.1 (J. Schwartz [17]). Let F: B — H (H—a Hilbert space),
and feI” (H)(R). Define . ‘

Q, = {teR; 2"l |t < 2, n =0, &1, 42,00y, and  Jp= X

(where the Fourier transform s taken in R with values in H). Then
2 \P p ey D[
05" [(SUmO) < [Iolde < 0y (U0l @
R n n R n

where Cp 45 & constant depending only on p, 1< p < oo.
TumorEM 3.2. Let {li,..., L} be as before. For the multi-indow N
=, iy, ny =0, 1, £2,..., define

Qn = {weR% 2% < (@) < 2%, j = 1,...,7}
Congider feLP(H)(E") and sot Tv = xoyf - Then

05" [ (3 Utalli)do < [If@lidn < O [ (3 Ut "o
N R4 N

re i

Proof. The proof easily follows by induction on » with the appli-
cation of theorem 3.1, and we include it.

When r =1, identifying B = {t; L(») = t} and integrating the
inequality of theorem 3.1 in the orthogonal (¢ —1)-dimensional subspace
of R ({z,1,(x) = 0}) the result easily follows.

For » > 1, let # be the Hilbert space of »—1 tuples of elements
in H. Denote with “ 7 sets, functions and operations as defined above
for the family of affine functionals {I;, ..., L_1}. Seb F:R > # F = {fy};
identify again B = {t,1 () =%} and R™' = {z,l(x) = 0}. If yeR™Y,
using theorem 3.1. we get

05t [ (It ao = ot [ { [ D18t i) dt}ay
R N Re-1ROM

< [ {1, Oedtfdy = [IF @) do
' R4

i1 R

<0y [ {[(Z 1Py, 0l aday = c,

Ri-1 B néd N

L3 vt ™ da.

But using our induetive hypothesis we have’
L0 [IF@)de < [ If@)kde < 057 [IP@)5da
. R .. s b

and the theorem follows.

icm°®

LP-multiplier theorems 199

As a corollary of theorem 3.2 we obtain a strengthened version of
theorem 2.2 (or 2.2’) which bears a close relation to a theorem of Marcin-
kiewicz [12] on Fourier series (see also Schwartz [17]).

In the next theorem the % and {Qy} arve defined as before, using the
same set of affine functionals for both.

THEOREM 3.3. Let G(x) be a scalar-valued function defined in R
assume that Ve (xqy &) < B (independent of N). Then seiting, for f CP(RY,
[T(HIM (@) = G(a)f (), we have

IT (H)lze < BEBllgllzo,
B, depending on p only, 1 <p < oo.
Proof. Recalling the definition [T(f) ]y = {{T(/))" 1oy} and applying
theorem 2.2 and 3.2, we geb '
2B < 05 [ (DTN Ina)F)
5w ,

Dj2

dx
< G0EB® [ (X fwla))" dw < GO B ||flze
AP

and the theorem follows.

4. The %-variation. We first note that if Z = £ o {I}, [(») = Al(x)+
+a (4, acR;le¥), then Vz(g) = Ve(y) for any g. Hence without loss
of generality assume that the I's are linear and Al¢% for A # 1, leZ.

Next let us compare, for functions of a single variable, Ve with the
clagsical notion of variation. In that case it is easily seen that if
P = {#,}°, is a partition of R' and g(») is a function of bounded varia-
tion, then, setting

6p'=g(w)—g(z_1) and gz = (—o0, %),

the functions gp(x) = Zaj’Pij(m) satisfy the conditions for the approxi-
7

mating functions of definition 1.1. As P becomes more refined, gp(s)—
¢(#) — constant a.e.
Define
vg(RY) = {f; f: B* = 0; Ve (f) < oo}.

THEOREM 4.1. vg(R?) is a Banach algebra with respécs to the morm
V() and pointwise multiplication. If £, = £» (possible only if d>1),
then

ve (B Svg,(RY)  and  Vg,(9) < Ve, lg).

Proof. It is easily checked that V() enjoys all the properties of
a norm. To prove that vy (R% is an algebra, we note first that it f, g evg (R%
and @, and v, are two sequences of functions converging a.e. and boun-
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dedly to f and ¢ respectively (as in definition 1), then on (@), (%) cOnVerges
to f-g in the same sense. Hence f-gen_g(Rd) and Ve(fg) < Vel Ve(g).
Next, let {f»} be a Cauchy sequence in pg(RY. As has been observed,

anl".fnzubm < V.’ﬁ(fn, _'fnz)

and therefore {f,} is a Cauchy sequence in L""(Rd’), and converges 1o
a function f(m)eL“’(R‘t) a.e. and boundedly. It remains to show that
feng(R?) and the convergence is in Ve(:). To that effect, let {pu; be
a sequence of function converging to f ave. such that Ve (gns—Ffa) < Q="
(as in definition 1); then the double index sequence {p,i; converges tio
f a.e. as n — oco. Hence fev,g(Rd); MOTeOVer, @ x— Pn,k, CONVEIZES €.0.
%0 fu—1, a8 k, ky, 1y — oo and w remains fixed; and since Ve (@nx— @n k)
< Volfa—fu) +o(1), the first of the theorem is established.

