e ©
82 R. Kaulman Im

References

[1] 8. Kakutani, On equivalence of infinite produst measures, Ann. of Math.
(49) 1948, p. 214-224.

[2] C. E. Rickart, Banach algebras, Princeton 1960.

[8] W. Rudin, Fourier analysis on groups, New York 1962.

[4] N. Varopoulos, Sur les mesures de Radon d'un growpe losalement compaot
abelien, C. R. Parig 258 (1964), p. 3805-3808.

Regu paz lo Rédaotion le 21. 9. 1966

STUDIA MATHEMATICA, T. XXIX. (1967)

On certain actions of semi-groups on I-spaces*
by

I. NAMIOKA (Seattle)

§ 0. Introduction. Given a semi-group § of continuous linear trans-
formations of F into itself and an element x of F, one can ask (a) whether
the closed convex hull of the orbit of # contains a common fizxed point
under § and (b) whether such a fixed point is unique. The answer to (a)
is affirmative if the closed convex hull of the orbit of # is compact and
the semi-group 8 is left amenable (see [2]). In order to answer (b) affirma-
tively, usually one assumes, among others, that § be both left and right
amenable (see for example [3]). In the present paper we shall study
a situation in which the left amenability of § is sufficient to conclude
(b) affirmatively. More specifically, we shall postulate a certain (right)
action of a semi-group § on 0(X), where X is a compact Hausdorff space,
and we shall study the resulting (left) action of § on the dual C(X)*.
Throughout the paper, we prefer to speak of abstract M-spaces with
units rather than C¢(X). There are two reasons for this. First, not all
M-spaces which arise naturally in this paper (such as 1.(8), UC(8) and
C(X)**) come neatly in the form of ¢(X). Secondly, whenever possible,
we favor order arguments over measure theoretic ones.

The basic facts on vector lattices, M-spaces and L-spaces can be
found in [8].

The following is the summary of the contents. In §1, we introduce
the space UC;(8) of left uniformly continuous functions on a topological
semi-group 8 with separately continuous multiplication, and state basic
properties of UC;(8) needed in the sequel. Section § 2 is devoted to a pro-
position concerning certain projections in IL-spaces. This proposition is
crucial for the proof of the main theorem. In § 3, we define an “action”
of a topological semi-group § on an M-space with unit, and the main
theorem concerning this type of action is established. In §4, we come
back to UC,(S) where § is a left amenable topological semi-group. The
dual UC;(8)* is a Banach algebra, and the results of §3 give some in-
formation about the multiplication on UC;(8)*. Next we introduce a sub-

* The present research was supported by NSF: GP 3902.
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space J, of UCy(8), and prove many interesting properties of the members
of J,. In particular, any left invariant mean on UCy(S) iy antomatically
right invariant on J,. In case § is an amenable topological group, J,
contains all continuous almost periodie functions on S,

At this point, we record our obligation to 8. P. Tloyd. While pon-
dering on geometric significances of some of hig results in [9], we arrived
at the formulation of our main theorem which would imply those regults.
Our use of projections on L-spaces is also inspired by him, We are deeply
grateful for his making a preprint copy of [9] available to us.

§ 1. Preliminaries. 4 semi-group is a set with an associative binary
operation (s, t) — s-t, which will be called the mulliplication of the semi-
-group. A semi-group 8 is a topological sewmi-group it § is provided with,
a topology making the multiplication separately continuous; that is, for
a fixed s in §, the maps ¢ —¢-s and ¢ — s-¢ are continuous on 8 into itself.
A semi-group § can always be made into a topological semi-group by
endowing § with the discrete topology.

Let 8 be a topological semi-group, and let C(8) be the Banach algebra
of all bounded continuous real-valued functions on & with the usual
supremum norm. For s in § and f in O(8), define the left translate of f
by s (or simply of) by of (t) = f(s-1). The »ight iranslate of f by s (or gimply
fs) is similarly defined by f,() = f(t-s). Clearly [lif|| < |Ifil and ||fs] < [fil

A function f in O(8) is called left wniformly continuous if the map
§ = f iy continuous on § into C(8). Let UC)(S) denote the space of all
left uniformly continuous functions on 8.

1.1. LemmA. Let 8 be o topological semi-group; then UC,(8).is a closed
subalgebra of C(8). The space UC,(R) is also closed under the lattice operations.

Proof. Given f and ¢ in UG,(S), the map s = (f v g) can be “facto-
red” as: s = (of, o) = (o) V (s9) = o(f V ¢). Hence fv geUCS). Simi-
larly, one can prove that f+g, f-g, f A ge UC)(S). Tt is also easy to check
that UCy(S) is closed in O(8).

