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Orlicz spaces of finitely additive set functions*
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A gserious study of finitely additive set functions appears to have
started during the last part of the last century with, for instance, Jordan
content. Though the Borel-Lebesgue theory of countably additive set
functions has eclipsed the earlier work mostly through the first quarter
of this century, the representation theory of linear functionals on spaces
of bounded functions revived interest in finitely additive set functions
in the early thirties, and the abstract integration relative to finitely
additive measures developed extensively in the next decade. More im-
portant is the realization that finitely additive set functions provide
considerable flexibility in many applications.

In probability theory, Dubins and Savage [8] have noted that counta-
ble additivity is a restrictive hypothesis and have dropped it. Even in
the study of classical function spaces such as I” Leader [13] finds it
“natural to consider” the “IP-spaces of finitely additive set functions”
called the V”-spaces. Motivated by these considerations, we shall consider
spaces of set functions which are more general that the V?-spaces but
which also are endowed with an interesting structure.

Section I is devoted to defining Orlicz spaces (V®) of finitely additive
set functions having their values in a Banach space. In section II, it is
shown that if L® is the corresponding Orlicz space of point functions,
there exists an isometric injection of L® into ¥®. The V?-gpaces generalize
Leader’s V?-spaces of real finitely additive functions in much the same
way the Orlicz spaces L® generalize the Lebesgue spaces I”. At the root
of Leader’s work is the Radon-Nikodym-Bochner theorem ([9], IV. 9. 14)
which is available only in the scalar ease. An extension of this theorem
for vector-valued set functions is proved and then applied in sections IIT
and IV analyzing the structure of 7’-spaces. In section V a representation
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M. M. Rao to whom the author expresses his sincerest thanks.
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of bounded linear operators on certain ¥-spaces to an arbitrary Banach
space is obtained and the space of such operators is characterized. Thig
result is specialized to L” in representing all bounded linear operators
of L? into any Banach space whenever @ obeys a growth condition. Some
of the results contained in this paper are announced in [217] without
proof.

1. The V®(%)-spaces

The bagis for this section is finitely additive extended real-valued
non-negative set function p defined on a field X' of subsets of a point
set Q. X, c X is the ring of sets of finite w-measure. Various Banach
spaces of finitely additive set functions having their values in a real or
complex Banach (or B-) space & will be defined and investigated.

et ¢ be a left continuous non-decreasing real-valued function which
does not vanish identically and satisfies ¢(0) = 0. Let ¢ denote the left
continuous inverse of ¢ defined by the following convention: If ¢ is dis-
continuous at a, then y(v) = a for p(a—) < v < p(a-), and if p(u) =
for a < u <b but pu) <c¢ for u < a, then ¢(c) = a. If lim p(u) =

Umy00
is finite, then y(v) = oo for v > I. By this convention, »(0) = 0 and v
i3 well-defined on the positive line. ¢ and p are “generalized inverses”
to each other and are mutually inverse to each other whenever both are
strictly increasing and continuous.

Definition 1. If the non-decreasing functions ¢ and y are mutually
inverse, and satisfy the above conditions, then the functions @ and ¥
defined on the line by the Lebesgue integrals

| 1ol
o) = [ p)dt, ¥o)= [ yp)a
0 0
are called complementary Young’s functions. A Young’s function @ obeys
the A, co'ndmon if there exists K < oo such that & (2u) < KP(w) for
all .

It follows that @ and ¥ are convex, increasing, and are continuous
except for at most one point, after which the function must bo identically
oo. These facts and the proof of the following proposition are well-known
([24], p. 7).

ProPOSITION 2 (Young’s inequality). If & and ¥ are complementary
Young’s functions, then

lzy] < D(w)-+¥(y)

for all real numbers o and y. Bquality holds if and only if one of the relations
Y =o@) or = vy(y) is satisfied.
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By convention, throughout this paper, & and ¥ will denote (non-
trivial) Young’s functions.

Definition 3. If E <X, a partition = of E is any finite disjeint eollec-
tion {&,} = X, satisfying U B, = E. The partitions of a set X are partially

ordered by defining =, < =, whenever each element of 7, is a union of
elements of z,. In this case =, is said to be a refinement of x;.
It may be noted that = = {E,} may be a partition of Q, as defined
above, without satisfying the relation Q = | J B,. This latter condition
n

can hold only if x(Q) is finite.

