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STUDIA MATHEMATICA, T. XXIX. (1967)

Some remarks on the Marcinkiewicz convexity theorem
in the upper triangle

by

C. A. BERENSTEIN, M. COTLAR, N. KERZMAN
and P. KREE (Buenos Aires)

Let (X, u) and (¥, ») be two measure spaces, and for each funetion
h(y) defined on Y let

B(2) = {y<¥, hiy)| >4}, he(d) = »(B(2),
g = b;upl(h*(z))lfq.
>0
Let:
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80 that the point P = (1/p, 1/g) is interior to the segment P, P,, P,
= (1/p;, 1/g)),§ = 0,1, and let IP = IP(X, u), I = I4(Y, ). The Mar-
cinkiewicz-Zygmund convexity theorem says that if 7 is a sublinear
operator, which assigns to each function fe I”0+ I”1 a measurable function
Tf defined on ¥, such that

(1) “Tf”q,-oa < M:I”f”r,v; feI, j=0,1,
then the following convexity inequality is true:
(2) WMl < eMo™"Mi|fl, if  feIP,

where ¢ = ¢(py—p, p;—p); ¢ - oo if Po—p >0, or p—p, - 0. In par-
ticular,

(2a) T is & bounded operator from I” to I-
This theorem was originally proved by Zygmund [15] under the
following hypothesis:

(a) The segment Py P, belongs to the lower triangle P <, 1<y, q,
and gy # ¢y

Zygmund did not consider the case where one of the points P, Py, P,
belongs to the upper tiangle (p > ¢). Later a general theory of inter-
polation was developed, and from a theorem of Calderén concerning
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interpolation of Lorentz spaces (Calderdén [3], Tions-Pectre [8], (’Neil
[11], Hunt [5] and Krée [6]) the following complement to (a) was obtained :

(b) Inequality (2) is true if the point P = (1/p, 1/¢) belongs to the
diagonal, that is if p = ¢.

In [5], Hunt gave a simple proof of (b) which uses only an inequality
of Hardy, and indicated a counter-example for the case where P lieg
strictly in the upper triangle. However, in [5] only (2a) i proved, but
not (2), and the counter-example there proves only that

(by) Theorem (2a) is not true if ¢ <p and P,P, is parallel to the
diagonal. ,

Theorem (b) was also proved independently by M. Cotlar (cf. [14]
and [12], p. 97) in the following formally more genaeral form :

(c) If (2) holds for a given segment P, P, and for any measure space
(¥, ) (and sublinear operators), then it also holds for any other segment
obtained by rotating P, P; around P (provided none of the segments is
horizontal nor vertical).

He also considered the case where P is in the upper triangle but u
and » are finite measures and the slope of Py P, is negative, and indicated
(for linear operators) the following property:

(@) I u(X)=9(Y) =1 if py>p;, ¢ <g:, and if ¢ <p, then
(with 6 as in (+)) we have

3) 1Zflly < Coppprm, e ME M fly 0 <0 <1,
‘where
- 1 1 -
(3a) 6=0~]—e(———-), 00 it }-—m»»o.
¥4 q P q

Here Op,_pp-p, — 00 if £~ 0, but does not depend on 1 [p—1/q.
Hence for ¢ = p inequality (3) reduces to (2).

P. Krée observed that (d) is easily deduced (and extended to Lorents
spaces) using general facts from. interpolation theory (see theorem 3);
in particular, it follows from theorem 3 that

(e) Proposition (d) holds even if 7' is quagilinear and if (1) merely
holds for characteristic functions.

Since inequality (2) (unlike (3) if 6 == 0)is invariant ander the change
of measure of the form dy' = kdy, it follows that if (2) holds for w(X)
=9{Y) = 1, then it holds for any u, v, and by (¢) we obtain

(c:) Assume that, at a given point P, (2) holds if u(X) = »(Y¥) =
and PyP, has negative slope, then (2) holds for any segment PyPy,
PePyP;, and any measures u and .
~Itin (3) we fix ¢ and let ¢ —p, then we have § —» 0 and (3) reduces
60.(2); and from (e) and (c,) we obbain (b). Hence (b) is contained in (e)
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and (), so that (e) and (c) give a generalization of Marcinkiewicz’s con-
vewity theorem for the upper triangle. From (e;) it follows also that (3)
cannot be improved: if g < p, then (3) cannot hold with 0 — 0, that is
(2) cannot hold, for otherwise by (e,) we shall obtain a contradiction
with (b,).

