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Absolute continuity of vector-valued
finitely additive set functions, I
by

W. ORLICZ (Poznah)

1. Throughout this paper we shall use the following notations and
notions. X dcnotes a real Banach space and Z its conjugate space, &
stands for a funetional from E. By &, we denote a set of functionals from
E such that [[&]] <1 and sup|&(w)| > cliz] for some ¢ > 0, where the
supremum is taken over all £ in 5,. The sets £, are called fundamental.
X is called weakly sequentially compact with respect to =, if for every
sequence &,, where £,¢Z,, there exists a subsequence &a; () converging
for any xeX. It is a simple matter to prove that a separable space X
is weakly sequentially compact with respect to 5, = {&: ||&]] < 1}. There
exist also non-separable spaces weakly sequentially compact with respect
to some Z,. As an example of such kind of spaces one can take the space
A, of real-valued functions f(-), bounded on <a, b, having for any te(a, b)
the right- and left-hand limit and the limits f(a+), f(b—). Here the
norm for fed, is defined as sul}) |f(#)], and for 5, one can take the set

<ab>

of all functionals of the form
v41/n

@) =+n [ Fiya,

where a <u,v+1/n <b,n=1,2,... By ¥ we will denote an abstract
set of points (elements), the symbol e,4 or e,) will stand for a sequence
of sets e, in F such that ¢ c e, = ... or e; o ¢, > ... respectively.

oo

o0
e, be Or e de means ey, ¢ = () &,, OT e,1, e = | e, respectively.
1 1

Besides the notation given before we shall use throughout the paper
the letter E to denote the class of zero-one sequences = = {g}, that is
to say with terms ¢; = 1, 0. If eis a set of points from ¥, then ¢;a means «
if & = 1, and the empty set if ¢; = 0. For a sequence of sets a; the symbol
a(e) or a'(s) denote the set {J &aq, or (U ea;, respectively. &,%, ...

1 i=n

always denotes a ring or an algebra of subsets from E. The class & is
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called o-ring or o-algebra respectively if the sum of countably many sets
from & always belongs to & and & is a ring or an ulgebra 1‘espgch1vely.
&, stands for the o-algebra of all subsets from E. By u(:), A(:),n(:)
we denote set functions defined on & and assuming real values, by (), . -
vector-valued set functions from & to some X. A set fun.c.t.lo'n. a(:) is
called additive on & if w(e; U es) = z(e,)+a(e,) for any disjoint sets

ey, 6, in &, it is called o-additive on & if for any sequence e; of mutually

oo
disjoint sets from & such that ¢ = Llj e;e & we have x(e) = w(e)) +a(e)+...
A sealar set function #(:) defined on & is said to be a subadditive measure
on & if it satisfies the following conditions:

1) 9(@) = 0, where @ denotes the empty set,

2) nle)) < nles) for e, = & and ¢, 6:¢ &,

3) nle, Uey) <nle)+n(es) for e Ney =@ and 6, eed.

Evidently #(e) = 0 for ¢eé. .
Replacing condition 3) by the condition

3) n(_Q 6) < nle)Falea) b oo,

o0
where ¢; are disjoint sets in & and |J e;c &, we get the definition of
a o-subadditive measure on &. ' _

Tt we replace in 3) orin 3’) the sign < by = we obtain the definition of
an additive measure or o-additive measure on &, respectively (in what follows
we shall say briefly: an additive measure, a o-additive meagure). A subad-
ditive measure 7(:) can be always extended to a subadditive measure
7{:) defined on the algebra of all subsets of B setting—as usual- 7(e) =
— infy(a), where the infimum is taken for all sets ae & covering e if such
a set exists, 7(6) = oo if no set in & covers e.

Let 5(:) be a subadditive measure on &. A set function #(:) defined
on & is oalled absolutely conmtinuwous with respect to #(:) (briefly: a.e.
with respect to n(:)) if 7(e,) =0 as n - 00, ére &, implies ©(e,) —> 0
ag m = oo. @(:) is weakly absolutely continuous with respect to n(:)
(briefly: w.a.c. with respect to #(:)) if end, n(en) = 0 ag 1 — oo implies
w(en) — 0.

The definition of the absolute continuity (weak absolute continuity)
of a subadditive measure u(:) with respect to #(:) is quite analogical.