Definition 4. Let @ be a Young’s function, & a B-space, and I
a finitely additive Z-valued set function defined on and vanishing on
u-null sets. If BeX, I, (F, E)is defined by

I(F, B) = supz (”F ”)u(%)

where the supremum is taken over all partitions = = {&,} of B. (Here
the convention 0/0 = 0 is observed and will be used throughout.)

For simplicity of notation, the function I (-) will be applied to either
vector-valued set functions; the meaning will be clear from the context.
Also I, (F, Q) will be written as I, (F). It is clear that I,(F, E) is unam-
biguously defined as a finite number or as +oo. If I, (F) is finite, F' is
said to be of @-bounded variation. When &(zx) = «%, p > 1, the notion
of @-bounded variation reduces to the well-known notion of p-bounded
variation. This and the @-bounded variation are sometimes referred
to as the “Hellinger and the generalized Hellinger” integrals of ¥ when F'
and u are real-valued and countably additive [15].

LEMMA 5. For each F such that I, (F) exists,

P
;‘Q( u(@ |

is o non-decreasing function of the partitions = of Q. Consequently

I,(F, ) _—1m2 (”F "")y(En),

where the limit is taken in the Moore-Smith sense [10] through all partitions

of BeZ.
Proof. It iy sufficient to show that
I#(4 v B\ | I ()] HF(B)_II)
o M(AyBi“)"(A”B)@( atay ) e (L) e
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whenever A, BeZ,, 4 ~ B =@. If either u(4) or u(B) =0, then the
inequality is true and trivial. So, suppose p(4), u(B)> 0. The mono-
tonicity and convexity of @ imply

v A (B
@(IIF(A B)l|)<¢(IIF( )+ ¢ )H)

#(4 v B) p(4)+p(B)
u(4) @(||1"(A)|l)+ #(B) (D(HZ”(B)H)
u(4)+p(B) w(4) pl(d)+ p(B) w(B)
Hence,
IF(4 v B)| (||F(A>n ) e (nz«'(r;)_u_) »
@( A B) ) (4 v B) @ (4)+ i w(B), q.e.d.

3)
LuMMA 6. I, (F, ) is o finitely additive set function on X and vanishes
on u-null sets.
Proof. The second statement is evident only the first needs a proof.
Let 8;, 8,¢X, 8, ~ 8, =@. If n, and =, are arbitrary partitions of §,
and 8§, respectively, then =, v m, is a partition of §, v §,. From the
definition of I,(F, "),

P u)
D) # @ En
e, 880> 3 ( ot
P8 LA
= S‘ ( Em) E"*Z(p( ) )"(”""

Taking suprema on both sides of this inequality over all partitions
m, of 8, and =, of §,, we obtain

Id,(lﬂ, ‘Sl v Sa) >L))(F5 ‘Sl)']‘Iw(Fy Sz)-

To prove the reverse inequality, let = = {,} be an arbitrary partition
of 8, 8,. Then my = {H, ~ 8} and =, = {By ~ §,} are partitions of
8, and 8, respectively, and =, U x, is a refinement of w. According to
lemma 5, and the definition of I,(F, -),

2ol e

P (B ~ 8 rm
< Sl o TS
SIo(F, 8y)+In(F, 8,).
Consequently .
Ip(F, 8; v 8,) =I,(F, 81)+I,(F, 8,), qe.d
The next theorem shows that I,(-) is lower semi-continuous.
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THEOREM 7. Let {G;, v<T} be a net of set functions on X, such that
I,(@) is defined for each veT' and lim@G (B) = G(E) in the weak topology

of & for each HeZy. Then 15(G, E) is defined and

14(G, B) <liminfl, (@, F)
for each EeZX.

Proof. Without loss of generality, it may be assumed that B = Q.
If i5 clear that the function G defined above on X, vanishes on u-null sets.
It is also immediate that @ is finitely additive on %, so that I, (@) is well
defined.

Now, whether @ is continuous or discontinuous (i.e. @ jumps to +oo

at some point),
IIG(E)H) - (IIGT(E)II)
] < liminf @ [————
( w@ | ST
for each EeX, since |G(H)| < liminf|& (B)| ([9], IL. 3.27). Therefore,

if my = {H,} is any partition of £, the following chain of inequalities

holds:
o), (=
") B, < liminf @ By,
;((M(En) plB) < Dlimi @ )

EN

thlnfz (“G (B )M(Eu)

< hmmfIq;. (@),
2

q.e.d.