To prove the second part, observe from definition 1 that when
le#, and 1¢%,, then Vgl(sg'n(l)) = oo. We.leave the rest to the reader.

Now we temporarily restrict ourselves to the case where r = d and
1;(#) = x;, and in that special case denote vg(R% by p(RY and Vg(-)
by V(). Our immediate aim is to obtain an equivalent characterization
of the space p(R?). In introducing the next few definitions, we follow
Cramér [4], p. 76-83. If F(zy,..., #g) is ¢ n arbitrary complex-valued
function defined in R% and I is the half-o ien interval ¢; < a; < by, wo
define

a

Al = Z(—l)”“'jlf‘(bl, ...... y by Gy -

F=0

)

and
J=J) = {@;z;< by j=1,...,d}.

Let & = {{} be the finite collection of intervals of the previous type
induced by a partition ... < af"V < af < .. (f=1,...,d) and write

UF) = D141 F)
Ten

Let %(R% be the space of all F such that U (F) < oo

HeLLY's, TunoreM. Let {F,} be a sequence of uniformly bounded
functions belonging to U (R%) such that U(F,) < M. Then there cxists a sub-
sequence converging pointwise everywhere to a function Feu(RY, and
U(F) < M.

Proof. It is shown in Cramér [3] that there exists an »* e“//(lﬂ")
such that a subsequence converges to F* at all points of continuity ™,
which are contained in the complement of the union, §, of a denwme-
rable number of (d— 1)-dimensional hyperplanes each perpendicular to
a coordinate axis. Assume that the theorem is true for % (R*Y). Then by

and  U(F) = sup U, (¥) for all partitions .

icm
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a diago.nal proeessd we can extract a further subsequence converging to
a function F <% (E") agreeing with F* in the complement of S, since

im U, (Fy,) = UL (F) < M.

Nje—>00

THEOREM 4.2. Given g <v(RY) with compact support, there exists F U (RY)
with compact support, such that ¢ = F a.e. and conversely if F % (R%),
then Fev(RY. Moreover,

oF
where p = ——

Vig) = U(F) =
() ) Bml...aw,,g’

RMM’

in the sense of distributions, is measure of bounded variation.
Proof. Suppose gev(Rd). Then there exists a sequence

R (z) = 2 Crem lIlcm(w) y
k

where L, () = {o; 2; < d¥™}, and Ziewa| < Vig)+e.
Since U(*) is a semi-norm, we have

U (h(m)) <2 [Ukm‘ U(xlkm) = 2 Ickml
T k

due to the fact that U(yy,, ) = 1. Hence U (k™) < V(g)+e, and applying
Helly’s theorem, there exists a subsequence of {1} converging everywhere
to Feu(RY, with U(F) < V(g)+e, thus proving the first part of the
theorem.

To prove the second part of the theorem we first observe that if
Pe# (K% and has compact suppert, then

is a finite measure utf bounded variation (where differentiation is taken
in the sense of distributions), and

Jalul = UE)

Rl

(see Cramér [47). Let = = {I} be a partition of R* (as above) where
I={g;0 <z<b} and o= {a}. Lot

F,= ) F(a)u).
Ierm
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“Then F.—F a.e., and pointwise boundedly, as the maximal dia-
meter of the partition & tends to zero. By a simple summation by parts
argument we have }

Frf@) = D (41 F) (o),

Tem

where we continue to use the notation introduced earlier; then
V(F) < sup D 47| < UF),
. i 7

and .the theorem follows.

Our next aim is to establish a correspondence between the spaces
ve(RY) and % (R") for r > d. Let £, as before, denote the real affine func-
tionals I, (@), ...,l(#) and introduce the affine transformation P:RL >R}
given by & = li(wy, ..., ag), j =1, ..., 7. Bach function f(£) on R gives
rise to a function (Pf)(z) = f(P(#)) in zeRL

THEOREM 4.3. Given geb_g(Rd) with compact support there ewisls
Feu(R") having compact support such that P(F) =g a.e. in R Conversely,
if Fe@(R), then P(F)evz(RY. Moreover,

UF) = Velg).

Proof. Observing that if I = {m;L(»)< a,j = 1,...,7} and
I'={¢6<a,j=1,...,7), then P(y)(w)= 22(z), the proof proceeds
along the same lines as in theorem 4.2. .