) Lemma 1.1 implies that UCy(S) is an M-gpace with unit, the unit
being the funetion 1 identically equal to 1 on §.

1.2. Ly, If fe UC(8) and te8S, then f and f, are also in UCY(S).

. Proof. Since the composition of the maps: § —»1-§ -» @t = oif)
is continuous, it follows that ,f « UC;(8). To see that JieUOY(S), it s onough
to observe that [a(fy) —s (f)| = l(af)e~ (o)l < llf o fl-
o If 8 is Qiscrete, then UC,(8) is identical with the usnal lo(8). £ 8
13 a topological group, then UGy(8) is indeed the space pf all bounded
left uniformly continuous functions(*) in the usual sense. We record
here the following generalization of a well-known fact.

(*) Bome authors call these functions right wwiformly continuous.
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1.3. LemMA. If 8 is a compact semi-group with jointly continuous
multiplication, then O(8) = UC(S). .

Proof. Let fe((8), $p¢8 and & > 0, and let U be the subset of §x 8
given by U = {(s,): If(so't)—f(s't)] < &}. Then U is open and {s,} x §
< U. Hence there is a neighborhood V of s, such that V'x§ = U,
and it follows that [ls,f—sfll < ¢ whenever seV. Therefore feUCL(S).

§ 2. Projections in ZL-spaces. Let F be an L-space. We consider
operators P: B — F satistying:

(L.1) P =.P,
(L.2) P>,
(1.3) IP(@) = lall . for «>0.

Note that (L.3) implies that ||P|| = 1.

2.1. TeroREM. Let F be an L-space, and let P and @ be operators in B
satisfying (L.1)-(L.3). If P and Q have the same range, say F, then Pz = Qz
whenever me(I(F))‘, where I(F) = {u: |u| < v for some v in F}.

2.2. Remark. A linear subspace I of a vector lattice F i3 called an
order ideal if vel and |u] < [v| imply uel. The space I(F) in the theorem
is clearly an order ideal in E. We assert that F < I(F). In fact, if xeF,
then — |#| < < |z|. Hence, from the fact that P >0 and Pr =,
we see that —P(|z|) <z < P(|z]) or |[z| < P(lx|)eF. Therefore wel(F).
Thus I(F)is the order ideal generated by F, and I (F)™ is the closed order
ideal generated by F.

Proof of 2.1. If U is an operator in an M-space M with unit e such
that

(M.1) U =T,
(M.2) U>o,
(M.3) Ule) =e,

then it is clear that the adjoint map U*: M* — M* satisfies (1.1)~(L.3).
Conversely, if P satisfies (L.1)-(L.3), then the adjoint map P* satisfies
(M.1)-(M.3). Now P and @ in the theorem have the common range if
and only if PQ = @ and QP = P. Hence P** and @** are operators in E**
satisfying all the conditions of theorem 2.1. Therefore by embedding B
into E**, we see that it is sufficient to establish the conclusion of 2.1
for P** and Q™. Therefore, without loss of generality, we may assume
that B = M* for some M-space M with unit e and P = U* @ = V¥,
where U and V are operators in M satisfying (M.1)-(M.3) such that UV
= U and VU =V.

Leb K ={u: uel,u

= {u: uell,u

=0, lull =1}
>0,{u,e> =1}
Studia Mathematica XXIX.1 8
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Tf I denotes the identity operator on K, then the image of P coin-
cides with the null space of P—1I = U*—1I. It follows that F is weak*
closed, and therefore K is weak* compact and convex. By a familiar
argument (2), it is easy to see that a point « in K iy extreme in K if and
only if ve[0, ] ~ F implies v = |[v||-%, where [0, %] denotes the order
interval {w: wel, 0 <w < u}. Let A be the set of extreme points of K,
and let [0, A] denote the set (J{[0,%]: ued}. 1f ve[0, 4], then 0 v
< u for some % in 4, and therefore 0 < Pv «{ w. Ience, by tho above
remark, Po = |[Pv|-u = |[v|-u. Similarly, Qv = |jv[|-u. Thus P and ¢
agree on [0, 4].

