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we observe that |oul o™l < 2M7(|ali,)" for every zeX,n =0,1,...
From [3] it follows that X is an m-convex By-algebra. By remark 4

we infer that X is a Q-algebra, q.e.d.
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On the generation of tight measures
by

J. KISYNSKI (Warszawa)

A non-negative measure u defined on a o-algebra &/ of subsets of
a topological space is called tight if

u(A) = sup{u(C): 4 > Cesl, C—compact}

for every A esz. The main result of this paper is theorem 2.1 concerning
extiensions to tight measures of some set functions in arbitrary Hausdortf
spaces. This theorem generalizes a theorem given by Bourbaki ([1],
Chap. IV, §4, N° 10, theorem 5) for locally compact spaces. The proof
of theorem 2.1 is based on the idea of Halmos ( [3], § 53 and 54) of exten-
ding to a meagsure a certain ‘“‘semi-regular content” obtained from a given
set function. However, the method of such extension presented here is
different from that of Halmos.

Throughout this paper the Borel subsets of any topological space X
are defined as elements of the smallest c-algebra of subsets of X, con-
taining all the closed subsets of X.

1. Extension of a content to a tight measure. We call a content any
nowu-negative, finite, non-decreasing set function A defined on the class
of all compact subsets of topological space X, such that for every pair
4, B of compact subsets of X we have

A(4d v B) < A(4)+4(B)
and .
A(A U B)y=A4(4)+A(B) it A~B=g.
We say that a content 1 is tight if
MA)~A(B) = sup{A(0): ¢ = A\B, O~ compact}

for every pair 4, B of compacts such that B < A.

We say that a content A is semi-regular, if for every compact 4 and
every ¢ > 0 there is an open set U such that 4 < U and A(B) < A(4)+e&
for every compact B < U.
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TamoreM 1.1. Fvery semi-reqular conlent in a topological Hausdorff
space s tight.

Proof. Let A be a semi-regular content in a Hausdorff space X
and let 4 and B be compact subsets of X such that B = A. Since 1(0)
< A{4)—A(B) for any compact C = ANB, in order to prove that A ig
tight it is sufficient to show that, for every ¢ > 0, there is g compact
0 « ANB such that A(0) > A(A)—Ai(B)—e By the semi-regularity
of 4, for any &> 0, there is an open set U such that B = U and A(D)
< A(B)-+¢ for every compact D = U. Since the compact set 4 is con-
tained in the union of open sets U and X\ B, by a theorem of Halmos
([31, § B0, theorem A, p. 216), there are compact sets O and D such that
¢ D=4, 0cX\B and D < U. We then have i(0) > A(4)—4i(D)
> MA)—A(B)—e.

TusoREM 1.2. Every tight content in a topological space may be extended
to o tight measure defined on the o-algebra of all Borel subsets of this space.

Proof. Let A be a tight content defined on the elass € of all compact
subsets of a space X. For any B = X put

w(B) = sup{A(C): B o 0<%},
My ={F: F c X, u(B) <p(B ~ F)-+up(ENF)}

and let
./” = m Jﬂg.
Ce¥
The theorem will be proved if we show that .# is a o¢-algebra of
subsets of X containing all the Borel subsets of X and the set function p
restricted to .« is a measure.
Clearly x(0) =0 and, by the monotonity and additivity of ,

© (B p(F) < p(B o F)

for any pair B, F of disjoint subsets of X. Further, it is obvious that,
gince A is tight, .4 contains all the closed subsets of X and that if Fe.4,
then X\Fe#. Hence, in order to complete the proof, we need only to
show that, if B, B,,... is a sequence of sets in .#, then

UBeet  and (U Ba) < D p(B).
n=1 n=1 M=l

To prove this, let H,, By, ... be a sequence of sets in .4 and let
(% and &> 0 be arbitrarily fized. Then, by the definition of ., for
every n=1,2,... there are 4,e¢% and B,<% such thab i

A, On B, BncC\B, and }.(An)+Z(B,,)>A(O)—-§,;-

©
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Since, for every n =1,2,..., (4, v ... v dy_1) ~ 4, and (By A ...
..~ By_y) v B, are disjoint subsets of C and since A is tight, we have

_2_2 < Z(An)‘l')*(Bn)_l(O) <Z(An)+l(Bn)_“l((Al e An—l) [ An)—'