Definition. Let Qy = {z;2% ' < |5/ <2, j=1,...,d}, m =
=0, £1, 42, ... F(z) defined in RB”is said to belong to (&%) if

Sup UlxeyF) = M(F) < co. .

This definition applied in conjunction with theorem 4.3 yields the
following alternate version of theorem 3.3:

THEOREM 4.4. Let G be scalar-valued function in B® such that G = By
a.¢. in B, where T e M (R'); then, for feC5°(RY), -

H
G leomty < By M (F) |flpoga,,

B depending only on p, 1 < p < oo.

;)ur next aim ig to obtain a more explicit formula for M (F) when
F<0*(R%). Tt we denote by J(ay, ..., az) the set {z; #; < a;}, then the
following identity is valid:

a

. d-k '
1= 2(*1) KT OB 101D G) 3
=0

©
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where I == {®;a; < a; < b;}. We observe that
P
*5&7‘1“_.—_%;(%“@9 = 0g(z) = d(z—a).

In what follows a, # will denote d-tuples of zeros and ones. Denote
by R, the subspace of B? of dimension |a| given by R, = {z; @; = 0 for
a; = 0}; let I, by the projection of I on R,, and #, be the variable in R,.
We observe that :

T (up) (55 o a)ﬁm(w)
Fy xt) = eyl V44 =
0. 0wy W 177 0w
‘ oo i a\f
= Y St e (5] (P,
tafArea
where the equality is understood in the sense of measures. Now since
6|u[ la| .lal_k }
= () (@) = ;‘ P
=0
if wo write
6d
e (o ) =
‘ 6001...0@,1(%1 y=w
we have
la)
N 3 0\
[aw =D (Z (3] s s 4 B ) dmﬂ)-
R latB|=d ‘=0 Ig

With this in mind, we can write for FeOd(Rd— Lj){w; x; = 0},

dwﬁ)‘:
where Qg is the projection of Qn on R
TimorEM 4.5. If FeCHRI— () {z, 5 = 0}) and |2°(3/02)"(f) (#)] < B,
7
where a is an arbitrary d-tuple of zeros and ones with |a| < d, then Fed (R%
and M(F) < 2"dB. E o
This theorem in conjunction with theorem 4.4 gives a generalization
of a result of Mihlin [157], [16] and Lizorkin [11] who considered only
the case # = d. As an illustration we mention ’ ‘
TuroreM 4.6. Let h(t) be a comples-valued function of the real variable
teR'. Assume that
t’“ﬂ
dt

lal PRY '
! l(w) Fag, 2™, ..., 2%, 2")
0%

M(F)= sup (
leBl=d \k=0 QN g

f=m(iy,...)

(t)‘ <0 for t#£0,k=0,...,7.



GUEST


204 W. Littman, C. McCarthy and N. Rividre

Let {lp(x)}eey = & be a family of affine functionals from R? into R

Then
@ (z) = h(”lk(w))

k=1

is @ multiplier in I’ (R%). More caplicitly, for feOP(R%)
G v < Byma (O}l

1 < p <oo. B, depending on p,r and d only.

Proof. Consider the affine transformation P from R% into Rf given
by & = lx(x), and the corresponding linear mapping P from functions
i1 B to functions in R%,

P(F)(x) = F(P(x)).

Set F(£) = h(&y, ..., &). Then P (F)(x) = (/(r). Hence by thoeorems
4.4 and 4.5 it suffices to show that

a a
(| F
e[ 7
where « is any 7-tuple of zeros and ones. It easily follows by induction
that for such o’s

< B,max {C;},
k

. 9 \* lal ) o
& (0—5) F(§) = 207'(51: ‘fza LR fr)Jh())(El’ 527 veey ‘57‘)7
= :

where the C; are constants depending on |a| and » only, and A¥) denotes the
Jj-th derivative of . From the assumption on hA(t), the theorem follows.

Since the bounded ratio of two polynomials satisfies the conditions
of the previous theorem, we obtain the following

CoroLLARY. Let h(f) = P(1)/Q (1) be uniformly bounded for all teR',
where P and Q are polynomials, and let & = {lt(®)}rur be a family of affine
Junctionals from R into R'. Then

G(w) = h ( !7 lk(w))
]

is a multiplier in LP(R%), 1 <p < oo.
We proceed to give some alternate forms of theorem 4.5 which nuiy

be easier to apply in some concrete situations.
Let

Bi() = s (1)

o and 6% = 6%, 6%, ..., 0%,

* ©
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Then a straight forvard argument shows that the conditions in the hypo-
thesis of theorem 4.5 ean be replaced by the conditions |6°F(z)| < B,
0 < |a| < d. Making the substitution ; = ¢ for ¢, >0, and a = —é"
for xz; < 0, we have
0
0;(F(2)) = j::,j?F(:l:e’l, +e2, ..., e,
Thus we have the
COROLLARY TO THEOREM 4.5. Suppose
F(wy, ..., 20) C* R~ U {&; 2; = 0}),
7

and for every d-tuple of zeros and ones a, |a| < d, we have

alz
»b?;F(ietl, +é2, ..., 1o < B,

for all possible combinations of plus and minus signs; then Fe#(RY) and
M(F) < 2*dB.
As an illustration, we note that the function of »+45 variables