In (b,) the angle between PP, and the diagonal is zero, in (d) this
angle is greater than 45° Berenstein and Kerzman considered the re-
maining cases and proved that

(£) If the slope of the segment P, P, is positive, whichever this may
be, (2a) does not hold for any point PP, P, lying in the interior of the
upper triangle, even if 4 and ¥ are finite and T linear. Besides, if the
measures are allowed to be infinite, this also applies to negative slopes.

They also made some simplifications and extensions which, appear
in the proof of theorem 3. The proof of (f) is in section 6. Though (d)
and (c) are already included in (e) and (f), we reproduce the original
proofs in sections 2 and 3 since they do not use the general interpolation
theory and may be of use in some other situation.

Remark. Let us observe that, as Guido Weiss pointed out, in our
case, of negative glope and finite measures, it is evident that the continuity
property (2a) holds and that

(4) 1ZTflle < ¢ Myllfl,

where ¢’ depends on g, » and p—p,.
In fact, in our case

Wlle, < eliflls
and

(IZfl)* = [ 1Ty )1fae < [ AL flp, ) dt < (¢ (g ) 34 | )

Thus if T is of weak type at P,, then it is of strong type in the. ree-
tangle {1/p <1/p.,1/g>1/g,}; and one can obtain other analogous
results for other types of rectangles.

However (4) does not contain (b), even if combined with property
(IIT) of §1. Hence, though the proof via (4) is simpler than that of (3),
it does not lead to (2) for ¢ = p, and does not yield a proper generalization
of (a) and (b) for the upper triangle as (e) and (e) do.

1. Notation

Let (X, u) be a meagure space, and f a (real or complex) measurable
function on X; its distribution function is defined by

Je(2) = plo: If (@) > 2}, 2>0.

Studia Mathematica XXIX.1 8
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If ¢ = {f} is a linear set of u-measurable functions, and 1'ig an
operator which assigns to each fe & a »-measurable function defined on
(Y, ), then T is said to be of (strong) type (p, q) if [ILflly < O)|fllp, fe 8.
T is of weak type (p,49),0 <p < o0, 0 < g < o0 if

I : s;u?l[f*(ﬁ)]”“ <Olfllp, fed,
<.
and weak type (p, oo) is the same that strong type (p, oco).

If f* is the non-inereasing rearrangement of >0, () = inf{A: fi (1)
<}, then (see [10])

SUpA[f ()T = supt“f* (1), 0 < ¢ < oo,
0<d 0t

and if
1fw 11
) = _t_ﬂff*(s)ds and 1 < ¢ < oo, " - 7 1,
then
(In) SUPA[fu (AT < suptf**(2) < ¢ supa[fa(2) .
0<2 o<t 0<d

The square of types is the plane set of thoge (I/p, 1/g) such that
1<p oo, 1 <g<oo

A linear space & of u-measurable functions is elosed by cuts it fe &
implies that f,< &, where

fl@) i |f@)] <A
fila) = J(' W=,
0 otherwise.
Let Py = (1/py, 1/g), P = (1/p, 1/g); P = (1—0) Py-+-0P;, 0 < 0 < 1.
We shall say that Marcinkiewicz’s theorem holds with data at Py, P,
and thesis at P = (1/p, 1/q) if whenever (X, u), (¥, %) are measure spaces,
€ a space closed by cuts, and T a sublinear operator defined on & of weak
type (95, 4:),5 = 0,1, with constants My, then T'is of strong type (p,q) and
’ Zfle < OM=° 203, feé,
where ¢ is a constant independent of 7' and M.
(I1I1) ;t is & known ff;wt. ([4], p. 193) that if T is of woeak type (v, @),
J=10,1, then it is weak type (p,q) with constant M,
M < oMy uj,
and. that in this case 0'is an absolute congtant (for example ¢ == 6).
(IV)  We remark that it P,, P, are two points of the real plane, and
P=(1-0)P+6P,,0<0<1, we can tind P,, P, lyiig in
the segment P,P,, as near P ag we want and such that

Py=0-6)P+ 6P, and P =(1—0)B,+0P,.
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We get in this case that if M; < C;M§~% MY, j = 0,1, and M
< O, M{-2 M3, then M < OMI-°M°.
Besides we shall also use the following properties of f* (see [10]):

(V) [f@g@au < [ £ 0)g* 0)as;
X [
(VI) FFOF =@ i# 0<a<oo;
(VII) if u(X) < oo, then f*(1) = 0 for ¢ > u(X).