For a vector-valued additive set function #(:): & — X, we define a set
function v(:, #), the variation of «(:) on &, as

v{e, o) = sup ||l a(ey)+ 2a@(6a) +. ..+ A (n)]l for ee ¢,
where the supremum is taken with respect to all disjoint ¢; lying in &,
contained in e, and all real scalars 4;, |4, < 1. The value v(e, #) is called
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the variation of x(:) on e; if v(e, #) << oo, then z(:) is of bounded variation
on e. The variation »(:, #) is a subadditive measure on &. If z(:) is a.c.
with respect to a subadditive measure 5(:), then »(:, 2) is also a.c. with
respect to #(:). If #(:) is w.a.c. on &, then 5(e) = 0 implies v(e, z) = 0;
the weak absolute continuity of »(:,z) may be guaranteed by certain
additional assumptions concerning either & or z(:). (cf. the theorems
in 3, 4.4).

2. Throughout section 2 & means a fixed o-algebra of subsets from £
(called fundamental algebra é:); 7(:) is a finite, subadditive measure de-
fined on &. Let a ring & < & Dbe given. Let us form a class &} of sets
from & as follows: ee &} if and only if there are sets e,e¢& such that
n(e,—e) - 0 as » — oo, the symbol ¢—b means the symmetric difference
of the sets a and b. By routine arguments we verify that &7 is a ring.
The class &7 will be called the Jordan ring of sets, generated by & and 7(:)
in &. It will by called a Jordan algebra if &7 is an algebra of subsets of E.
In particular, &% is a Jordan algebra if & is an algebra and ee &} if and
only if for any &> 0 there are sets e;,e,c&,¢;, = ¢ — ¢; such that
n{es—e,) < e. We denote by & the set of algebras &7 of this sort. Notice
that any set e in & which n-measure equals 0 belongs to &7 for an arbi-
trary &. If &€} < &, then for ee &} we obtain

S\elpﬂ(el) = infy(e,) = n(e),
1 €2
where the supremum is taken for all ¢; < e, ¢;¢ &, and the infimum is
taken for all e, o e, es¢ &. The formation of different Jordan-rings depends
on the choice of & and 7(:). A well known useful procedure to obtain
a finite subadditive measure 7(:) on & = &, consists in the following:
we assume that # is an algebra of subsets of F and that a finite measure
v(:) is defined on &. We set either 5(e¢) = infv(a), where the infimum
is taken for all ¢ in &# which cover e, or n(e) = inf(v(a,)+»(as)+...),

where the infimum is taken for all coverings G a;, a;e%. Another good
example of #(:) is obtained assuming that flis an algebra on which,
a vector-valued, additive bounded set funetion x(:) is defined. We set
&= &,, n(e) =infv(a, x), for ee&,, where the infimum is taken for
aeF , ¢ = a. Still another way to obtain #(:) is to start with a s-algebra
of subsets # on which a vector-valued additive set funetion 2(:) is defined
such that |lz(e,)| < ||z (es)]] for e, 6,eF#, €, = €5, and to set & =F,n(e)
= llz(e)l] (ef. 6, [3])-

2. If epedyend,nie,) >0 as n— 00, ay © €y—€yyq, Gneéy, then

for an arbitrary zero-one sequence = = {&;} the set a(e) = {J &;a; belongs
1
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to &3 and for a"(s) = \J eia; we have n(a™(e)) > 0 as n — oo, uniformly

i=n
with respect to sekB.

Proof. Lebt & = £,a; U €3z U -..  En_1ln_y; then n(a(e)—8) < y(ea)
< /2 for sufficiently large n. Choosing & set @ in & such that 9(é-~a)
< &/2 we obtain 5(s(s)=a) < & hence a{e)e &} Therefore a”(e)e &} and
Dbecause of a™(s) < ¢, we get n(a"(e)) < nlea) ~> 0 agn —> oo, independently
of the zero-one sequence e.

2.2. Let &, bea o-ring of subsets of E. A set function #(:) on & ~ &y,

oo
is called o-additive with respect to n(:) if for e;e &y ~ &7, L1J eie &y~ &%,

[=1]
e; ~ ¢; = O for ¢ # j, such that 7 (e Cypy v ...) >0 a8 n — o0, a(Ll) e,-)

= x(e;))+ ()t ..