37{.’171
W Y2 s Ysls+ 25+ B+ ...+ a7

can be seen (almost by inspection) to satisfy the conditions of the above
corollary. (For example take 2, = 47,0 <j < n,y; = €95, 0 <j < B).
Thus we obtain the estimate for the function u(x,y) = p(2y, 2,y ..., Tny
Yiy oo Us) €OF (B X By):

ll e P (B BY) < Olltyyuggugrs — (B, agay - by, “L”(R’;xRZ) :

Applying theorem 4.4 we obtain the following result: Let 0,, d,, ..., 05
denote differentiation in five directions (respectively in Rj). Then the
estimate

!w*'"i"”'jHL”(R”fo/) < 0”01 62036465/4_ Amll”,}?
T

(Rx BS)

holds for all functions yeOﬁ"(RZxR,s,). Obviously the number 5 can be
replaced by any odd number and the Laplacian by a more general elliptie
operator.

5. Counter-example to a sirong multiplier theorem. Theorem 3.3
naturally leads to the following question:

Let g.(£) be a function on R' with support in [2°, 2], n =1,2,...
Suppose the norm of g, as a multiplier on.L’J(El) is bounded uniformly
in n. Then is ¢ = ) ¢, necessarily a multiplier?

"
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The answer turns out to be mnegative. A counter-example to this
conjecture can be obtained by taking

gn(€) =

gn acts a8 the product of a translation in y (an isometry) and an idem-
potent which has bound uniform in ». However, we will show ¢ is not
a multiplier. Our computations are carried out in L* because of the relative
ease of explicit calculation, although the example is valid for p + 2.

'mz g

X[2™,2m41) (£).

Let
hd A 1
f(a’) = é’nnllzfn(w): where fn = 5 Xpn.onpo]
go that
1 e sm i
p s
f'n(m) =__2_. f macgds — 6(2”" Fymiz P Tcw
on
f = gﬁm ‘where
s (2
_ i S0 (2—27)
() = ¢ Bl

s0 that b= 3 n~"*h, is carried by g into f. We estimate the L* norms of A

and f by menans of the Paley-Littlewood-Schwartz theorem:

Al ~ fm @ e Tn(a)¥) da

11 gin’n(z—2" sin’r(o—2™)
= Zn 1m f T o da.

Recalling the formula

f sintn(o—a) sin’z(@—f) , -1 {1 3??%4:1‘,(4,“,@)_}
'n:z(a)——a) m(@—p)2  dn?(a—p)? 4 (a— p)
and 1ts limiting case
X .4 ©
sin® e 2
T it
we have
_2 -1 1 -
||h||4~<2 w w7l (28— 2" < oo,

lsm<n<oo
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‘Thus keI’

11 ~ f (e d&ﬂ*Zn 1

Thus f¢L* and ¢ is not a mulmpher on I*

2
 sin'r de = ——(Zn“)z.
3

n

6. Paley-Littlewood systems of operators. In this section, we abstract
the operator-theoretic features of the Paley-Littlewood theorem. We say
that & family of operators {4,} on I” (or some subspace thereof) is a Paley-
Littlewood system if there is a congtant A for which

Jif@)Paw s 4% ( 3| 4f@) a0 for all feI?.

In the cases considered in Section 2, the operators 4, are disjoint
idempotents with }'A, = I, the identity operator; it then follows that
IZA,J < A” uniformly over all subsets o of indices and thus {4,} is a boun-

Nec

ded Boolean algebra of projections in the sense of Dunford [5]. For many
of our applications, however, it is more convenient to deal with A4, = M, o2
the multiplier operator given by the function ¢,, where {g,} form a certain
O®-partition of unity. For this reason we establish the second principal
theorem of this section (theorem 6.6) which gives a natural equivalent
condition for such {4,} to be a Paley-Littlewood system.