Let <4)> denote the convex hull of 4 and let Ve[0, (A>]. Then
0 << hu;, where 4>0, YA =1,ued. By the decomposition
property of vector lattices (see, for ingtance, [8; 23.8]), » can be written
as v = Z;, 0 <oy < Aug. Since we already know that Pu; = Qu; for
each 1, it follows that Pv = @v. Hence P and @ agree on [0, <A>]. Since
both P and @ are weak* continuous, they agree on the set [0, (A>T,
where —w* indicates the weak* closure. But, by lemma 8.12 of [10],
[0,E]=1[0,<4)™™] = [0,<4>]™™. Thus P and @ agree on [0, K]

Finally assume that veI(F); that is ~u <o < u or 0 < vt u < %u
for some u in F. Hence v+ue2 |[ul| [0, K], and it follows that P (v u)
= @(v+u). Bince well, Pu = u = Qu. Therefore Pov == Qv, and, by the
continuity of P and ¢, it follows that P and ¢ agree on I(J)~.

§ 3. Actions of semi-groups. Let § De a topological semi-group
(ef. § 1), and let M be an M-space with unit e, An action (or, more precisely,
right action) of S on M is a separately continuous map 8 X M — M (deno-
ted by (s, z) — s-a) satisfying:

Al For each s in 8,4 —s'@ is a pogitive linear operator in J.

A.2. s-¢ = ¢ for each s.

A3, s (t-w) = (t-s)-@ for s, in § and 2 in M.

It is immediate from A.1 and A.2 that |s-a] < |o|. The tollowing
is an important example.

(*) Here is the argument: Assume that u is extreme in K and that ve [0, w] ~ F.
If v % 0 and v 3 u, then we may GXPross

U= [ 0] e e )
oo TP

where  lu— ||+ ||| = <w—w, e>+v, e) = {u,ed = 1. Therefore u = v/l or
v = |v]|-u. Conversely, assume that u is an element in X such that ve[0, u] A F im-
plies v = || . I8 w = Av;-+ (1—2) vy, where v1, VeIl and 0 < 4 < 1, then Avye[0, u] ~
~ F. Hence, by the assumption, iv; = [lAv] % = 2u or vy = u. Similarly vy = u.
Therefore % is extreme.
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3.1. Example. Let § be a topological semi-group. Then we can
define a map on §x UCy(S) into UG(8) by (s,f) —of (cf. lemma 1.2).
As noted in §1, UC(S) is an M-space with unit, and the definition of
UGy (8) implies that the map (s, f) —¢f is separately continuous. The
properties A.1-A.3 can be verified easily.

Asgsume that a right action of § on 3 is given; then it induces a left
action of § on the adjoint M* Specifically: given s in § and fin M*,
define an element sf in M* by (s-f) (%) = f(s-x); then it i easy to deduce
from A.1-A.3 that:

A*1. For each s in §, f —s-f is a positive linear operator in M*.

A*2. [s-fll = |If]| fox f = 0.

A*3. s-(t-f) = (s-t)-f for s,% in §.

Note also that |ls-fll <|Ifll. An element f of M* is called S-invariant
if s-f =f for all s in S.

3.2. PROPOSITION. Let an action of a topological semi-group S on
an M-space M with unit ¢ be given. Then the set of S-invariant elements
in M* is a weak* closed linear subspace of M* which is closed under the
lattice operations; in particular, it is an L-space.

Proof. The fact that the set of S-invariant elements form a weak*
closed subspace of M™ is trivial. To prove the assertion concerning the
lattice operations, by the usual translation arguments, it is sufficient to
prove that if f is S-invariant so is f*. Since f* >f and f+ > 0, for an
arbitrary s in 8, we have s-(f*) = s-f =f and s-(f*) > 0. Hence s-(f*)

"=ff oo s (ff)—ff > 0. Therefore |s-(f*)—f*|| = (s (fY)—F*, &>

= (8- (f"), > —<fF, &> = <f*, &)= {f*, ¢) = 0. It follows that s-f+ = f+
or ft ig S-invariant.

Using the action of § on UC(8) described in example 3.1, we can
speak of S-invariant elements in UC;(8)*. A topological gemi-group S
is called left amenable if there is a non-trivial S-invariant element in
UCy(8)*. In view of proposition 3.2, § is left amenable if and only if there
ig an S-invariant positive linear functional of unit norm on UG (S); we
shall call such a functional a lef invariant mean on UC(S). If § is discrete,
our definition of amenability agrees with the usual one (for example
the one given in Day [1]), since, as noted in §1, UCL(S) = 1.(8). It 8
is a locally compact topological group, then the left amenability in our
sense has recently been shown to be equivalent to other important prop-
erties of §, which were investigated more or less independently in the
past (see [13], [12](%), [6] and also [6] for a detailed survey on this subject)

(?) In [12], we actually proved that, for a locally compact topological group G,
the existence of a left invariant mean over UC;(@) implies property (J) and hence
(P1) for G. :
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In particular, a compact topological group is (left) amenable. Tet S bo
a topological semi-group such that § iy left emanable as a discrete semi-
group; then S ig left amenable. In particular, an abelian topological
semi-group is left amenable.