If &(:) is o-additive on &, ~ &} with respect to 7(:), then from e,} O,
n(ey) = 0 as n — oo it follows that w(e,) — 0 as n — oo.

Indeed, 2.1 and the o-additivity of @(:) with respect to 7(:) imply
x(e,) = (m(e,,,)~«m(en+1))+(m(en“)—m(ewz))ﬁ—. ..; thus 2(e,) — 0 as n - oo

If w(:) is o-additive on &, ~ &} with respect to n(:) and eyt e, ¢y
nle—ey) — 0, as n — 0o, 07 ey ¢, ecl%, n(ey,—e) = 0 as n — oo respectively,
then

liminfv(e,, ) = v(e, ®).

N—s00
This follows from the preceding remark by the application of the
definition of the variation v(:, z).
(a) An additive set fumction z(:) which is w.a.c. with respect to 7(:)
is o-additive with respect to n(:).
() If @(:) is o-additive on & ~ &F and 7(e) = 0, where ee&, ~EY,
implies x(e) = 0, then &(:) is w.a.c. on & ~ EF with respect 1o n(:).

00
Ad (). If end, n(en) — 0 as n > oo, then for the set a = () ey,
1

n;;being a o-algebra, we have ae€, ~ &%, n{a) = 0; consequently »(a) = 0.
Since e, — @ = (€,— €pp1) ¥ (Cny1— nya) v ... We ODbtain by the o-addi-
tivity of @(:), #(ey— a) = Z(€y— €np1) + &(tn1— €nyo) ... Therefore tho
series @ (e,— 6y) + & (€y— €g)+... converges and consequently x(e,— a)
= p(e,) > 0 as n — oo.

3. Let u(:) be a finite subadditive measure on a ring &, u(:) o real
valued, additive, bounded set function on & If w(:) 45 weakly absolutely
continuous with respect to y(:) on &, then it is absolutely continuous with
respect to n(:).

Proof. Let us write v¥(e) = sup u(a), v~ () = —infu(a), v(e) =
vt (€)+ v~ (), where ¢e & and the supremum or the infimum respectively
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is taken with respect to ae&, a < e. It is well known that o™ (:), v~ (), (:)
are bounded, additive set function on &. Let us write
4 = lim(supv™(e));
S0 7{a)<é
we have 0 < p << co. Let us assume that x> 0. First, we shall prove
the following lemma:

Let positive e, ¢, be given and let pu— (e;+ ) >0, u+e = vt (e)
for n(e) < 6. Let for a set aed, such that n(a) < J, the inequality u(a) >
> p— &, hold. Moreover, let us assume that e,, &, > 0 are given and p— (e,
+eg)—(e;+25) > 0. Then there exists 8 << 6/2 such that

(+) nte zvt(e)  for  gle) <6,

“and a set Ged, & = a, n(d@) < 6 such that

#(@) > p— (e1+ &) — (514 2,).

In fact, let & be less than min(6/2, 6—7(a)) and so small that ine-
quality (+) holds. Next, let us choose a set e;e€ in such a manner that

n(e) < 8, pl(e) > p—2¢,. Suppose that u(e,—a) > e +e,. Because of
nla v (g—a)} < n(a)+(8—n(a)) =8 we get

pte =0t (a o (—a)) > u(a)+pleg—a) > p—eat(erh ) = ptey,

a contradiction. Hence we have u(e,—ey ~ a) < e -+e and defining
@ =€~ a we get

(@) = ule)) — p(eg— @) > p—ey— (814 82) > p— (a1 82) — (81+¢5) > 0,
ac a, 7(d) < 8.

By means of the above lemma we can define by induction a sequence
of positive numbers &, and a sequence of sets e, from & having the follo-
wing properties for n =1,2,...:

(2) Opp1 < 8,/2%;

(b) w-+ /2" = vt (e) for n(e) < b;

(€) end, p(en) = 0;

(@) 7(en) < bns

(e) p(en) > p—(1/28+1/2° .. +1/2" ) > pf2.

In virtue of (a), (¢) and (d) we obtain u(e,) — 0 as n — oo and by (e)
it follows that x = 0—a contradiction. In a similar way we can prove
lim (supe™~ (e)) = 0,

50 n{e)<s
and since v(:) = o7 (:)+27(:) we infer that v(:) is a.c. with respect
to n(:). Consequently, x(:) is a.c. with respect to 5(:) as well.