Finally we shall assume known the following theorem of Marcin-
kiewicz-Zygmund [15]:
(VIII) The Marcinkiewicz theorem holds whenever the segment Py P,
lies in the lower triangle.

2. Invariance of the Marecinkiewicz theorem under rotations

TemOREM 1. Let I =PyP,, I' =P, P, be two segmenis (contained
in the interior of the square of types) which intersect at P, such that they
are neither horizontal nor vertical. If the thesis of Marcinkiewics’s theorem
holds in P when the data are given on 1, then it holds in P when the data are
given on 1.

Proof. We may assume that the slopes of I and I’ have opposite
signs, since otherwise the thesis will follow by applying the argument
twice. By (III) and (IV) of § 1 we can also assume that I’ is so small that
the parallels to the ordinate axis through P; intersect 1.

We define the operator S by

1) 8f(#) = *(TH™ @), (0, 00},
1

2 —, j=0,1;

(2) o> & J

then § is sublinear; we define in R, .+ = (0, o) the measure
do =194z,
where df is Lebesgue measure, and let
Pllgo = WPlizag,0)-

We have

o

I8/l = [ (87 (Ao = [ €2LTNH*™ ()1 “at = |\THZ.

0
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Now we intend to prove that § is of strong type (p,q). Let
B, = {t > 0:(8)(t) > A}; if teH,, then, by (II) of §1,

A< E(Tf™ () = M8 (TF)™ (1) < 0 gD )

Then if
) 1f(e—~1/ay)
.= [,u«—---]
iy

we see by (2) that

bl AR
w(l) < f dow = -
' P oq—1
- 80 that
1[4l T
& e | 2L [P
(5Puld) < [ 22
where
_cg—1
T oeg—1

This shows that § is weak type (p;, o ¢;) and after an easy compu-
tation we get

1 1—6 0

(8) — = ——-
q %40 G
Let s; be such that (1/p;, 1/s;)l, then taking
¢ = 1 S _ L s—g
Qo So—¢q 1 $1—¢

we have ¢;q; = s; and (2) holds, since I and I’ have opposite slopes.
Our hypothesis says that § ig strong type (p, q) with

18fle0 < CoO(1) =" 13 f1l,.
As ||ITflly < [I8fly the theorem is proved.
From (VIII) of §1 it follows that

QOROLLARY. Mareinkiewice’s theorem holds for P in the lower triangle
even if one datum is in the wupper one.

3. Invariance of Marcinkiewicz’s theorem
under vertical translations

N t;_In this section we shall Prove proposition (d) stated in the Intro-
uetlon, 5o that the measures 4 and » will be assumed finite and the slope
of the segment PyP; negative.

lf?he alm of the proof is to obtain g generalization of the convemity in-
equality (2) of the Introduction. Ingtead the proof of (2a) is imme-
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diate now since, when the measures x and » are finite, weak type (», q)
implies strong type (7, s) for r << p, s < ¢ (this follows also from (d)).

It is necessary to observe also that theorems (d), and that of § 2,
cannot be joined together to get a proof of Marcinkiewiez’s theorem in
the whole upper triangle for finite measnre (which would contradict
known counter-examples, see § 6), because (d) does not apply to infinite
measure spaces as required in § 2.

If
7
f == Z C«:Jﬁ
i=1

is a simple function, then ¢ (f) will denote the linear space spanned by
the n characteristic functions y;. Taking into account that the simple
functions are dense in IP,p < oo, in proving (d) it will be enough to
merely consider the case & = &(f), which is a finite-dimensional vector
space closed by cuts and powers, provided the constant obtained in the
proof is independent of &(f).

The idea of the proof is to show that, in case of finite measures and
negative slopes, the Marcinkiewicz theorem is invariant under vertical
translations of the segment P,P,.