Now we consider a (right) action of a topological gemi-group 8 on
an M-space with unit in general (satisfying, of course, A.1-A.3). Tor
fin M* let C be the eonvex hull of the orbit of f under S ie. the convex
hull of {s-f:seS}. Then the weak® closure 5" of ¢ is weak™ compact.
Hence if § ig left amenable, it follows from a modification of the fixed
point theorem in [2] that ¢7** containg an S-invariant element, 1 Towever,
we will construet an S-invariant element in ;™" oxplicitly.

Fix fin M*, and define, for each » in M, a real valued function 7 (z)
on 8 by

Ty(@)(t) = f(ta).

Clearly T;(x) is continuous and bounded. We claim. that Ty (@) « UCy(8);
in fact, for s, s’ in 8, we have

|o(Zy(@) () = (Ty(@)) ()] = | F{(50)- 0~ (5" 1))
< [ (s-0—8"-2)|| < - ls-0— 8" -]

Therefore the continuity of s — ,,(T,(m)) follows from the continuity
of ¢ — ¢-x. Therefore T} is a linear map of M into UO,(8) with (|7] < ||l
Let m be an arbitrary member of the adjoint space UC,(8)*, and define
Qu(f) = T (m) e M*. Then, for # in M, we can write

Qm(f) (@) = m(Ly(w)) = ms(f (s-2)) = my((s-f) ().

It is clear that @y, is alinear operator on M* into itself and |Qm|| < im]).
The most interesting case is the case where m is a left invariant mean
on UGy(8). )

3.3. PROPOSITION. Let an action of a loft amenable topological sems-
-group 8 on an M-space with unit be given, let m be a left invariant mean
on .UGZ (8), and Tet Qu be as above. Then, for cach f in M*, Qu(f) is an S-in-
variant element in OF *". In addition, Qu(f) = f if and only if fis S-invariant.

Proof. Let a: § -~ UC,(8)* be the evaluation map; then, by a stand-
ard separation theorem, we see easily that m ig in the weak™ closed
convex hull of o[§]. For s in § and # in M, T} (a(s))(s) = <Ty(@), s>
fo(s-w) = (s-f)(). Hence Tf(a(s)) = s-fe0,. Since TF is weak" con-
tinuous, T7 maps the weak* closed. convex hull of a[§] into o7, In
particular,  Qu(f) = TfmeC;y™. Next, (s'Qm(f))(‘w)' = Qu(f) (s-@) =
il f(t(s-2)] = mi[f((s-1)-a)] = m[f(1-2)] = Qu(f)(w), since m is left
mva,rlan‘u.' Hence Qn(f) is S-invariant for any f. If f is S-invariant, then
the function s - f(s-x) is the constant function § - f(®). Hence, in - this
case, Qu(f) (@) =f(x) or Qum(f) = f. This completes the proot. ‘
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Suppose for a moment that m is left and right invariant; then an
easy calculation shows that Q,(s-f) = @.(f) for each s in § and each
f in M*. However, without m being right invariant, one can still assert
the following:

3.4, THEOREM. Let 8, M and m be as in_proposition 3.3, and let f
be an element in the (norm) closed order ideal generated by all the S-invariant
elements in I (cf. remark 2.2). Then, for each s in 8, Qu(s:f) = Qu(f)-

Proof. Let F be the space of all S-invariant elements in M*; then
T is a vector sublattice of M™* by proposition 3.2. Let I(F) = {g: lg/< h
for some h in F}; then the norm closure I(F)~ is the closed order ideal
generated by F. Now by proposition 3.3, @,, is an operator such that
Q% = Q, having the range F. Obviously @, > 0. Let ¢ be the unit in M.
Then, for f > 0, we have

1@m (DNl = Qu(f) (6) = ms(f(s-€)) = F(e) = IIfll-

Therefore @, satisfies (1.1)-(L.3) of §2. Fix s in §, and we define
an operator P: M* — M* by P(f) = Qu(s-f). Then by A*1,2, P satisfies
(L.2) and (L.3). In addition, from what we proved for @y, it follows that
P? = P and that the range of P is precisely F. Hence, by theorem 2.1,
Qn(s-f) = P(f) = Qn(f) whenever feI(F)~.