3.1. Suppose on a ring & a finite subadditive measurggy (:) is defined
and n(:) fulfills the following awiom of completeness ([37T):
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(€) If eze & for i =1,2,..., 6 ¢ = 0 for ¢ #§ and 3 n(e;) < oo,
o 1
then | e;¢& and
1

00 o
(U e) < D nla).
d=1 i=1
Suppose that for m =1,2,. .., &.(:): € — X 48 @ vector-valued,

additive set function, a.c. with respect to 7(:). If for any e m & wn(e) = x(e)
as 1 —> oo, then @y(e,) >0 as n— oo if n(ey) >0 as n— oo and 2(:)
is additive, a.c. with respect to n(:) on &.

The theorem is well known if & is a o-ring and #(:) is a {inite o-addi-
tive measure on &. Since the proof of the theorem under more general

hypotheses given above is quite analogous to the proof in the classical

case, we omit it.

4. Throughout the present section and the following sections we
assume that a fundamental meagure space (c;”, n) is given. &, means
a o-ring of subsets of B, &} the Jordan-ring generated by 7n(:) and &
in zg’, where & denotes a subring of 8. #n(:), 2(:) means vector-valued,
additive set functions on &, ~ &€} to X. Moreover, the notation wn(e)
for v(e, @), v(e) for v(e, ©), variations taken on & ~ &%, will be used
systematically. We shall use also the notation

y(e) = Umsupo,(e)
n—>c0

for eedy ~ €Y.
4.1. Assume that #,(:) are c-additive with respect to n(:) on & ~&EF.
Assume that

(a) (*)  wn(e) > x(e) as n — oo,
for ey ~ €,
(b) (*%)  w,(e) > 0 as n - oo,

for any e in &y ~EY for which n(e) = 0.

Under the assumptions given above the following statements hold:

(«) For any sequence of sets e, in &, ~ EF such that end, n(eq) =0
as n — oo, we have Lp(e,) -0 as n — oo;

(B) The set function y(:) s subadditive and w.a.c. with respect to 7(:)
on & ~EY;

(y) The set function x(:) is additive and w.a.c. with respect to 7(:)
on to“’o ~ g}.

Proof. Let e,e€y~&F for n=1,2,..., e, n(en) =0 ag n — co.

e}
Set a = () &;; evidently aeéy~ &}, n(a) =0. For ¢ 2p, p =1,2,...
1
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we have e,— etep—a, n{eg—a) — 0 a8 ¢ — oo; thus n((e,— a)— (6,— &)
— 0 as ¢ — co and by the c-additivity of xx(:) with respect to n(:) the
inequality

(i) Liminfoy(e,— &) > vi(ep—a)

q—00
holds for p =1,2,....
We claim that

(i) lim (sgp’b’k(%‘ea)) =0.

D,g—c0

In fact, in the contrary case there exist g > 0,k;, ks, ... and
Py < P> < ... such that vki(epi—epiﬂ) >¢ for ¢ =1,2,... Choose the
sets a;ey ~ EF, azely,—6p,,, in such a manner that 2|z, ()l = &
for ¢ =1,2,... (this is always possible as follows from the definition

oo
of the variation of a set function). Set a(s) = U &as; by 2.1 and by
1
the o-additivity of ,(:) with respect to 7(:) we get a(s)edy ~ &7,
ar(ale)) = &2k (0)) + eyor{d) +. ..

for any ecE. But, by (a), ax(a(s)) > a(a(e)} as k —oco for any seE.
Therefore, by a known lemma (cf. [1])

s%p][mk(ai)[] -0 as 7 —> oo,

a contradiction. Now, let us observe that by the subadditivity of vx(:)
the inequality

(iif) supoi(ep) < SUD(ep— a) -+ supoy(a)
kg k k=

holds. But 5(a) = 0; thus, in virtue of (b),

v(a) < supvg(a) =0
k=kgy

a8 ky — co. Hence y(a) = 0. By (i), (i)

supvg{e,—a) -0 as p — oo.
P

By (iii) for sufficiently large p the inequality [@,(ey)ll < e holds,
thus (=) is proved. From (iii) it follows also that

ylep) < Sl;p vi(ep— )+ (a)

and since y(a) = 0, we obtain y(e,) -0 as p — oo. The subadditivity
of 7(:) being evident, this completes the proof of (§). To prove (v) let
us observe that Jjz(e)|| < w(e, x) < y(e¢) and that by additivity of z.(:)
the limit set function z(:) is additive as well.
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4.2, Supposethat &3 is aJordan algebra belonging to the class &, & < &.
Let w,(:) be additive on &4 ~ 6} form=1,2,... and let 4£.1(D) be satisfied.
Suppose that the relation 4.1(%) holds for any e in &. Supposc that y(:) is
w.a.c. on & Then +.1(a) is satisfied.

