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On a problem of moments
by

8. ROLEWICZ (Warszawa)

Let X and ¥ be two real Banach spaces. Let 4 be a continuous
linear operator mapping X into ¥. Let us consider the equation

(1) A (u) =o.

We are looking for the minimum norm solution of equation (1), i.e.
for such a solution u, of equation (1) that

2) 1y = inf{{juf: 4(w) = 6}

The problem considered in question often occurs in the theory of
control. It has been considered for finite-dimensional ¥ by many authors
(see for example [3] and [4]). Obviously, in this case the operator A (u)
can be considered as a finite system of linear functionals

Au) = {-Al(u) 3oty An(u)}
and ¢ as ‘a system of numbers

¢ ={C1y ..., Cn}-

The main theorem in this case is
n : n
(8)  inf{lul: A(w) = ¢} = sup inf{nun; D hsAi(u) = Zlici}.
Loerertpy i=1 =1

The case X = I?,1<p < + oo, and ¥ =17 has been considered
by Butkowski [2]. The method he used is the following: since ¢el’, ¢
= {6, .-y Cny ...} and the operator A can be described as a sequence
of functionals. The idea is to approximate equation (1) by a finite system
of functional equations and then, using weak compactness or weak*
compactness, to prove the existence of a minimum norm solution of
equation (1).

Tn this note a generalization of formula (3} for infinite-dimensional
Banach spaces will be given. The paper contains also applcations of
this generalization to the theory of control. : :
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TeEOREM. Let X and ¥ be two real Banach spaces. Let A be a con-
tinuous linear operator mapping X into Y. Let the image I" of the unit ball
K = {weX: |z <1}
by the operator A be a closed set. Let ¢ be a fimed element in Y. Let there

ewist o solution of equation A (u) = c¢. Then
(4) inf{lul: A(u) = ¢, ueX} = %u%)tinf{HMH: F{4(w) = F(n)},
where as usual ¥* denotes the conjugate space to the space Y, i.e. the space

of all continuous linear functionals defined on Y.

Proof. Obviously, each solution of equation (1) ig simultaneously
a solution of the equation

(5) F(A(u) = F(e).
Therefore
(6) a>bh,
where
) o = inf{|ul]: 4(u) = c},
b = sup int{[ju|: F(4(u)) = F(c)}.
i Fel™
Now we shall show that conversely also
(8) a<b.
In fact, let us suppose that (8) does not hold, i.e. that
(9) a>b.

Formula (9) implies that ¢ does not belong to 5/ But under the
agsumption the set bI" is closed. Therefore the theorem on the separation

implies that there are a positive number & and a linear continuous funec-
tional ¥, such that

(10) Iyle) =1

and

(11) Fiw) <1—e for mebl'.
Hence

(12) inf{[lull: F(A(u) = Fy(e) =1} > b

1—¢
and this leads to a contradiction of the definition of b, q.e.d.

Remark 1. Let us remark that for finite-dimensional ¥ the agsump-

tion that the set 1: is closed is not necessary, since in this case formula (9)
implies that c¢bl.
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Remark 2. The theorem is also true if we replace Banach norms
by Minkowski norms, i.e. norms which are not homogeneous but only
positive homogeneous.

COROLLARY. Let us assume that the assumptions of the theorem are satis-
fied and dim' Y < 4oo. Let us assume that there s a functional Fy such that

(13) inf{llu): A(u) = ¢} = inf{jJul: Fo(A (u)) = Fo()}.
Let us assume that the equation
(14) Fo4 (W) = Fo(c)

has a unique minimal worm solution u,. Then u, 18 the minimum norm
solution of equation (1) also.

Proof. Since I' is finite-dimensional and closed, it is compact. Since
inf{|ju|: A(u) = ¢} is finite, there is a minimum norm solution #, of
equation (1). Obviously,

(15) Fo(A (w,)) = Fy(0).

Then formula (13) implies that u, is the minimum norm golution
of equation (14). But equation (14) has a unique solution u,. Therefore
Uy = Uy, q.0.d. ) .