In the proof of the next theorem, we ghall use the following important
fact: In an L-space L, an order interval is weakly compact. This follows
immediately from the theorem which asserts that the image of L in I**
under the evaluation map is an order ideal in L**. For a proof of the
latter, consult [14] or [8].

3.5. THE MAIN THEOREM. Let an action of a left amenable topological
semi-group S on an. M-space with unit be given, and let f be an element in
the morm closed order ideal gemerated by the S-invariant elements in M*.
Then the norm closure C; of Oy is weakly compact and C; contains o unique
S-invariant element.

Proof. Let F and I(F) be as in the proof of theorem 3.5. Let g eI(F);
then for some h in ¥,k >0, we have ge[—h, k]. Since & is S-invariant
C, = [—h, h]. Since 0, is convex, 0, is weakly closed, and as remarked
above [—h, k] is weakly compact. Therefore C, is ‘weakly compact for
each geI(F). To prove that O, is weakly compact for an arbitrary f in
I(I")", we can invoke Eberlein’s argument [4]. For convenience of the
readers, we shall give a proof based. on the double limit theorem ([8],
theorem 17.12). Let {s;} be a sequence in § and let {f;} be a sequence
in the unit ball of M** such that . I

limlim ¢s;-f, ;) = ¢ and lmlim<s;f, 6> =Dd.
i g . . T =
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We‘must ghow that ¢ =b. Let ¢ >0 and choose gel(F) so that
If—gll <e; then, for all 4, [ls;-f—s;gll <& By taking subsequences of
{s;} and {6;}, we can assume that limlim<s;-g, 0,> and limlim<s;-g, 0,

i '’

exist, but then those limits are equal because C, is weakly compact,
Moreover, for each ¢ and §, [<s;*g, 0> — <8¢°f, 0| < e. Therefore |a—p|
< ¢, and, sinee & iy arbitrary, we have a = b.

Since Oy is weakly compact, Cy = C;*", and, by proposition 3.3, G,

contains at least one S-invariant element, say h. For ¢ > 0, there is a convex
n

combination 3 7;(s;-f) such that
Tl

|n— 2 w(sef) |

Let m be an arbitrary left invariant mean on UC;(S). Then by theo-
rem 3.4, .

< 8.

e>||Qn (h"i,: w(si-f))||
- é’an(si'f)H = Ih=Qu(fl.

Since ¢ is arbitrary, @m(f) = h. Hence kb iy the unique S-invariant
element in ;. '

3.6. Remark. It is implicit in theorem 8.5 that, if feI(F)~, then
Qm(f) is independent of the left invariant mean m on 17 Gy(8), i.e. whenever
m and m' are left invariant means, we have Q,(f) = Qe (f). Thig fact
can be established directly by applying theorem 2.1 to Qm and Q.

37 COROLLARY. Let f be as in theorem 3.5, and, for an »in M. , define
@ function w in UCY(S) by w(s) = f(s-@); that 48 u == T'y(m). Then

(@) m(u) is independent of left invariant means m on UOCy(8). Let
this value be k.

(b) m{w) = m(u) for each t in 8, where wy(s) == u(s-1).

(e) The convew combinations of vight tramslates of w approwimate the
constant function k-1 unmiformly; i.c., for a given ¢ > 0, there is a conves

. . N
combination 2"’1”01: such that
de=]

”jnu,t—kd” <e.
t=]

. ur earli nOta:tiOn m(%) = Q ’)((Z') H e 1. view
P roof In (o) rliey m ). rlenc
of remark 3.6, (31) is Glear and & = Qm( 1)(&)). NOW

wl®) = wleet) = f((s:1) 0] = f(t-(s-0)) = (/) (s-0).

icm®
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Hence m(u;) = @u(t-f)(x). By theorem 3.4, Q,,(t-f) = Q. (f); conse-
quently m(#;) = m(u). Finally, let ¢ > 0 be given; then, since Qn(f) <0,

there is a convex combination Y =;(s;f) such that
=1

Since, for all ¢, [|t-z}| < |lz|, we have
n

sloll > | < Qu(N— X wilsif), 12 > |

=1

Qn(f)— i.‘ﬂ(si'f) H <e.

= ]k——Zriusi(t)l for all £ in S.
i=1 :

Therefore
w
H g;’r'ﬂl’si—k'l” < el

and (¢) is proved.

3.8. Remark. If § is a left amenable discrete semi-group, then (a)
of corollary 3.7 is equivalent to

(a’) The convew combinations of left translates of w approwmimate the
constant function k-1 uniformly.