—A(By ~ ... ABu_) v By
= (A N(A; w oo O Ay )= p((Bi A ...~ Bu)NBy)
=AA; v .ee. VA)FABL A o AB)— A Ay U Ay ) —
—A(By A ... ~ By_y),

from which, by induction
n
AMAL G s 0 A)FABy A e A Ba) > AO)— Y > A(0)—¢
. )

Since A is tight, there is a compact

o«
D < B\ N B,
fi=1

such that

A(D) > A(Bl)—l(ﬁ B,,)—s.
Since !

and D and B, arc compact, we have
N
DA (ﬂ B)=0
n=1

for sufficiently large N and thus

N 0
MM Ba) A(B)—MD) < () Bn)+te.
n=1 n=1
It follows that
N oo N )
D MAW+ () Ba) = MU Aa)+A4(N) Ba) > 4(0) 22
N=1 n=1 N= n=1

for sufficiently large N. Hence, because

Avevdy0n(UB), OB NI E:A
= n= N=1
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and e > 0 is arbitrary, we have

w0~ (:l Ba)) +”(0\(n: H,)) = A(0)

and
o0

(0 A Bo)+p (ON(U Ba)) 2 4(0)

=1

D

n

It

for every O<%. The first of these inequalities shows that | J B,e# and
=]
the second — that

0

ﬂ([_'jEn) =sup{l(0):nQEn > 0t} < Y u(En).

n=1

Thus theorem 1.2 is proved.

The proof given above ig closely related to the reasonings of Neveu [5], -

Chapter 1-5, p. 19-23. The analogy is more expressive in view of the
remark that

: i
My = () Mg ¢
EDCe%

for every B — X such that u(#) < oo. To prove this equality, let B < X
and u(B) < co. It Fedy, then, for any ¢ > 0, there are 4% and Be¥
suchthat A ¢ B ~ F,B c E\NFandi(4d o B) = A(4)+A(B) > u(B)—%.
If B o Ce%, then
B(C ~ B+ p(ONF) = A0 ~ A)+4(C ~ B) = 4(0 A (4 © B))
= (0)—u{C\(4 w B)) =2A(C)+A4{4 v B)—i(4 v B v ()
= A0)+ A4 v B)—u(B) > A(C)—e,
which shows that
Fe (N Mp.
B0
On the other hand, if
Fe n .MZg,
ED06E
then for F o Ce% we have
MO) < p(0 ~ F)+pu(CNF) < p(B ~ F)+p(ENF) < p(B),
80 that u(B) = sup{A(0): B > (€} = u(B ~ F)+u(BE\F) and Fedyp.
2. Generalization of a theorem of Bourbaki.

TuroreM 2.1. Let X be a topological Hausdorff space. Let ¢ be a class
of open subsets of X such that

(i) if C =« X is compact and Ue®, then UNCe0.

Generation of bight measures 145

Let & be a lattice of subsets of X such that

(ii) if C is compact, Ue® and C" < U, then there is an A% such
that 0 <« A < U;

(iii) for every pair C,D of disjoint compact subsets of X there are
on Ae¥ and & Be such that 0O «c 4, D =« B and A ~ B = 0.

Let py be a non-negative, finite, non-decreasing set function on £, such
that for any Ae¥ and Be¥ we have

(iv) #old v B) < py(A)+ po(B)
and
(v) w4 v B) = puy(4d)+p(B) if 4~B=0.

Assume furthermore that

(vi) for every Ae¥ and every >0 there are O and U such that O
is compact, UeO, C < A = U and that |u,(4)— puy(B)| < & for every Be%Z
satisfying 0 <« B < U.

Under these assumptions there is a unigue tight measure u defined
on the o-algebra of all Borel subsets of X, whose completion is an extension
of py, i.e. such that for every Ae% there are Borel sets F and G such that
FcdAcG ad p(F) = p(d) = u(@).