Tf the et I" is not closed, the corollary does not hold even if ¥ is
a two-dimensional space, as is shown by the following

Example. Let X be a subspace of the space I'[o, 1] consigting
of all functions constant on the interval (1, §). Let ¥ be a two-dimensional
space. Let

(16) ‘ A(u) = {Fy(u), Fa(u)},

where the functionals F, and F, are of type

1
() Fi(w) = [fiyu@d, =12,
and

4 for O0<i<},
(18) A =13 for p<t<i

0 for 2<t<1,

falt) = fi(1—1).
By a simple calculation we obtain

(19) = {(&,y): lo|+lyl <1} o (£ £5.


GUEST


186 8. Rolewicz

Let ¢ = (3, ). Then there is a functional ¥, satisfying (13) and it
is given by the formula

(20) Fy((w, o)) = w+y.

Then equation (14) has a unique solution (%, %) # (%, §)-
Now we shall apply the theorem to a problem of the theory of control.
Let us consider the following system of strings:

P P,

D
7, 2

Let us consider only perpendicular vibrations. Let the state of the
system be described by the perpendicular deviation @(z,?) at the point =
and at the moment ¢. Let us control our system by perpendicular devia-
tions (u(t), ..., un(t)) at the ends of the strings py, ..., Pa.

We shall consider the following minimum time problem for the
system. Suppose we are given an initial state, i.e. the initial position
Q(z, 0) = Q,(») and the initial speed

99 (x, 1)
|, = )

We are looking for a minimum time 7' and control w(t) bringing
the system to rest, i.e. for such a control w(f) = (ul(i), ceey un(t)) that

(21) Qz,T) =0
and

99 (z, 1)
22 7 .
(@2) ot e

This problem has been considered for one string controlled by one
end by Butkowski {2]. Butkowski hag reduced the problem to the solving
the infinite system of integral equations

T

fsinkn—g—tu(t)dt = ay,
(23) ’ h=1,2,...

N @
f coskr — tu(l)dt = by,
h 8

©
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where S is the length of the string, « is the coefficient of wave equation,
the numbers a, and b; are defined by Q,(«) and Q(x) and

(24) D rbi < + oo
=1
Using the same method we find that the minimum time problem
for the system in question also can be reduced to the solving the system
3 a
O3 ij
f [simr A Totu; () -+ sinw ( i ——1) Tetu; (t)]dt = ay’,
Py S'E,f Si,)‘
(25) -
i,y

f [cosﬂ k) Tetu; (£) + cos e ( d —1) ktu,-(t)]dt = by
o S:; 8z

1, 1,]
(k=1,2,...,(,j)ed),

where §;; is the length of the string connecting points p; and p;, ai,,-.is
the coefficient of the wave equation of this string, 4 is the sc?t of pairs
of positive integers such that there is a string connecting p; with p;, the

coefficients al and by are determined by Q.(z) and Q(x) and
o
(26) > 3@ 0 <+ oo
(E)ed k=1
Let us assume that
2m @i j[Si; =T
Then the system of equations (25) gives the system

T Ly
f [sinkt - u; (1) + sink (t— ) u; (1)1t = ai’,
(28') ’ )
| [cos ot u; () + cos ko (t— =) u; (1) 1dt = by
0 . .
(k=1,2,...,(ed).
Situations in engineering imply constraints of differ.ent types for
w(w) = (u,(t), ..., %y (). Let us assume that those constraints are of the
following type. Given a funetion H (2, ..., 2) defined for non-negative
1y .oy 8. Lot H be a continuous function. Let H(0, ..., 0) = 0 and let

H(zl—}—zi, ...,Zn+z;p) < H (2, -~~7zn)+H(zia 7Z;a)

Lét us suppose thatb uy (1) e P[0, T],1 < pi < + oo Let the con-
straints be of type

(277 ful < M,
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where
(28) ful = H(llwlly - ey eall)-

Let us consider the product XX of the spaces L%[0,T1],i=1,...,n

(29) X = I"[0,T]x ... xIP[0, T].

Obviously, X is a Banach space with respeet to the norm |u| defined
by formula (28).

Using the classical technique of the theory of control we can reduce
the minimum time problem to the minimum norm problem (see [2],
[3], [4] and [6]), i.e. we ave looking for an element with the minimal
norm satisfying (25'). )

Obviously equations (25°) can be considered as an operator equation
1 A(u) = o,
where 4 is an operator mapping X into 1=

Simultaneonsly with the space X we can consider a subspace X, « X
constituted- by periodiec functions of the period 2= belonging to X. Let
us consider the minimum problem in the space X,. Obviously
(30) inf{lul: weX, A(u) = ¢} < inf{lul: ueX,, 4 (u) = ¢}.