Our first principal theorem (theorem 6.2) shows that if {4,} and {B,,}
are two arbitrary Paley-Littlewood systems of operators on I with the
range of B, contained in the domain of 4, for all m, n, then the doubly
indexed family of operators {4,B,} is again a Paley-Littlewood system.
This general fact may be used to replace the induction step in theorem 2.2;
in addition it is valid in the full range 0 << p << oo and for I” of an arbi-
trary measure space. ] )

Preparatory to proving the theorems of this section we prove lemma
6.1 which is closely related to Khinchin’s inequality and its elaboration
by Marcinkiewicz (lemma 6); it is actually a special instance of a general
group-theoretic or probability-theoretic inequality which was put to many
good uses by Marcinkiewicz (see Oollected Works, passim). For the range
p >2, lemma 6.1 may be found in McCarthy [14], propositions 1 and 2.

We denote by T the 1nf1mfe dimensional torus X {0n: 0K 0, < 2n} with
measure 40 = H(doﬂ/%

LeMMA 6.1. Let N be the multi-index N = (n,, ..., ng) and let ay be
elements of the Hilbert space H. Let T denote the Cartesian product of S
copies, of T (denoted by 7O, ., 7)),

On = )+ +0552,

o = agv...ae®,
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Then there exists a constant €, (0 <p < 00) depending only upon p

such that o
[15xe N ay["a0 2 CF" (Z]a \ ) "

8
Proof. Since the measure d@ on T° has mass 1, the Iolder in-
equality gives immediately

g£d@ 1 ; &N gy ]7' < (Tfs d@'%ci@N%’ 12)1;/2 _ (; |“N12)m for  p o,

For the inequality in the opposite sense, we use induﬂtion on 8.
For the case § = 1, we first consider p > 2, and for p =2, first the case
p = 2P, P integral. We then have

~ : 2P
jd@] > 6" a,
T n

= f(w 2 ﬂxpi/wnl‘}" ot 911[)— 07”1 —... ()mp) (a’nly “ml) e (“np: a'm.p)-
i

For each choice of #,...,7%e we obtain a mnon-zero contribution
after integration over 7' only when Moy ..., mp i one of the at most P!
permutations of ng,..., np, and this contribution hag absolute value at
most

2 2
|ty ety | - Poes langl™

J'M{Ze"”nan]‘“”' <P Y fanl
k(3

LOTRL o

Ianp‘ ‘a'mp| = \anl

gl = P (D 1el?)”

Thus €% = (p/2)! for p an even integer suffices and for p 2.
not an ¢ven integer, usc of the Holder inequality again shows that B = P!
suffices for any integral P excceding p /2.

For p < 2, 8§ =1, we let A be that set of 67 for which

. R
Sl < 2| el
" e

= [d0. Using the fact that (f = 2
o

Thus

A’ the complementary sefi to 4, and 1
suffices, we have

E )

= ﬂze"’”an\ ag-+ ” ' ei”"ra,,‘lzdo
A n A [
(_ﬁ ; ¢''n g, \) (de)m—|— f v|au| do
i

<(2(Siff) 22 0= Sia

n
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Thus 2 sa,tmﬁes the inequality 1 L2~
A>3-2V2 >1.
We then have

| 00,V aa f 1 2\
JIZB 'aﬂ (Iﬁf,A (Ezn;[a,n} as =

and Op = 14 suffices uniformly for 0 <p < 2
demonstration for 8 = 1.

Now assuming the validity of lemma 6.1 for §—1, we pass to §
by the same technique as that in the proof of theorem 2.2 above. Let §
be the Hilbert space of H-valued square-integrable functions on 7°5-!
=T®x...xT®. We denote by N’ the multi-index (m,, ..., ng), dy
=de® .. dB(S’ wy = (09 +...4+653), so that some elements of § are
of the form b(y) = be e“"\' by-eH, with norm given by

By = [ dp| > byev [ = 3 byl
7S=1 N’ N’

Apply the case § = 1 to the sequence of elements a,(y)

4 and 30 we have

BN

which completes the

= Jay N 9
N

(where we have set » = n,, N = (n, N')) to obtain

Jao| X el s o7 (Yl "

Expressing the norms in § in terms of the H-norms of the coefficients

of a(y), we have
Ja(S| S nanlf? 2023 S st (S st
But for each fixed 6 the induetion hypothesis shows that
TSdel;em\w;emnanw’ ‘p < O%p(.s-l)(; l ;‘eiona",]\” 2)11/2.
Integrating this inequality in 6 we have finally
JEE -, ] B St
057 [a0( 5] 3 vani [ 2 0577 (3 bt

With lemma- 6.1, the first principal theorem of this section becomes
immediate.

Studia Mathematica, t. XXX, z. 2 14
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TrmorEM 6.2. Let (AL}, ..., {45} be 8 Paley-Litflewood systems

of operators on L° such that

[f@P aw 2z (407 [ (3 140f @) do (s =1,..., 8).

For the S-multi-index N = (ny, ..., ng), let Ay be the operator AQ{ . AS
Then the family of operators {Ay} s a Paley-Littlewood system and

we have s .
[if@raz Og‘“’s(nfl“’)) f(Z | df ()" da.