Proof. By (iii), by the finiteness and monotonity of u, and by (iv)
and (v), if for any compact ¢ = X we put

A(C) = inf{u,(4): C =« A%},
then 4 is a content. By (ii) and (vi), for every compact C we have
() A(C) =inf{o(U): C <« Ue0}, '
where
v(U) = sup{pe(B): U > BeZ} = sup{i(D): D « U, D-compact}

for every Ue<0. This in particular shows that A is a semi-regular content;
and so, by theorems 1.1 and 1.2, it may be extended to a tight measure u
defined on the c-algebra of all Borel subsets of X. If Ae% and ¢ >0
then, by (vi), there are C and U such that € is compact, Ue?,C c A < U,
po(A)— e < A(C) and o(T) < po(A)+&. Bince u(0) = A(C) < uo(4) < v(T)
= u(U), we have u(d)—e < p(0) < p(d) < pu(U) < po(4A)+e. This
shows that the completion of x is an extension of u,. Thus the existence
of a measure u satisfying the theorem is proved. .

For the proof of nniqueness it is sufficient to show that, if a measure u
satigfies the theorem, then u(C) = A(C) for every compact C = X. So,
suppose that u is such a measure. Let Ue0. If ¢ < U is compact, then,
by (ii), there is A% such that ¢ < A < U. Since the completion of u«
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is an extension of p,, we have u(0) < po(4) < p(U), which, u being tight,
implies that x(U) = v(U). Hence, by («), we have

(B) M0) =inf{u(U): C = UeO} = u(0)

for every compact ¢ = X. It follows that for every compact ¢ there is
2 Ve0 such that ¥V o € and u(V) < oo, so that, sinee u is tight, by (i)
and (B)

u(0) = u(V)—u(VN\0) = u(V)—sup{u(D): D c V\C, D — compact}
=inf{§(V\D): D = V\C, D — compact}
= inf{u(U): C « Ue®} = A(0).
Thus (C) = A(C) for every compact (' = X, which completes the
proof.

A neighbourhood of a subset A of a topological space X (or of a point
zeX) is any subset @ of X such that 4 < Int@ (or weInt@). A non-

negative, finite, non-decreasing set function u defined on a class & of j
subsets of a topological space is called regular if for every A% and every

&> 0 there are Fe. and Ge# such that F ¢ 4 < Int G, pe (F) > pe(A)—¢
and po (@) < po(4)+e.

THEOREM 2.2. Let & be a lattice of subsets of a Hausdorff space X
such that evéry two distinet points of X have disjoint neighbourhoods belong-
ing to L. Let u, be a non-negative, finite, non-decreasing, reqular set fumnc-
tion on &, satisfying (iv) and (v).

Then the following two statements are equivalent:

(a) there is a wunique mon-negative, finite, tight measure defined on
the o-algebra of all Borel subsets of X, whose completion is an extension
of o3

(b) for every e > 0 there is a compact subset K of X such X\K o A%
implies uy(4) < e.

Proof. It is clear that (a) implies (b). To prove the opposite impli-
cation, observe that since every two distinet points of X have disjoint
neighbourhoods in %, it follows that every two disjoint compact subsets
of X have disjoint neighbourhoods in .#. So, if we put ¢ = {X\C:(
< X, ¢ — compact}, then conditions (i), (ii) and (iii) are satisfied.

Further, suppose that (b) holds and let Ae% and &> 0. Let K be
such a compact subset of X that X\K o FeZ implies u,(B) < /2.
Let FeZ# and GeZ be such that

— ) . &
FodcnG, w@)>umd)—g and @) < w4+ =

©
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Put C = K ~ F and U = (X\K) v IntG. Then ¢ is compact, Ue@
and  c 4 c U. If BeZ and 0 c B c U, then F\B c F\C c I\K
and B\G < U\Int@ < X\K, so that ’

€

ta(d)—2 < i (F)— = < o (FNB) + i (B)— 5 < pa(B)

< ta(BNG)+ 1ol €) < ol @)+ < palA) + .

Thus we see that condition (vi) is satisfied. Hence the implication
(b) = (a) is a corollary to theorem 2.1.

3. Application to projective systems of measure spaces.

Assumprions 3.1. Let (I, <) be a directed set. For any iel let X;
be a topological Hausdorff space and let p; be o probability measure defined
on the o-algebra &; of all the Borel subsels of X;. Suppose that for every pair
(i,4) eI* such that ¢ < j a continvous mapping w; of X; onto X; is given,
such that

(3.1.1) 7y = identity for every iel,
(3.1.2) 35O Mjje == Tk

for_ every triple (i,7,k)eI® such that i <j <k and
(3.1.3) pi(B) = py{o' (B))

for every pair (i,j)eI* such that i <j and for every Ee%;.
Suppose further that X is a topological Hausdorff space and that for
every iel a continuous mapping w; of X onto X, is given, such that

(3.1.4) if (i, el* and i< j, then m; = m;0m;.