'We shall only sketeh a proof of (a) < (a’). Let E be the linear subspace
of 1,(8) = UCy(S) generated by the set {s-v—v:seS and velo(8)}.
Now (a) is equivalent to that w—%-1 is annihilated by all S-invariant
functionals on 7, (9); hence, by the double polar theorem (see, for instance
[8;16.3]), () is equivalent to u—k-1 . Using the strong left amenability
of 8 (ef. [1] or [11]), one easily sees that vek if and only if the convex
combinations of left translates of v approximate 0 uniformly. Therefore
(a) <> (a’). Incidentally, the argument given above can be used to prove
theorem 11 of [9] equally well.

As seen above, the functions in the order ideal generated by 8-in-
variant elements in M* possess many special properties. We give an
alternative characterization of those functions.

3.9. TueorEM. Let an action of a topological semi-group 8 on an
M-space M with unit ¢ be given, and let B be the linear subspace of M gen-
erated by the set {s-z—wx:seS,we M}. Then an element f of M* belongs
to the order ideal generated by S-invariant elements in M* if and only if

—oo < inf{f(w): wek, s < e} < sup{f(o): vell, s < e} < oo.

Proof. Let F and I(F) be as in the proof of theorem 3.4. If feI(F),
then fe[ —h, h] for some % in F with b > 0. Hence h—f >0, and, for
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‘ z-in B such that # < e, we have

h—Fl = (h—1)(e) = (k—f) (@) = h(w)—f() == —f(w)
or
fl@) = —lh—fI.
Therefore inf {f(z): x e, » < ¢} 2 — |h—f] > —oo. Similarly, we have
sup {f(z): wel, x <6} < oo.

Conversely assume that the inequality of the theorem i satisfied.

Let f| B = ¢; then, by corollary 4.5 of [10],

sup {g(@): wel, @ = €} << oo
implies that g can be extended to a continuous positive linear functional
§on M. Let by = f—§; then h, < fand h, is S-invariant because | == 0
Repeating the argument for —f, we see that there iy an S-invariant
element h, such that f < h,. Hence fe[ly, hy] < I(F).

Let X be a compact Hausdorff space and let M = (/(X). Suppose
that an action of a left amenable topological semizgroup & on M is given.
Then § acts on the space of finite signed Baire measures on A, Let p
be an S-invariant Baire measure, and let » be a signed Baire measure
such that » < u. Then » is in the elosed order ideal generated by u; hence
all the assertions for f in 3.4-3.7 are valid for ». In particular, for a ¢ in
0(X), the real-valued function s — [ (s-¢)d» on § has properties (a)-(c)
of corollary 3.7. As a special cage, we can take » = h-y for some heC(X);
that iy f kdv = [ k-hdu for all & in C(X). Then property (a) becomes
the first part of theorem 10 in [9].

§ 4. UG,(S) and UO,(8)*. Let § be a topological semi-group. Then
UG,(8) is a Banach algebra and there is a natural action of & on UG(S)
(example 3.1). Being the adjoint of an M-space, UG (S)* is an L-space;
furthermore, it is possible to define a multiplication on U¢;(8)* as follows:
For m,n in UG(S)* and f in UC,(S), (mun)(f) == my(n(f). If we use
the notation of § 3, we can write mxn == @, ().

4.1. PrOPOSITION. Under the mulliplicalion defined above UGS
48 & Banach algebra.

Proof. We check only the agsociativity of the multiplication. Let
myn, le UC(S)* and feUO(8); then,

[m*(n*l)](f = g [nxL(f) T = my[ng L[ WhHil
mm)*l] =

==y [y () [
Bf ~¢)1;f9le (e,

(on*n

and therefore mx(nxl) = (m+*n) l
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Let a: 8§ — UC,(S)* be the evaluation mayp; that is -a(s)(f) = f(s)
for sin S and fin UC;(S). We can easily check the following for s, tin 'S, m

in UC,(8)* and f in UC(S):

(a) a(s-t) = a(s)xa(t).
(b) (a(s) *m) (f) = m(sf).
() (mxa(8) (f) = m(f,).

Let 1 be the function on § identically equal to 1; then man (1)
= m(1)-n(1).

Now assume that § is left amenable and let F be the space of all
S-invariant elements in UG (S)* i.e.

= {m: a(s)xm = m for all s in 8}.

As in § 3, let I(F) be the order ideal generated by F, and let I(F)~
be the norm closure of I(F).

4.2. THEOREM. Let S be a left amenable topological semi-group and
let B and I(F) be as above. Then

i) If meF and neUCS)*, then mnel.