Proof. Suppose eed, ~ &} Then, we can find sets €3, e, in &,
such that €2}, eht,on c e c e for m=1,2,... n(es—e) —> 0 ag 1 > oo,
n(e—el) — 0 ag n — oo. Since p(eh—eh) = 0, €,—end, as n — co we get
yleg—er) < & for a certain index & and consequently for sufficiently
large n the inequalities

ln () — 2a(€D)] < muleh—ek) < p(6h—eq) e < 2e
bold. Hence

0 (&) — m ()] < ity () — (R 1o () — g (ER)| 4 llra () — o ()] < Be

for sufficiently large p and q and the theorem is proved.

4.3. Assume that ©,(:) are o-additive with respect to n(:) on €y &%,
and that 4.1(b) is satisfied. Then, each of conditions, 4.1(a) or 4.1 (), is
equivalent to the condition: :

(8) For any sequence of sets ey in &y~ &} such that ey, n(ey) =0
as n — co the relation

sup vg(en) — 0
Izn
as n —» oo holds.

Tmplications (3) = («) and (3) ‘= (p) are trivial. To show the oppo-
site implication it is enough to prove that end y n(en) — 0 ag n — oo, under
condition (&) or (B), implies relation 4.1(ii), for the relation in question
implies

sgpvk(en—a) -0 as n— oo,
where
@ == Q tney 83,  nla) =0,

and inequality 4.1(ili) holds. To this end assume that for a sequence
et s 7(en) = 0 a8 m — oo, relation 4.1(ii) is not satistied. Then, as in
course of the proof in 4.1, we can choose indices ky, kg, ..., P2 < Pa < ..
and sebs a;edy ~ €} such that for ecE the set a(e) = U e belongs
to & ~ &3, if a"(e) = U &ai then n(a"(e)) > 0 a8 n — oo, and

izn

(i) 2 |lan, (an)l| > 80> 0 form=1,2,..

In virtue of the c-additivity of ,(:) with respect to #(:) we can
assume &, < ky < ... Suppose now that 4.1(8) is fulfilled. Then it is
possible to assume that

e ©
Im Absolute continudty of vector-valued set functions

" ' 1
(if) I, (as)] <? fori<n,n=2,...
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Indeed, y(an) < y(a"(e)) >0 as n > oo for ¢ =1,1,...; thus for a
subsequence a,, Wwe have Y (@n) < 1/2*1, and, step by step, we can de-

fine a subsequence ky, with the desired property. Choose £,¢Z, and a
subsequence k, in such a manner that:

1° 5n(mkpn(“pn)) = af4, &) =1;
2° the limit
limfn(wkpﬂ(ai)) =X

Pp—>00

exigts for ¢ =1, 2, ...
In virtue of (ii) we have

=
Dl < oo.
=1
Set %y, = l.; for any s<E the equations

Enl 21, (@ () = &1 buley, () + &2 En (i, (@) +-..
and

fn(m,n(a,'i (’))) = & &nlty (@) + 214 Ea(ay, (B0)) ...
hold. By #(a(s)) =0 as j — co and by 4.1(8)
&, (@ ()] <& for § >3, and n = me(j).
Since for j = j,

Hﬂilp‘fn(wzn(a(f))) — i &l

=1
j-1 =)
<limsup ; le: £nls, (21) — e ] + ;’ 12+ Limsup | £, (o’ ()|
< Q) ke,
we obtafi;j
limé, (o, (a(e))) = Y ek
N300 i=1

for any se<E. Hence
sup|éa(z, (&) =0  asi— oo,
n
but this contradiets 1°. Thus 4.1(ii) is proved. Suppose that 4.1 («) is

o
fulfilled. Because of (Jaseéy ~ €3, n(lJ) ;) >0 as &k — oo, the series
1 izk

Studia Mathematica, t. XXX, z. 1 9
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D (1) + B (A1) .. 18 convergent. Hence we can select an increasing
sequence of indices P, such that

I, ()| < 227"
for m = n+1,n+2,... In virtue of (i) we obtain

2, (@p, 2 Uiy L > el—27™,

and, on the other hand,

)—~0 ag n —> oo,

mkﬁn(a,,n ~ lpy e

a contradiction. Thus 4.1(ii) is proved.