In integration theory, much of the structure of spaces of integrable
functions is based on the behavior of simple functions, that is, funetions
which assume only finitely many values. Our work, too, depends to a cer-
tain extent on the behavior of indefinite integrals of simple functions.

Detinition 8. If = = {£,} is a partition of 2, a set function of the
form > anp: By ane®, is called a step function. Here u-B, is the set

function u (B, ~ ). Of special interest are step functions of the form
F(E,)
B
Z w(@)
where I is finitely additive on X, and & is a partition of 2. Leader [13]

has termed such a function the projection of F on =. The prOJecmon of 7
on = will be denoted by F,. .
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TueoREM 9. If I,(F) is defined and w = {B} is any partition of Q,
then
(I ()|
= D ———| u (L) .
I,(F) "E ( (T 4 (Ln)

Consequently, I,(F,) <Is(F), and I,(F, ) = lmI,(I7,, B).
Proof. A brief computation shows that if my = {¥,} is any partition.
and = = {8} > my, then

), 5, - 3 o L)
ZQD( w s = 2y

]

1) .

The remaining assertions of the theorem follow from lemnma 5, ¢.e.d.

The following definitions and theorems are devoted to the intro-
duction of a class of Banach spaces of #-valued set functions. When u
is countably additive and has the finite subset property, Rao [18,19]
has shown that some of these spaces are equivalent to conjugate spaces
of certain Orlicz spaces.

Definition 10. A®(Q, 2, p, &) (= 4%(Z)) consists of all finitoly
additive #-valued set functions F on 2, satisfying

(i) P vanishes on g-null sets;

(i) I4(F/K) <1 for some K > 0.

Using the convexity of @, one can easily show that whenever I,(J)
< oo, FeA®(Z). By A™(%) is meant {F: I,(F) < oo}. If & obeys the

Aycondition, then A®(Z) = A”(%). To see this, choose p such that
I,(F[p,) <1 and a positive integer # such that 2"/p > 1. The monotoni-
city of @ and the A,-condition yield

n

2 il
I (F) < I, (-1-0-1«7) <E'I, (—IZ—;—) < K" < oo,

In the next theorem, a norm on A?(#) is introduced relative to
which 4°(%) becomes a Banach §pace.

TarorEM 11. The functional N4(F) = int{k > 0: Iy(BK) =1} on,
A®(E) is o norm wnder which A®(Z) is a Banach space.

Proof. (i) Ny(F) = 0 if and only it F(H) = 0 for all Hey, then
I,(EF[k) =0 for all & > 0. Hence N, o (") = 0. Conversely suppose there
exigts e A® (%) with No(F) = 0 and such that F(H) # 0 for some HeX,.
Form. the (trivial) partition = = {Z}. Since No(F) =0, I,(Ik) -
for all k> 0. From lemma 5, it follows that (D(H.Zf’(./u‘)n/lm(.E)) w(
for all k>0. On the other hand, because lim @(s) = -

X et
}\_1_1)1}@(1]F(E)H/kp(1«7))M(E) = o0, 4 contradiction. "
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(ii) Ny(aF') = |a| N4(F) for all scalars ¢ and all F in A®(%). The
equality holds trivially if @ = 0. When a # 0,
3

Ny(aF) = inf{k >0: I, (-’”E)
< 1}

k

N

= inf {k >0: I, (F/—k—
]
= inf {la,[t > 0: Im(z:« < 1,

= |a| Ny(F).

(ill) Ng(Fi+4Fy) < Ny(Fy)+No(F,) for all Fp, Fe A®(Z). From
the convexity and monotonicity of @, it follows that, provided neither
F, nor Fy, =0,

F,+F, )
C\N o (Fy)+ N, (F,)
Ny (Fy) ( 7, ) N o(F) 7,
< I, + P
No(F)+ No(Fy) *\No(F1)] * Ny(F))+No(Fy)  * No(Fy)
N o(Fy)+ No(Fy)

S FolF)F Fall)

Hence Ny(Fy+Fy) < Ny(Fy)+ Ny(F,). If either F; = 0 or F, =0,
the inequality is true and trivial.