We shall show that in fact we have equality there.

Our further considerations are based on the following lemmas.

LemMA 1. Let F be a functional defined on X by a periodic function

FO) = ((f1(0), ..., fult)) with the period 2= by the formula
T
(31) = [ [ ua()+...+ful®) i (2) ).
1]
Then
(32) sup | (u)] = |l7].
ueX
<1
- Proof. Let u(t) = (wy(t), ..., up(t)) e X. Sinco wu;(t)eL”[0, T'), thero
is a periodie functlon ug (1) such that [ju) = [juf] and
(33) f Filtyu; (1) f Fitup(s
(in fact we can put
W) = < O sigus ),

where ¢ = pl/(pz..

icm°®
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Let us write w”(¢) = (uf(t), ..., uf()). Then formula (33) implies
(34) F(uP) = F(u).

Formula (32) trivially follows from formula (34) and the definition
of the norm of a functional.

LeMMA 2. The set I' = A(K), where K is a unit ball in the space X
and A is the operator induced by formula (25'), is closed.

Proof. The space X can be considered as a space conjugate to the
space

(35) Xy = I8[0, I]x...xL™"[0, T],

where ¢; = pgf(1—p;) if p; < + co and ¢; =1 if p; = + oo, with the
respective norm. The space X, is separable. Hence the unit ball K in
the space X is weak® compact. The operator A is weak® continuous.
Therefore the set I' is weak™ compact, whence closed.

LeMMA 3. The set I, = A(K,), where K, is a unit ball in the space
Xy, is closed.

The proof is similar to the proof of Lemma 2.

PropoSITION 1. We have

(36) bt ] Au

usp

=0} = mf{]]u][ A (u) = c}.

Proof. For an arbitrary functional Fe¥* = I* the funetional AF (u)
= F(A(u)) is of type (31), where

=5}

(37)  fult) = D dhsinki+ Bleoski+ yhsink(t—m)+ Steosk(t—m)
k=1

are periodic functions of the period 2m. Therefore Lemma 1 implies

(38) inf {Ju]: P(A(w) =in§{|]u|]:F(A(u)) = F(o)}.

ueXp

= F(0))

Lemmas 2 and 3 imply that the theorem is applicable to both spaces,
X and X,. Hence formula (36) follows from formula (38), q.e.d.

PROPOSITION 2. If there is a solution of the equation A (u) = ¢, i.e.
if the system is controllable with respect to the point ¢, then there is also
a periodic minimum norm solution belonging to X, of the equation in the
space X.

Proof. Basing ourselves on Proposition 1 we can find a sequence
tge X, such that A(u,) = ¢ and

(39) lim|ug| = inf{ju|: veX, 4 (u) = c}.
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The set X, is weak* closed. The set A~ (c), as inverse image of
a point by a Weak* continuous operator, is also weak® closed. Therefore
for all » > a the set

(40) K = {ueX, ~ A" e): Ju] < r}

is weak® compact. This implies that there is a weak™ limit u, of the se-

quence u, and that
(41) ] = inf{Jul: A (u) = ¢}.

Since A is weak® continuous, 4 (%) =e¢, q.e.d.
Propositions 1 and 2 can easily be extended to all systems for which
the control problem is reduced to the solving a countable number of

equations
A
[ syt = a,

0 j=1

(42)

where all funections f;;(¢) are periodic with the same period, ueX, (@) el®.
For example, Propositions 1 and 2 hold also for a system similar to
those described above but controlled by the second derivatives of devia-
tions (cf. paper [5] for one string).
The space X can also be replaced by more gcneral space namely
by the space

(43) Xy = D10, T1X... x T2 [0, T,

where F; are ki-dimensional Minkowski spaces with the norm || f|; anc

(44) L300, T] = {u(t) = (ua(t), .., tnt O): s <+ oo},

where the norm |u|; is defined by the formula

T

(45) fus = ( [ Ihe (ol )™
0

(see [6] and [7]). .
The norm in X, is defined in the similar way as in X.
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