44, Iet on a ring of sets F a subadditive measure n(:) be defined.
The measure n(:) satisfies condition (D) on F if for any e in F for which
0 < 7(6) < oo and for arbitrary positive ey, e, such that e -+e, > 1, there
exist disjoint sets e,, e, belonging 10 F, € = €, v 6, with positive n-measure
and satisfying the inequalities n(ey) < gy mle), nles) < enle).

Let the assumption of theorem 4.1 be satisfied, moreover, let 9 (:) satisfy
condition (D) on &, ~ &Y. Under these assumplions y (&) < oo for any
epebo n Y. ' : : :

Proof. It 7(e) = 0, then y(e) = 0; s0 we can assume n(eg) > 0.
Moreover, 7(g) < oo, for x(:) is finite on &. Tt y(6,) = oo, then applying
condition (D) and the subadditivity of y(:) it is possible to construct
a sequence of sets e, belonging to &, ~£} such. that ent, ) <
(2/3Y"n(6)y, ylen) = o0 for m=1,2,... But, by the weak absolute
continuity of y(:), y(e,) — 0 for n — oo and we have got a contradiction.

CoroLLARY. 1) If #(:) satisties condition (D) on &y~ EF, wu(:)
are w.a.c. with respect to 4(:) for n =1,2,..., then by 4.4 (notice that
v, (6) = 0, if (e) = 0) vu(e) < oo for m=1,2,...

Consequently, in this case we can replace y(ep) < oo in 4.4 by
sup va(6p) < o0.

2) A finite c-additive atomless measure 7(:) defined on a o-alge-
bra F satisfies condition (D) on &.

Examples of additive measures on & which satisty condition (D)
on & can be found in [5].

4.5. Suppose & ~ &} is an algebra of subsets. If pa(:) s a real-valued
set fumction, additive on & ~ &}, w.a.c. with respect to 7(:) on 64~ &Y,
for m=1,2,..., po(e) = ple) as n oo for any eedy ~ &Y, then u(:)
is w.a.c with respect to 7(:). If in addition limsupo (B, uy) 98 finite, then

u(:) 48 a.c. with respect o n(:)..
This immediately follows from 4.1 and 3.

icm°®
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. 5. Let X be a real Banach space which is sequentially weakly compact
with respect to a set of functionals E,. Let x(:): & ~ &% — X be a vector-
~valued additive set function and let, for any &eZ, E(w(:)) be w.a.c. with
respect to 5(:) on & ~ &2, Then x(:) is w.a.c. with respect to n(:) on
&y NEF.
Proof. Let.en?L , 7{6) = 0 a8 n — oco. We have to show that x(e,) - 0
as n — oo. If this is not so, there is an increasing sequence of indices %,
such that [lz(ex,)]| > & > 0. Hence for a certain positive = and a &,¢.5,

l'Eu (m(ekn)n = B

X being sequentially weakly compact with respect to 5, we 'ean
assume that the limit

forn=1,2,...

lim &, (a(e) = o)

exists for any. efé'o N&}. But §n(m(:)) is w.a.c. with respect to 7(:);
hence the variation of &,(z(:)) equals zero for any set in & ~ &% of
n-measure 0. Thus we can apply 4.1 to &.(x(:)) and consequently
&n(m(er,)) — 0 a8 n — oo, which contradicts [en(m(er)) =2forn =1, 2, ...