(iv) A®(%Z) is complete under N,(-). Suppose {F,} = A%(Z) is
a Cauchy sequence. The definition of N,(-) establishes the existence of
a double sequence {Nyn.} of positive members such that

1imNn,m = +oo I@(Nn,m(Fn"‘Fm)) <1

nm

for all positive integers m and n. First it will be shown that Lim 7, (R)

n
exists in the strong topology of Z for each FeZy. If u(E) = 0, then ¥, (F)
== () for all n. If u(H) > 0, the definition of 7,(-) implies
o ( N | P (B)— o (B)|
u(B)
for all m and #. Since limN,,, = co and lm®(z) = co, one has
n,m T-ro0

and

)ﬂ(E) < Irﬁ(Nn,m(Fn—Fm)) <1

Lim || 7, (E) — Fp(B)|| = 0. Since Z is a Banach space, the set function F
nm
defined for each F in Xj by
F(E) = lim F,(H)
n

is well-defined and vanishes on u-null sets. It is evident that # is additive.
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Next it will be shown that FeA®(Z) and lim Ny(Fp,—F) = 0. The
n
fact that Hm Ny (Fp—Fy) =0 and the

N,

0 —thq,(Fn) exists. If ¢ = 0, then #' = 0 and thm(I’,, - 1) =0, and

triangle inequality imply

the pIOOf is finished. If o # 0, it may be mssumed that Ng(F,) # 0 for
all #. Then

lim B, (B) F (L)
1 - =
n No(fy) 4

gtrongly in & for each FeZX. The lower semi-continuity of o (Lemma 7)

guarantees
r &
Io (.’.) < 11n11nf Iy ( """""" - “) <l
p g

Hence FeA®(Z). Now let K > 0 be arbitrary and Pgr bo chosen so
that N, > K and for n, m > Pg. For each n and m the monotonicity
of @ yields I (E(Fp—Fn) < To(Npm(Fy—Ty)) <21, Another appli-
cation of the lower semi-continuity (theorem 7) of I4(-) and the definition
of F yield

I (E(Fp—P) < limiand, (I (Hy— 1)) 51 for w2 Py
Thus Np(Fp—F) <1]K for m = Pg

mNg(F—F) = 0, q.e.d.

. The arbitraviness of K implies

As in the Orlicz spaces of point functions, a form of the llolder in-
equality can be stated for the .4°(%)-spaces.

LemmA 12. If @ and ¥ are complementary Young’s functions and %*
18 the conjugate space of Z, then

sup ZH(E__ZL(M@@LW < AN o (F) N (@)

for all FeA®(Z) and GeA¥ (2
Prm.)f. If either I or @ is 0, the vesult is immediate. Agsuming neither
F nor ¢ is 0, in view of Young’s inequality (Proposition 2), one obtaing

IF (Bl (G (E) | I ()| NG ()|

No(B) Nol@) _ \1 No(F) Ful6) .
Zn; p(By) -_% u( By )/A(E ) M(J”Jn)
7 (B,)| - |
\2 (Nw(F ),u( 'n)i‘z E[I( ” ( “ ) i

(@) (B,
I (.__;E_p___) I I
*\No () + “’(*—"“1\7\,,(64))‘<"'1‘"H =2

Bn)
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for any partition z. IHence

E ()l |G E)

O Nm (1) Nw(G)
Sl}p 2”‘ 14 (En)

<2,

or,
B (B || |16 ()
2’ B NEEN g @), g e d.
()
It @ (x) = ||, the resulting A®(%)-space is denoted by 4*(%). Olearly

the A'(%)-norm is precisely that of the gpace of bounded %-valued set
functions, ba(R, X, %) — the variation norm ¥7(:). The next lemma
establishes an interesting and useful relationship between A®(#) and
ANZ).

Lovva 13, If HeZ, and FedA®(%), then F-EeA (X). Moreover,
there exists a constant K depending only on u(E) such that

V(F-B) = N (F-B) < ENo(F).

In particular, if p(R) < co, AN%) c A®(X) and there evisis a con-
stant K such that No(F) < KNy(F) for all FeA®(Z).