THEOREM 2. Let (X, u) and (¥, ) be totally finite measure spaces,
& a vector space of simple functions on X, closed by cuis and powers, T
a linear operator defined on & of weak types (p;, g;) with norms Mj, j =0,1,
where
L<py<pp<oo, 1<g<g <oo
and
1 1—0 ]

1
)

1—6 0
+—, 0<o<1.
/3 Q1

? Po Pl’

The we can choose @, 0< < 1, such that 0 is as near 6 as we like and
VAl < OM3 P M7 [f)y  for all feé.

C depends only upon p;,q;, 0, 5, w(X) and »(Y). In general 6 =+ 6.

Proof. As was observed, we may assume that & is a finite-dimen-
sional vector space. ‘

& being finite-dimensional and 7' linear, T is of strong type (p,q)
and there exists f, ¢ & such that [|fyll, =1 and |Tf|l, = |T]. If ge &, the
function ||T'(fo+ sg)llo/IIf,+sglly attains its maximum at s =0, and it
follows (ef. [13], ch. IX, §2) that if 1 < p, ¢ < oo, then :

J1Thitds - “ Ingfolq—l(sganmdv'

T1folPdu JI senfogdn
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Taking g = |f,* sgnf,, we obbain
JITfoV"llTﬂld"

Izl 1
M e = TR T,
with
) po=pti-1, po=LEITL

- Because of the corollary of §2, we only consider the case when
P =(1/p,1]g) is strictly in the upper triangle above diagonal. Calling 1
the segment Py Py, Py = (1/p;,1/g;), we can suppose by (LIT), (IV) of
§1 that 1is contained in the interior of the upper triangle and that there
exigts ¥ > 0 such that

ey

fs contained in the interior of the lower triangle.
Define a new operator 7, on & by

(Tof) (&) = (TH™ (1),
Using the hypothesis and (II) of §1
(TN ) < g Myt~ 190 | fll,

0 <t < oo,

but y < 1/g;, then

(3) (T )™ (1) < g5 My 0= ],
which means that T, is weak type (p;, ¢, [ —ya).

Ifin (2) we choose 1 near to 1 » 4> 1, we can find p, and pg such that
(4) Di<Ps<p <Py <Py

Let ¢, g5 be such that (1/pa, L/gw) €l, (1/py, 1/gs) €l; then by the

t];le;re? of Marcinkiewiez (applied in the lower triangle), we have for
al € )

(5) 1T laata—veqy < (go* M) (g 0,)0 | llog

(6) WT Fllagi1-vagy << K (g5 Mo)="8 (g2 M )08 I llog

with :

@ b 6 1 1a g 1
Do V4 P Do V2 Ds

and K is the geometrical constant given by the theorem.
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Lebt fye & as above, giving |Tf, and ge &, using (V), (VI), (VIL)

of §1
) (¥
[ITHF Tg1d < | [ZH) O (To) (hat = [ [(TH* O (Tg)* (1)t
hig ¢ 0
v(¥) ¥}

< [ TR OF T Wi = [ (L5601 T,g0)1 " ar.
¢ b

In order to apply Hélder’s inequality we introduce

42 ' 1 1 1

=l -

by = ~————— foy = - .
' (1—yg,)(g—1)" : 1—ypgy’ Foy Ty ky

Tt is easy to verify, using that the glope of 1 is negative, that 1 <%,
1 <%, and for %, we have

1
(8) P (e 0 @
3
because
1 11 ¢ 1 1
— =l =1t — —— 4y
kg Ty I 2 qs Qs
and by (2)
1/g2=1/gs _ 1/ps—1/p.
1/gs—1/g 1jp—1/p,
pHi-1—(p+i-1)/2 PPs —p;
PaDs p+(A—1)—p ’
then
1 1 1 1 1 1
-4 oo (————)+~—«—-—>0
q> q» 43 q qs 4 qs

because p > g.
Then, by Holder inequality, we obtain from (8), (6) and (5)

()~
1—ygk,

< Oy M0 H0=08) DLRaa=D¥0s ) £ gl

[ 1T, 1Tg1 v < N folligitmrag) VT8 ags v
¥

Applying (1), and since [|fol, = 1, we have

ITIE = ol < O G0N0 DH 000 B is |7
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As by (4) we have p < p,, it follows
[Ifolly << (X))@ ],

and then (¢—p < 0) we obtain
171 < oary~¥ m?

with 6 = 0,(1—1jg)+0s/g by (2), if A1, 00 (although ¢ may
increase when 6 — 0). Also 0 — 0 it g-> p since 0 = 0y(1—1/p)-0,/p ,
q.e.d.