5.1. Theorem in section 5 remains valid if X is arbitrary Banach
space and 5, = {£: ||&]| <1, £eF}

- Leb e.),7(es) >0 a8 n— co. We proceed analogously as in 4.1
with the aim to prove
(i) lim v(e,—e¢,) = 0.
D,g->00

If relation (i) is not satisfied, then there is an ¢ > 0, an increasing
sequence of indices p;, disjoint sets a;in & ~ &3, such that a; = e,,— ¢,
afa)ecfo ~ &% for <k, y(a"(n)) —0a8 n— oo, 2||x(a;)] = g fori = i, 2,1.+.f
Since E(m(:)) is w.a.c. with respect to #(:), we have by 2.2

E(m(af () = exé(w(ar)+ 2 (2 (as)) +...

for any £, s <E. This implies that the values @(a(s)) belong to the linear
subspace X, spanned by the elements x(a;). X, being separable we can
f:mpply the theorem in-section 5 to x(:) on & =&, A &, ~ &}, where &,
is the o-ring of sets a(e), ¢ <E. In view of #{a”(s)) — 0 as n — co we obtain
z(a,) — 0 a8 n — oo, a contradiction with 2 ||z (a;)|| > ¢. Thus (i) is proved.

0 i
Let a = (D én; since aedy ~ €7, n(a) =0, and the variation of £(x(:))
is equal to 0 for any set of n-measure zero, we have v(a, z) = 0. Buk
liunljup[]a:(en)[[ <limo(e,—a, z)+o(a, 2) < lim v(e,—e,, ) = 0.
o0 N0 B

4—-00

COROLL.(}.‘RY. It may be expected that replacing in theorems 5,5.1
the assumption of the weak absolute continuity of £(z(:)) by the stronger
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assumption of the absolute continuity of E(m( : )) yve can obt.mn a stronger
result that x(:) is a.c. As shows an exan'lple given py Fichtenholz [2]
and mention in section 6, this is not true in general if the range of ()
belongs to an infinitely dimensional Banach space.

6. In this section we shall given some illustrative examples of Jordan-

-rings together with some comments.

I. Let B be the interval <a,b>, # the algebra of subsets of 7, ele-
ments of which are finite unions of intervals of the form <{¢, &), where
a<e<d<b, or e, by, where a < ¢ < b and the empty set. We choose
as & tho algebra of all subsets of #; we define v(e) f;or e.s/ ag the sum
of lengths of disjoint intervals e, ..., g,,e.ﬁ whose union iz ¢ and we set
n{¢) = inf»(a) for an arbitrary set in &, where ¢ = a, aef. &} generated
by S, n(:) in é belongs to the class & and is the algebra. of gubsets of
{a, b> meagurable in the classical Jordan-sense and #(e) is .the_Jordan
measure of ¢ for ¢ed}. Theorems 4.1 and 4.2 may be applied in some
problems of convergence of gequences of quadrature formulae, integrals
(cf. e.g. [2], [6], [7]) involving set functions on the algebra of Jordan-
-meagurable sets. Fichtenholz [2] has given an example of rctal-valued
set functions wn(:) defined on &} with the following propert;es: ()
are additive, non-negative, and a.c. with respect to #(:), un(¢) — u(e)
ag n —> oo if e, for a certain sequence ensé”lj, end n.(e,,,) — 0 as @—> oo
lim sup pn(es) > 0. Since s%pu,.(E) < oo, u(:)is a.c. with respect to #(:)
(cg;:equently extengable to an absolutely continuous additive set funetion
on the algebra of Lebesgue-measurable sets). Assume X = ¢ = ’c]ge space
of sequences converging to 0, and define x(:): &8} — X setting w(e)
= {un(6)}. For any &eE, &(n(:)) is a.c. with respect to #(:) on &}; w(:)-
is w.a.c. with respect to #(:), nevertheless #(:) is not a.c. with respect
to 5(:). ;

II. Let B be the set of natural numbers, & the algebra of all subsets
of B and & the ring of finite subsets of B. Let ¢ = {¢;} <0 denote the

characteristic function of a set eed. Let
n(e) = sup(Ap &1+ Angeat...),
n
where
i >0 Mi<ce forn=1,2,..
) 1:; ni ’
Ani > 088 n— coforé =1,2,... Aset ebelongs to the ring &7 generated
by # and %(:) in & if and only if
lim 3 Aye; = 0.
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The measure #(:) fulfills on &% the axiom of completeness (c) given
in 3.1. Set, for n =12, ., dy=1/nif 1 <i<n, =0 if i >n.
Then #(:) satisties condition (D) on &7 (this is also true under some
others assumptions on A,). Any real-valued set function #(:), additive

o0

and w.a.c. on &7 is of the form u(e) = D ¢, where Mol < co. Asg eagily
1

seen

ole,2) = >lofe;
(cf. (4, [5]).
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