Proof. To simplify the notation, we consider first the case § =2,
and set A = 4, AD = B,,; for § > 2, we simply iterate the cage § = 2.
Since {Bn} is a Paley -Littlewood system, we have, using lemma 6.1

[1f(@)Pdn 2 (4@ [( 2 1Buf (@) )" do
2 (A®EPCE” [ay [da] Y ¢*mBuf(o)”.
r m .
Sinee {4,} is a Paley-Littlewood system, we have for each fixed ¢
az| S ern B, fla) |
fas] 3 éonmagio|

> (A(l))iﬁO;L;nf
T

“n N gvm A, Bf(w) [
Sémtunngi
g0 that
[1f@)Pda 2 057D AP [ do [ a0ap| 36O AuBuf )]
2 nm

2 O*ZP(A(”A(”)“fde;‘;” (2 ]Aanf(%')[z)p/Z_
n,m

Half of the oceurrences of €5 above may be eliminated, the particular
occurrences eliminated depending upon whether » >2 or p <2 and
upon which inequaliﬁy is being demonstrated, and we have

1f@)Pan 2 03240 40 [ ( 3| Axf (o) | do.
N

For 8 of the form. 27, v integral, we obtain in general by induction
on 7

8
» 4-20(S—1) @)\=? A [P p/zd
[ i@ da 2 oD ([TAO) [(3) i@ do

and for other § the factor C¥-Y may be taken as CXF* < O3, where =

is the least power of 2 exceeding S.
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Before proceeding, we wish to make a few remarks. The facts that ¢,
may be taken uniformly bounded in the range 0 << p < 2 but not as p — oo,
and that for 1 < p < oo the conjugate space LP(I*) is I*'(I*) with the

pairing
fz.fn @)fa(z)ds

might lead one to suspect that better bounds could be obtained in the-
orem 6.2 by considering only the case p < 2 and passing from there to
P >2 by an adjointness argument. Unfortunately, it does not seem at
all clear whether {4,} a Paley-Littlewood system in L”, is equivalent
to {4} being a Paley-Littlewood system in L”, although in all cases
which have so far appeared to us in applications this is true; in particular,
the equivalent condition for certain classes of Paley-Littlewood systems
given by theorem 6.6 is in fterms of operator norms and thus for these
families {4,} is a Paley-Littlewood system if and only if {45} is. We also
note, for whatever use it may be, that no commutativity whatever among
the operators 4% is required for theorem 6.2.

The second principal theorem of this section deals with those special
families of operators {4,} on I”(1 < p < co) which satisty

(a) Ay Ay = And, for all m,n;

(b) there exists a finite integer N such that for every m, the set of
indices {n: 4,4, 7 0} hag at most N elements;

{e) 3 A, = I, the identity operator on LP. (It is sufficient to assume

n

({fa}s {fz}) (p+p =pp),

only that Y 4, = A, a bicontinuous operator, by treating {4,47'}.)
n
We shall show that such a family {4,} is a Paley-Littlewood system
on I? if and only if

(d) there is a finite number M such that for every set o of indices
|54 < .

feo

The sense in which Y 4, = I is in the weak operator topology, the
n

convergence being unconditional by (d); by modifications of the work
of Badé [1, 2] and Foguel [7] we can see that (a) conversely shows that

lim M4, =>4,

o0 neay, nes

in the strong operator topology if ¢, < 0y =

70"‘U°'k

agsuming this sort of countable additivity of the family {An}, it may be
shown that (d) is implied by the weaker assumption ]Z'A |< oo for
nec

Further,

every o, but not necessarily uniformly. The theorem of Hérmander that
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a uniformly bounded sequence of multipliers in LP(1 < p < oo) which
converges in the #'-topology must converge in the strong operator topo-
logy (Hérma,ndér [8], lemma 1.5) may also be used to reassure us that
it is not questions of convergence which need concern us here, but only
the problem of obtaining estimates. To obtain these estimates, we first
prove some preparatory lemmas which hypothesize only some of (a)-(d).

LevMA 6.3. Let {A,} satisfy (a) and (b). Then there emists a partition

Tiyeeny Ty (J = N+ N+1) of the set of indices {n} such that for every m,

and every j the set {nev;: Am Ay 5 0} has al most one element.