4. Review of some notions of interpolation theory

Let (X, u) be a measure space, and (X ) the family of (equivalence
clagses) of measurable functions (complex-valued for example). If f*
is the non-increasing rearrangement of f (see §1) the Lorentz spaces
IP(X) (sée [3],[9],[10] for 1 <p < oo,1 < ¢ < oo and [6], [6] for
0 <p,q<o0) are defined by

7(x) = {fe«fz’(X): e ={ [ om0 2" < oo} it 0<p,q< oo,
(] A

LP(X) = {fectl (X): [y = $UPI7*(1) < 00}t 0 < p < oo,
LX) = I*(X) for all ¢ > 0.

They are naturally quasinormed spaces, i.e. [, 18 & quasinorm
in the sense that:

L Af [fllpg = 0, then f = 0, ||l > 0;

2. 1Hllpg = 121 1fllog if 2 is & scalar;

3. there exists O >1 such that [f-- Ilpg < O o=t 191lpg} -

Therefore these spaces are metrizable topological vector spaces
(but not locally convex in general if p < 1) and it can be proved that
they are complete [2], so that the closed graph. theovem applies to them
(see [17).

If p>1,¢>1, they are Banach. spaces, L (X) == L"(X) it 0 < p
< oo and

T

() L”q‘(X) ~ I”(X) holds and is continous if = q. A sublinear
operator T is of weak type (p, g) (see § 1) if 7' L7 (X) — L*°(¥) is bounded.
T is said to be of restrained weak type (p,q) it It LX) - L®(Y) is

bounded (this is equivalent o be weak type (p, ¢) only for characteristic
functions, see [10]). '
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Let (45),j = 0,1, be a pair of interpolation, ie., a pair of quasi-
normed spaces, continuously contained in a separated topological vector
space 4, and (4,, 41)pp, 0 < 6 < 1,0 < p < oo, the naturally quasinor-
med space of those aed,+ A, such that

e an'”
{f [t°K (¢, a)]”T} <oo it 0<p<oo,
; |

with the obvious modification for p = oo, where
E(t, a) = inf{laolLey+tlaslle,: @ = a0+ ay, agedy}.
Then 4y ~ A; = (4, 4;)pp & Ay 4, holds.
If (B;),j = 0,1, is another pair of interpolation and
T: 4,4+ 4, - B,+ B, ‘ ’

we say that T' is bounded quasilinesr if there are two constants M;>0
such that for every (a;),j = 0,1, a;jed;, a,+a, = o there exists b;eBy,
J=0,1, with the property by+b, = Ta, ||bjls; < M;layll,-

In that case the interpolation theorem (see [8], [6]) says that

T: (4o, Aoy = (Bo, Bi)ay,
I1Tali3,,8,, < CMy~"M3|a]la,

where ¢ is a constant.

We remark that the bounded linear or sublinear operators are bounded
quasilinear.

The following generalization of the Calderén’s identities given in
[6] and [7]is true for the Lorentz spaces: if Py # Py, then )

A)op?

' i 1-6 6 :
(LPo%o, IMT),, = I with = = +— 0<pg,r< 00
P Do P
and with equivalent quasinorms. Therefore it follows that if T is bounded
quagilinear

T: IP0(X) + LPU(X) — I0%(Y) + I X),
then T': L*(X)— L*(Y) is bounded for r <s,
1—60 [/ 1 1—6 ]

— = —— —_,

1
P P P g % 0

and also
1Tflgs < OME° MY fllr

with 0 = 0(py, g5, 0).
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5. The theorem of Marcinkiewicz in the upper triangle.
An interpolation approach

TuBOREM 3. Let (X‘, ) and (Y, ) be fotally finite measure spaces;

T o bounded quasilincar opemior from IPo0(X)+4 LX) into L90(Y)4-

LIB(X), 0 < 77, Py 855 @ < 00, the constonts being M, and M,; and
the slope of the segment PPy be negative, where Py == (1]p;, 1 la7). Then T
is bounded from IP"(X) into L*(Y),