(i) If meUC(8)* and neF, then m=n = m(l)-n.

(iii) There is a linear map Q: I(F)~ — F such that, for m in I and
n in I(F)", mxn = m(1)-Q(n).

Proof. Assertions (i) and (ii) are direct consequences of the definition
of mxn. By remark 3.6, if m and m’ are left invariant means on UC(S),
then, for each # in I(F)™, m*n = Qu(n) = Qu (n) = m’+n. Hence there
is a linear map Q: I(F)~ — F such that m+n = @(n) for each left in-
variant mean m on UC;(8) and each nin I(F)~. Since F is a lattice (propo-
sition 3.2), each element m in ¥ is of the form m = am,--bm,, where
m, and m, are left invariant means; hence, for each n in I(F)~, we have

MEN = @M+ Dmexn = aQ) (n)+ 0@ (n) LHY(n).

4.3. COROLLARY. I(F) and I(F)~ are two-sided ideals in UC,(S)*.

Proof. It suffices to prove that I{¥) is a two-sided ideal. Let mel(F)
and ne UC(8)*. In order to prove mxn, n+mel(F), we may assume that
n = 0. Since meI(F), —m, < m < m, for some m, in F,m,; > 0. Hence
—nxmy < nxm < nrmy or —n(l)ym, Knxm <n(l)m; by 4.2 (ii); it
follows that n=mel(F). Again —myxn < m*n < mxn, and mpned
by 4.2 (i). Hence m=*nel(F).

4.4, TusoreM. Let 8 be a left amenable topological semi-group and let
& be the convex hill of a[S]. Then there is a net {p,} in @ such that, for each
left invariant mean m on UC(S) and for each n in I(F)™,

= (a+)Q(n) = m(

Jim (g, —m)*n| = 0.
kg
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Proof. Let m be a left invariant mean on UC;(S). Then certainly
there is a net {ps} in @ such that ¢, m relative to the wealk* topology.
Let nel(F)~, then by the definition of *, gp*n — m#*n relative to the
weak* topology. Now both {ps*n} and m+n lie in 07", By theorem 3.5,
0, is weakly compact; hence, it is weak" compact. Therefore 05" =,
and weak and weak* topologies coincide on C,. It follows that gy*n - mxn
relative to the weak topology whenever nel(F) .

The rest of the proof is similar to the proof of 2.2 in [117]. Let B be
the product space (UC(8)*)'™”, and define a linear map T: UC,(S)*
— B by T(I)(n) = I*n. Since the weak topology on F ix the product
of weak topologies of the factors, we see from the foregoing that 7'(m)
is in the weak closure of 7'[®]. Since X iy locally convex and 7'[®] iy
convex, T'(m) is in the clogure of T'[P] relative to the original topology,
i.e. the product norm topologies. Hence there is a net {,} in. @ such. that,
for each n in I(F)7, g, *n = T'(p,)(n) = m*n in the norm. Tinally, note
that m*n ig independent of the left invariant means n.

Let J be the closed two sided ideal in U0y (S)* defined by

= {m: m*n =0 for all n in I(F)"} = {m: m*n =0 for all n in I(F)}.
’l‘hen the funections in U(‘z(S) which annihilate J have interesting
properties.

4.5. THEOREM. Let S be a left amenable topological semi-growup, and
let J be as defined above. Then the polar Jo of o in UCh(8S) is the closed linear
subspace of UC,(8) generated by the functions of the form s ~ n(sf), nel(F),
fe UOZ(S) Bach function wu in Jy enjoys properties (a)-(¢) of corollary 3.7
{and (a’) of remark 3.8 in case S is discrete).

Proof. Let nel (F), feUCS) and ¢(s) = n(sf); then, for each m
in TCL(8)*, m(g) = m*n(‘f) Hence m anmhllwtes all the functions of the
form s — W(af (n el(F), feUC( )) if and only if m*n = 0 for all nel(F)
or med. Hence by tho double polar theorem, we see that J, is the closed
linear subspace generated by the functions of the form. s -» n(5f) (ﬂ el (1),
FeUG(S) ) By corollary 3.7, each function of the form ¢ -» n(,f) satisties

- Properties (a) and (b); therefore, functions w in J, satisfy (a) and (b)
of 3.7. If § iy discrete, (a) is equivalent to (a’) as remarked in 3.8,