Proof. We build up the sets 7; inductively. We may assume without
loss of gemerality that the operators A, are indexed in the following
convenient manner: A, arbitrary; 4,,..., 4, to include all 4, for
which A, 4, = 0 (there are at most N such A, by (b)); and Ag_ 1§42, ---

ey A (2 <k N+1) to include all A, for which A,4; # 0. We
begin the construction of the sets 7; by requiring jer;(l <j<J = N*+
-+ N--1). Obviously, for every m and every j, the set {mer,n<<J:
: A A, # 0} has at most the one element j. Suppose then that we have
placed every index ! < L into one of the sets 7; in such a way that for
every m and every j the set {netj, n << L: Ay A, = 0} has at most one
element. We show how to determine which set 7; may asorb the index L
without destroying this property. By (b) there are at most N indices
Mgy ..., iy for which 4, A7 # 0 and at most N*® more indices wy,, ..., Byy
for thh Ap; An, # 0. Of these at most N*4- N indices g, N some,
all, or none may be less than L, but in any case there is at least one of
the N*4 N +1 sets 7; which contams none of them. Put L into such a .
To complete the induction, we need only show that for every m and every j
the set {mevr;, n < L:AnAd, # 0} contains at most one elerment. If j
is such that L¢v; orif Let; but 4,, A7 = 0, then {net;, n <L: 4,4, # 0}
= {ner;,n < L:Apdy # 0} which contains at most ome element. If
Lev; and 4,47 # 0, then m must be one of the indices n,, ..., ny. Any
other » for which 4,, 4, = 0(= 4,4, by (a)) must be one of 1y, ..., %y N
which cannot be in the set z; chosen to asorb L.

Lemva 6.4 (Dunford [5], theorem 7). Let {4,} be a family of
operators which satisfies (d). Then for any set {a,} of complex nwmbers
we have

| > an | <4 M 5up oo

Proof. Let feI?, geL”. Let oy, ..

o, = {n: Reg(4,f) > 0},
= {n: Img(4,f) > 0},

., 04 be the sets of indices

Aqf) < 0},
o, = {n: Img(4.f) < 0}.

oy = {n: Reg(
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Then we have
[9( X o af) < 3 enlg (a1 < 50 e 2lg(4np)

< sup o] D (IReg(duf)i+ [Tmg (4,1)])

n

= sup|uy| { 3 Reg(duf)— Y Reg(duf) + > Tmg(Anf)—

Neoy Tedy neoy

— 3 Img(4af)

0y

< sup | Z} > 0(4nf)] < sup ] i gl
=<1 maL
If the operator 4, were the atoms of a bounded Boolean algebra
of projections, the next step would be to show that

fz an;inf! (4 M)~

such an inequality is no longer true in our more general situation, but
a substitute is given by lemma 6.3 which shows that for each j the subset
of operators {4,: ne7;} do not interact and the obvious remark:

LEMMA 6.5. Let {A,} satisfy (a), (b), (¢), and let =y, ..., 7; be the J
sets of indices given by Lemmna 2.3. Then for each feLP there exists a j (de-
pending upon f) such that

Yinf |a,| |fl;

| D Auf|= 7M.

nezj

Proof. f Z—Anf Z 2‘471f7 80

j=1 nez;

J

Ifl < ZJVA,J' Jlllax’YA,Lf

j=1 ney ey

We are now ready to prove the theorem which establishes the equi-
valence between (d) and the Paley-Littlewood nature of the family of
operators {4,}.

THEOREM 6.6. Let {4,} be a family of operators on IF (1 < p < o0)
which satisfies (a), (b), (c), and (d). Then

[ @) do s (4MC )= [( 31 4uf (@)2) " dis.


GUEST


214 W. Littman, C. MeCarthy and N. Rividre

Cowversely, suppose that {A,} satisfies (a , (b), (¢) and

Ji@ras s 427 (3 14uf ) )”’Z

Then {An} satisfies (d) with M = A*Cyd.
Proof. Suppose {4,} satisfies (a), (b), (¢) and

[ ] 2 a”nAnf(m)|pda~

Integrating over all §¢T we have by lemma 6.1 (8 =1)

[( 3 14nf (@) )"t

For the inequality in the opposite sense, set ¢, = Ay, and
(A A0}
vote that A, = (3 Auw)ds = Qudp. Let vy, ...,
n

7y be the sety of indices
guaranteed by lemma 6.3; then if n and I belong to the same z;, n # 1,
we have {m: An4, # 0} and {m: AmAy +# 0} are disjoint sets of indices
and 50 4,@; = 0; also an operator of the form 2 ¢, is of the form

< (41" [ {f (o) do.

< (4M0,)P f If (@) [P das.

ey
> a, A, with Jay| =1 or a, =0 and thus has norm af most 4.M by
n

lemma 6.4. For any choice of 6, we have

1.3 s - {13 ) 3] o] i
nﬁj 71(7.'7' n:‘tj
< (amy” [ ](2 eiﬂmn) j(m)1pd£r

mr,-

Integrating over all 6 we have for any j

J| g A <

and use of lemma 6.5 gives

[If@Pds < J”maxf‘ZA,bf(zri

netj

Pmax [ () 14af (o))" da

’!M‘l‘j

< (M0, | ( 2 l4nf@)" da.