‘1'-'=1-_'6 _o'y }‘—‘l 0'+”€“, 0<0<1,0< < F, 8 7 oo

V4 Do V41 q ('] /51
moreover, its norm M satisfies M << C’MIJM” with U a geometrical constant,
0 = C(ps, %5, sy 8, (X), (X)), 0, 0) and 0 mm/ be chosen as mear 0 as

we like (but in general 0 = 0).
The praofis based on the following remark.
If (Z, o) is a totally finite measure space, and 1/t < 1/v, 0 <%, %, v, w
< oo, then IM(Z)3 I™(Z) is bounded.
For I'(Z) = I*(Z) if 1/t < 1[e, 0 << & = oo, choosing # such. that
1/v < 1/, we obtain
"2y e I™Z) ~ I"(%) <

(Ltu(Z), )zu(z))nw = va

with an o such that 0 < o <1,
1—u o 1
) By

As id: I™(Z) - L™ () has closed graph, both spacés being contin-
uously contained in the same separated linear topological space, it is
continuous.

Proof of the theorem. As. mentioned in § 4, 1f r < s, the thesis
is & known result which holds without any restriction. So we study r > §;
Wwe may suppose P, < Pq. .

Take p, such that 1/p < 1/p, < 1/p;, and 0 which fulfils 0 < 6 <1,
ps=(1-0) /po+ Bps.

It 1/gy = (1—6)/gy-+ 0/gs, then

LLpzﬂ(x) =

" (X) (LAt (X, LM ( X )6’&
= 1%(1) 2 1o(7)

is bounded by the above remark, the interpolation theorem and taking
into account that the slope is negative,-1 /7, < 1 /q. Moreover

12 lge

- (L0 (), L5 (Y))g,

< OMT M flle, a1 e d.
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The remarks of § 4 show that theorem 2 follows from this, even if
we have only weak restrained type as the data. Further, it is not necessary
to have T defined in whole of Z7% 4 I”1% the proof applies if 7' is defined
in a vector space & closed by cuts, & & LP0% ~ IP19, because Calderén’s
identies also hold in this case.

To deduce (e) from theorem 3 it is sufficient to take on the end of the
proof of this theorem, I*" = I, I* = L%, and observe that if ¢ < p,
P <P, u(X) =1, then by Holder’s inequality

I fllzn,e = { f (f* (&) im)e a }n

1 . at 1/p
<l fromp ) = s,
0

where 2 = (1/e)"1P(1/g—1[p)V%YF & = 1[p,—1[p, and p, may be
allowed to tend to p if ¢ tends to »; so that ifin theorem 3 we put = 6+

+&(1/p,—1/p), we shall obtain M < const(1/e)"¢ Y- Y3, and for
p =g we shall obtain (2).

6. Counter-examples

It is known that Marcinkiewicz’s theorem always holds for vertical
segments and that it does not on horizontal ones (see [47]).

It can be shown that if (1/p,,1/g,) belongs to the interior of the
upper triangle then:

A. The Marcinkiewicz theorem can never hold at (1/po, 1/gs) with
data on 1, if the segment 1 has positive slope even when the spaces are of
totally finite measure.

B. If the measures are allowed to be not totally finite, counter-examples
may be given for (1/py,1/q) and any finite slope.

This is shown by introducing the linear operators

T=Tp 0<Bf<1, 0<a, meR,
o
Tf(w :-frﬂf

" The spaces (X, u) and (¥, ») shall be: X = ¥ = (0, 1).in case A and
X = Y = (0, co) in cade B, both with Lebesgue measure. As a matter
of fact in case B we can adopt Y = (0, 1); the remaining case u(X) < oo,
»(Y) = co follows from §2 and case A.
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To make it short, the idea is the following:
1t P, = (1/ps,1/g) 18 in the interior of the upper triangle and
m == 0 is a given slope, there exist a and f such that o i8 of restrained
weak type in L ~ 8, where L is the line of slope m through P, and
8= {(1/u,1/v): 1lu <1/v 1< u,v < 0o} (s0 that it is of weak type

in L~ § as follows, for example, from Calderén’s identities (see [7]));

. )

but 7 is not of strong type (po, ¢), in fact it is not at any point of L ~ 8.
The computations run as follows.

6.1. Proof of A. 1** case: m >
of Lis k> 0.
Let f = x4 be the characteristic function of the measurable set

1, and the ordinate to the origin

A < (0,1); then
1 4 ~ (0, 2™)]" 1 AT e
WKEIM( ml(_,ﬁ )l <1_ﬂmf{[/»<ma>1 g }
It
() m(l—f) <a,
then
1-g
(T (@) < “i—ﬂinf{ﬂ%:)x’/&‘a mm(l—ﬁ)—n+l/(l= for 0 << 1.