THEOREM 3.2. Under assumption 3.1 suppose, moreover, that all the
measures pq, tel, are regular and that for every two distinct points x and ¥y
of X there exists an i<l such that m;(%) 5 m;(y). Then the following two
statements are equivalent:

(3.2.1) there is a wunique tight probability measure p defined on the
o-algebra of all the Borel subsets of X, such that p;(E) = p(ni ' (E))
for every iel and Ee%;;

(3.2.2) for every & > 0 there is a compact subset K of X, such that
Pi(XiN\mi(K)) < e for every iel.

Proof. We shall show that theorem 3.2 is a eorollary to theorem 2.2.
Put

& = {n;7'(B): iel, Ee%;}.
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Then, by (3.1.4), we see that & is an algebra of the Borel
subsets of X. If weX,yeY and @ £y, then there is an iel such that
mi(2) = m;(y). Since X; is a Hausdorff space, there are disjoint open
subsets U and V of X;, such that =;(#)e U and 7;(y) eV. The mapping =,
being continuons, =;'(U) and =7 (V) are open subsets of X. Clearly
YT ~ 27 (V) =0, zeny'(U) and yeny (V). Thus we see that every
two distinet points of X have disjoint open neighbourhoods belonging to 2.

If B and E = n;'(F;), where icl and H;e%;, then, for any jeI
such that ¢ <j, since the mappings =; and =; are surjective, we have
7;(B) = ng' (B;) and B -—-m‘l(n,(E)), so that o;(F)e#; and p,(a_z,(E))
= p;(B;). Hence, if for any Ee% we pub

to(B) = Limpi{m(B),

then p, is a well-defined set function on % with values in [0, 1]. If B<%,
Fe¥, and B ~ F = @, then, for every iel greater than a certain ¢y,
we have B = i '(m;(B)} and F = m7'(m,(F)), so that 77 Yo (B) ~ o ()
=B ~ F=@, and therefore m;(H) ~ m;(F) =@, since z; is surjective. Ience

pio(B o F) = 1i_1§1pi(ni(1v v B)) = limpi{u(B) © m(F))

= 1 (ps{s (B) + pils (1) = pa(B)+ (B,

which shows that u, is an additive set function on the algebra 2. Since
all p;, 2el, are regular, it follows that u, is a regular set function.

Thus, for & and u, defined above, all the assumptions of theorem 2.2
are sabisfied. Since, by the definition of uy, for any ¢el and Fe%;, we
have pi(H) = po(ni'(E)), the statement (3.2.1) is equivalent to (a).
Further, for any KeX, icI and B < X; we have #7* () ~ K =0 if
and only if B A~ n;(K) =@, so that the statement (3.2.2) is equivalent,
to (b). So, the equivalence of (3.2.1) and (3.2.2) follows from the equi-
valence of (a) and (b).

THEOREM 3.3. Under the assumptions 3.1 suppose that all X;,iel,
are finite-dimensional lincar spaces, X is a separable Banach space and
all the mappings m; and ry, i el, jel, 1 < §, are linear. Furthermore, suppose
that I contains a countable subset I, such that, for every weX,

8.3.1) ol = supinf{iyl: y X, ily) = (@)}
€. 0

Then the smallest o-algebra & of subsets of X containing all the sets
of the form mi*(H), iel, BeBy, is the algebra of all the Borel subsets of X
and the statement :
(8.3.2)  there is @ wnique probability measure p defined on & such
that pi(B) = p(ni (H)) for ewery ieI and TeB;
{8 equivalent to (3.2.2).