Let m be a left invariant mean on UC(8), and let, @ be the convex

hull of «[8]. Then, by theorem 4.4, there is a net {p,} in ® such that

lim ||, —m)*n|| =0
for each # in I(F). Since
l|(a(s)* @, —m)xn|| = a(s)* (@, — m)*n] <

it follows that, for a fixed n in I (),

(g — m) *nll,

1im” (a(s)*p,— m) *n“ = ()

icm

Actions of semi-groups on L-spaces 75

uniformly for s in §. Now let ¥ be the space of all g in UCy(8) such
that

lim(a(s)*go,,—m) () =0

uniformly for s in §. Then it is easy to see that ¥ is a closed linear sub-
space of UC;(S), and the discussion above reveals that functions of the
form s — n(sf) (nel (F), fe UC,(8)) belong to B. Hence, by the first part
of theorem 4.5, J, = E. Since a function s — (a(s) *«p,,) (g) is simply a convex
combination of right translates of g, it follows that, if geJ,, the convex
combinations of right translates of g approximate the constant function
m(g)-1 uniformly.

4.6. Remark. What we have proved above is a stronger version
of corollary 3.7 (c) in case M = UG (S). Namely, we produced a net of
convex combinations of right translates which works for all ¢ in J,.
A similar strengthening of corollary 3.7 (c) in general is possible by the
same method.

In view of theorem 4.5, it is of interest to know what sort of funetions
belong to J,. It will be proved below (corollary 4.8) that, if § is a (left)
amenable topological group, each continuous almost periodic function
belongs to J,. In particular, if § iy a compact group, then J, = C(S)
= UC(8).

Let § be a left amenable topological semi-group. A subset B of &
is called substantial if there is a member g of U(;(S) such that g|§ ~B =0
and m(g) # 0 for some left invariant mean m on UC;(S). For fin UC(S)
and ¢ > 0, the right e-period of f is the set {f: |f(s-1) f(s)[ <e for all
s in S}.

4.7. TumorEM. Let S be a left amenable topological semi-group, and
let f be a member of UCL(S) with substantial right s-period for each & > 0.
Then fedy, where J, s as in theorem 4.5.

Proof. Let ¢ > 0, and let B be the e-period of f. Since B is substantial,
there is ¢ in UC,(S) such that ¢|S ~ B =0 and m(g) % 0 for some left
invariant mean m on UC;(8). We can assume that ¢ > 0 and m(g) = 1.
If teB,

If(s-8)g (1) for all s.
If teS NB’ then

If(s-2)g ()

—f(s)g () < e-g(t)

—f(s)g(®) =

Therefore,
[f(s-0)g()—f(s)g(t)] < eg(?)
Applying m; to the both sides, we see that
lm{ef-g)—F(s) < e

for all ¢,s in §.

for all s in §.
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. Now let » be the continuous linear functional on UC)(8) defined by
#(k) = m(k-g) for all & in UCy(S). Then —llgll-m < n < |lgll-m; hence,
nel (F). If we let u(s) = n(sf) = m(sf-g), then, by theorem 4.5, ued,,
and the above inequality becomes |[f~ u|| < e Since e iy arbitrary and J,
is closed, fed,.

" 4.8. CoroLLARY. Let G be a (Tefty ameonadle topological group. Then
a.continuous almost periodic funetion f on G has the substantial right s-period
for each &> 0; hence fedy.

Proof. By a standard theorem (see for example 7T in [7]), there
are a continuous homomorphism ¢ from ¢ into a compact topological
group H and a continuous function k on H such that f == hop. Since h
ig left and right uniformly continuous, so is f. Given & > 0, there is an
open neighborhood U of the identity ¢ in H such that |k(z-y)—h(z)| <&
for all w in H and y in U. Then ¢~ *[U] is contained in the right e-period
of f. It remaing to prove that ¢~*[U/] is substantial.

Since H is completely regular, there is a continuous function
k:H —[0,1] such that k|H ~ U =0 and k(e) =1. Lot ¢ = kogp;
then geUCH(G) and g|G ~¢ ' [U]==0. Let V = {y: k(y) > 4}; then
there are points #,,...,#, in @ such that

Ufplaz)- Vii=1,..., 2} > p[@].

Then

n

Z%g’}%'l‘

=1

P

If m is an arbitrary left invariant mean on U Cy(@), then

1 ()
5 < D mlag) =n-m(g).
de=l

Hence m(g) > 0, which proves that ¢='[U7] is substantial.

4.9. Remark. It follows from 4.8 and 4.5 that continnous almost
periodic functions on an amenable topological group G have properties
(a)-(c) of corollary 3.7. This fact is well-known and can be proved. dircetly
by applying standard facts on compact groups o the almost periodic
compactification of @.
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