MO [( 3 14nf () )" dae

’IL('V,

< (4 M0, d)

Conversely, suppose that {4,} is a Paley-Littlewood system, which
satisfies (a), (b), and (¢); we thus have the sets 7y, ..., 7; of lemma 6.3.
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For any choice of 6, the fact that {4,} is a Paley-Littlewood system

yields for each j
A% [( 3] A Y 6" Anf@)f | do
m 71417-

J1 X ¢ dnf@)f o s
ety

For each m, there is at most one nez; for which 4,4, # 0. Denoting
this #» by =n(m),

J(D] 4 3 e dufto)
which is independent of 6. Thus
sup [ |%’ 6" A,f (o) do < Aint [ I%‘ ¢ Ay f(o) do
< AP [ (3 14nf @)P)" < 47 03 [ If(2) P dos.
ety

z\)p/zdm _ f(z |4 ewn(m)An(m)f(w)l )1’/2

Using lemma 6.5, it follows that for any choice of 8,
,Z’e""’ﬂAnfi < A3C,JIf).
n

Let o now be an arbitrary set of indices. Z 4, is a convex combi-
nation of operators of the form Ze’onAn and thus ]Z‘A | < 4%C,d

uniformly in ¢, which is (d).

We remark that the obstruction to proving theorem 6.6 in the range
0 <p<1is lemma 6.4, and its dependence upon a conjugate space;
in lemma 6.5, the use of the triangle inequality may be replaced by the

inequality
J] Zf,(m>| do <

valid for 0 < p < 1, where f;(z) =

yf s (@) das
2 Anf (e

we have not here developed a substltute for lemma 6.4 in the range 0 < p
< 1, although theorem 6.6 does remain valid. We remark additionally
that judicious use of adjoints allows the factors C, in the estimates of
theorem 6.6 to be replaced (in the range 2 < p < oo) by a factor invo-
lving J alone.

As an application of theorem 6.6, we obtain the classical Paley-
Littlewood theorem in R' from the I” multiplier theorem of Hérmander
([87, theorem 2.5} which shows that a uniformly bounded function ¢(¢)
(€eRY) is a multiplier in I*(R") (1 < p <C oo) if

2" ¢ (€)1" g

2m<|5|<2m+1

. For want of applications,
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is uniformly bounded in m, —oo < m < oo. The same sort of development
may be carried out in R* even using the multiplier theorems with mixed
homogenity of Fabes and Riviére [6].

TurorREM 6.7 (The Classical Paley-Littlewood theorem). The family
of operators

A f— (ganagemtrf)V (—o0 < m < 00)

form & Paley-Littlewood system in I¥(R'), 1<p < oo.

Proof. {4,} clearly satisties (a), (b), (¢}, so that only (d) need Dbe
demonstrated. To this end, let p(&) be a O -function with support in
} < |&] < 4 such that

oo

Dl =1 ae;
we first show that the family of operators B,:f — (q)(2“"£)ﬂv is a Paley-
Littlewood system. Again it is obvious that {B,} satisfies (a), (b), and (c)
with N = 5. To demonstrate (d) for the family {B,}, let ¢ be any subset
of indices. Then | 3 ¢(27"¢)| < 3|pl and

gMm+1 y
= fZE( o) fag =20 =[] Y ")
2 nea 1 Ned

< J‘5 /\“1 I2m/"n(]-‘l(2“L',L"])‘E(Z7/

1 =22

< 5-16+ 1[5

(Schwarz inequality)

This last estimate is uniform in m, which shows that, for every o,
> B, is bounded. This last estimate is uniform in o also, and by the

Nea

estimates in the Hoérmander multiplier theorem, | ' By has a bound

Tev
uniform in o, which is (d); thus {B,} is a Paley-Littlewood system and
we have for some constant B

Jif@)Pds 2 B= [( 3] |Bafla))™ do.
Denote ' 4, by A4,. We have
J14f@)Pan < B [ (3 |BaAof (o)) do.

Now B,',A,,f = M, B.f, where g iz zero off the support of ¢(27"f)
that is g, = 0 for 2"' < |£| and |&| < 2"*%-and ¢, is constantly 0 or 1
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on each of the sets 2" ' < |&] < 2%, 2" < |&] < 2™, 2™+ < |¢f < 2™
It is clear that V(g,) < 8 uniformly in %, so by theorem 2.2,

S 1Badof@2) dz < 8° [ ( 3 |Baf (@)l "do < 8" R B [ |f(2)|" do.
It follows that {4,} satisties (d) with | > 4,| < 8%, B2 which com-

1LET

pletes the proof of the theorem.
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