(Tfy*(w) = 0 for © =1 because »(¥) =1. But
aMeey (AY-f for

. ® > u(d)m,
inf{,} = ‘mm(l—ﬂ)—u+1lq

for 0 < < p(d)y™.
It
(i) 1/g—a <0
(iif) 1jg+m@1—p)—a >0,
we obtain
1
1Tl < 17 (171l
with
R +5 & 1
—_— = Y — o, == e —pP).
7 » a—m(l—f)

(i) holds in this case because % > 0, and if we choose a = 1 also (ii)
holds in the square and as (iii) is equivalent to 1/g—T% > 0, it also holds,
the slope'of L being positive. We obtain ﬁ =14 (k—a)/m and so
0<B<1 (using m>1,% < 1).

e ©

icm
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Thus we have restrained weak typein I ~ §. But taking the funetion
f@t) =1, yp-+1>0, we see, after an easy computation that
1Zflay _ 1 i
oy (maolpa)™(y—p+1) 70
which tends to infinite when y — —1/p, (using 1/p,—1/g, < 0).
22 case: m =1,k <0.
This case differs from the 1% case since (i) is not fulfilled for % < 0.
But if m(1—8)—a =0

)1/;110—1/g0

1 u(Ay-#
e O
1
l____ 1-ﬂ-u[m it 0 <z< #(A)ljm
p(4)* .
it x> u(d)m.
1—f)a w(4)

Then if 0 < # < 1 and 1/q~a 0, we obtain

@ (Tf)* (@) <

and (Tf)* (@) = 0 for « > 1.

Taking ¢ = 1 we obtain 1/g—a < 0 for all points of the square.
And there is restrained weak type in I ~ 8, because 0 < f < 1, which
follows from

1
1/mg—afm4-1-—
T Lyt

pp o MR e o Bt
m 1/p,
(using ¢o =1, 1/po < 1/go).

The rest of the computations are as in 1% case.

3" case: 0 < m <1 (here always 0 < %k < 1 holds).

Now, as in the 1% case, (i) and (iii) are true, « must be chosen with
caution. Two cases are to be distinguished: I intersects the diagonal
outside or inside the square. As the intersection point is 1/p =1/g
= k/(1—m), then if &/(1—m) > 1 we choose a = 1, and in the other case
take a = k/(1—m) and proceed ag in the previous cases.

6.2. Proof of B. In this case m < 0 (then also 0< k) If 0 < 5 << oo,

1 pAY e
f 2 (1—B)—a
2f(0) < g5 int{HE—,
but m < 0, so that
/J(A)l_ﬁ s 1jm
(T (@) < 1 P it z<<pd)™,
1-4 gmO-Patle  p g s u(A)Hm
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then if (i) « <1/g, (i) m(1—§)— at-1/g <0,

']' (7
I @) < 35 Lu(A)Jrmeimiima,

As in the other cases 7' will be of restrained weak type (p, ¢) with
1lg =m/p+k, &k =a—m(l—p) if (i) and (ii) are fulfilled. Choosing
a = k/(1—m) > 0, we obtain (i) for the points which we are interested
in. And as (ii) says that 1/¢g—% < 0, this holds because the slope m is
negative. As kf(1—m) <1, it follows 0 <f < 1.

Ay in the previous case we prove similarly that T is not of strong
type (o, o), baking

) F@ =" 1100 )y  ¥Po > 1.

Then feI0(X). Observing that Tf(x) = 0 for # > 1 because m < 0,
f(t) =0 for 0 <t<1, and p+1/p, <1 (this follows from the choosing
of f) as we are only interested in » near 1/p,, it follows

1 , 1 _ 1
1—f—y | [p(m@—F—p)—aj+1T"0  (1— agy)®

171y >

(Remember that « < 1/g, since (1/p,,1/g,) is above the diagonal and
go(m(1—pB—)—a)+1 = nge(1/po—y) > 0.) Then

“Tf“qg 1 } (ypo_l)lmo-—l/(lo B (ypo—l)%
fll, =~ 1—=f—» | (—mgep)™  (1—agy)™

q.e. d.

y—>1/Pg
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