©
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"Proof. For any %<l and zeX; put

el = int{llyll: y e X, mi(y) = 2}

‘Then, for any iel, | |; is a pseudonorm on X;, continuous. since X
is finite-dimensional. So, for any zeX, r > 0 and del,

B = {z: 2 X, p—m(@)ll <7}
is a closed subset of X;. Since, by (3.3.1),
:yeX, ly—al <r} = =i’ (B,
tely

it follows that every closed ball in the space X belongs to &, and so, X
being separable, & contains all the Borel subsets of X. On the other hand,
it is obvious from the continuity of the mappings =; that all the sets in &
are Borel subsets of X. Thus % is the algebra of all the Borel subsets of X.
Since by (3.3.1) for any weX, x 3 0, there is an 4¢l,, such that m(z) # 0
and since every non-negative, finite measure defined on the o¢-algebra
of all the Borel subsets of a separable complete metric space is tight,
the equivalence of (3.3.2) and (3.2.2) follows from theorem 3.2.
THEOREM 3.4. Let I be the family of all finite mon-void subsets of
the inderval [0, T], T > 0, directed by inclusion. For any t<l, let X; be
the space of all real functions defined on 1 and let m; be the operator of resiric-
tion to i of functions defined on [0, T]. For any tel and jeI such that i < j,
let my; be the operator of restriction to i of functions defined on j. For any iel
let p; be a probability measure defined on the o-algebra B; of all the Borel
subsets of X; and suppose that (3.1.3) holds. Under these assumptions the

- smallest c-algebra & of subsets of the space C[0, T] containing all the sets

of the form w7 (B), icl, BeB;, is the o-algebra of all the Borel subsets of
C[0, T] and the statement (3.3.2) is equivalent to the following statement:

(3.4.1) for every ¢>0 and every 5> 0 there 8 a 8 >0 such that
pi(A:y 8,8 < g for every iel, where

Aiy, = o Xy, sup{lo() —2(s)]: t, sed, t—s| < 8} > 5}.

The equivalence of (3.4.1) and (3.3.2) may be expressed in other
words by saying that (3.4.1) is a necessary and sufficient condition of
the existence of a stochastic process (Xi)ipzy Wwith all sample paths
continnous, such that, for any finite sequence (iy,1,,...; ;) of instants
in [0, TT and every Borel subset E of R,, the probability of the event
{(Xy, Xyyy ...y Xy,) e B} is equal to

Pitntgnte (177 2 Xty s (8(8), @(20), -, 8(8)) € B} ).

This result is known (see [B], proposition IIT — 5 — 1, or [6], §
§ 2.1-2.2), but we shall give a proof by an application of theorem 3.3.


GUEST


150 J. Kisyﬁski

A similar direct proof of the existence of the Wiener measure in the space
[0, T] is given in [4], p. 14-16.

Proof of theorem 3.4. Defining I, as the family of all non-void
finite sets of rational numbers belonging to [0, 7], we are under the
assumptions of theorem 3.3. Hence we need only to prove that for
X = [0, T] conditions (3.4.1) and (3.2.2) are equivalent. This equi-
valence follows from the Arzeld-Ascoli theorem (see [2], p. 289).

Indeed, let (3.4.1) hold and let &> 0 be arbitrarily fixed. For any
n=1,2... choose 8, >0 such that

. &
%wMWWsyﬁ

and let ¢ < oo be so large that

p(o}({w: weXy, ©(0)] > 0} <

| ™

Put
Ky = {w: 20[0, T], |(0)] < C},

1
K, = {w: 2eC[0, T, sup {|z(t)—a(s)|: s, te[0, T, [t—8] < du} < —--}

for n =1,2,... and

S}

K= K.

n=0

The K is a bounded set of equicontinuous functions, closed in [0, T, .

and 80, by the Arzely-Ascoli theorem, a compact subfet of C[0,I]. For
any tel we have

{m: @y, |8(0)] >0} v U iy am if  Oet,
AN (K) =1 o =t
nL;:Jl Ai,dn,l/n if 0 ¢i5

80 that, since
pilfo: we Xy, |2(0)] > CY) = pyy({#: e Xy, [8(0)] > oY),

if 0e%, we have

] ©0
&

& P &
i X\ (K)) < 7 + Zl Pi(Aigan) < 5 + 2 AT =&

Toe= Tham 1

Thus (3.4.1) implies (3.3.2).
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On the other hand, for a certain > 0, let K be such a compact
subset of [0, 7] that

sup p;( X\ (K)) < 7.
el

Then, by the Arzela-Ascoli theorem, for any ¢ > 0 there is a 6 > 0
such that

sup{le(t)—ax(s)|: 1, 8¢[0, T], [t—s| <0} < e
for every xeK, so that 4;;, =« X\m;(K) for every iel and hence

Sup pi(digse) < 7.
il

Thus (3.3.2) implies (3.4.1)
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