Proof. From the support line property of convex fumctions, there
exists a congtant K, > 0 such that

o] < Ko P(2)+ K.
Hence, if 0 = Fed®(%) and e, is arbitrary

s IF@I
Yo (M(S)Nm(F)

)/‘(S)+Koﬂ('g)~

Accordingly, if @ = {B,} is a partition of H,

1 P ) xS
N«»(F)Z”F(E”’”“"’Z“’(Mwﬂ)m(m R PWIES

gxozﬂ( )+Kou(E) <o

F
No(F)
Since x is arbitrary, it follows that

N(F-B)

Vo lF) S Ko[1+u(B)] < oo
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For a more detailed study, a subclass of the A®(%)-spaces having
a more amenable structure will be isolated; the slightly more general
case, not treated in the sequel, seems to require different methods
of study.

Definition 14. V%(2,Z,pn, Z)(= V*(%) stands for the linear
submanifold of A%(%) consisting of u-continuous functions (i.c.,

lim [F (B} = 0
HI)—0
for each FeV2(Z)). V(%) stands for V(&) ~ A% (Z).

The following lemma due to Rao ([18], p. 85) shows that in many
cases A%(Z) = V®(%):

LemMA 15. If @ and ¥ are complementary Youny's functions and ¥
is continuous, then A®(%) = V°(%).

The proof is given in [18], p. 85, for real-valued set functions defined
on a o-field. The proof there iy applicable here mutatis mutandis.

In a more genetral setting is

TeEEOREM 16. V*(Z) is a cosed subspace of A(%). Hence V()
is a Banach space.

Proof. Clearly V*(%) is a linear space. Therefore, all that need be
shown is that V(&) is complete. Let {F,} = V?(&) bo a Cauchy sequence.
The completeness of 4°(%) establishes the existence of Fed®(%) such
that lile o (Fn—F) = 0. According to lemma 15, there exists a K >0

such that
V(Fp B—F-B) < KNo(F,—T),

where K is independent of BeX, provided u(H) < 1. Let s> 0 be given
and select m, such that

No(Fy—TF) < ¢/2K.

Then ¥ (Fy - E—~F-H) < 2. Since By 18 p-continuous, there exists

8,>0 such that |F, (B)| < ef2 whenever w(l) < 6y, Therefore, if
6 = min{6,, 1},

Py (BY| = | ()| < ¥ (Fpy H— B 10) < 52

provided u(E) ,,< 0. It follows that [F()] < s whenover u(l) < 4.
Therefore Fe V*(2) and V*(%) is a closed subspace of A%(%), q. e. d.
_ Remark. If &(z) =12’ 1 <p < oo, & is the real line and u(Q)
is finite, the corresponding ¥°-space i precisely the V7-gpace introduced
by Bochner [5, 6] and Leader [13].
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As in the theory of Orlicz spaces of point functions, the structure
of V®(%) cannot be completely analyzed without the introduction of
a second norm. Corresponding to the Orlicz norm ([24], p. 79) on L®(Z)
is the functional |||, defined for F in V* (%) by

T (B |G{(B,, .
171 = sup ey 3T LRI v, w00 <),

where ¥ is complementary to &. Lemma 14 guarantees that

1Plo < sup 2Na(F)Ny(G) = 2N, (F);
Ny(G)<1

so that ||ls is finite on V*(%).

LEMMA 17. |llo 48 & norm on V(%)

Proof. |Fll, = 0if and onlyif F' = 0. Clearly F = 0 implies || F|l; = 0.
If FeV®(%) and there exists FeX, such that F(H) # 0, select a*eZ*
such that 0 < P(|jz*) < 1/u(EB) and let H = #*u-B. Then Ny(H) <1
and ||F(E)| | H(B)||/u(1) = 0. Hence ||F||p > 0. That |||l obeys the other
norm properties follows immediately from the corresponding properties
of the norm in %, q. e. d.

The importance of |||, will become apparent after it is shown that
[I'llo is actually equivalent to the Ng-norm. This will follow direetly from
the following lemma:

LeMmA 18. I (F/|Plle) <1 for all F =0 in VO(Z).

Proof. Preliminary to the actual proof is the fact that for I in V(Z)
and @ in V¥ (2%),

I,(@) <1,
1< Iy (Q) < oo.

12 B e _ [ 1Pl i
D T AR [ R

This follows as in the point function case ([24], p. 80) with essen-
tially no modifications.

If @ does not jump (i.e., D (x) < oo for @ < oo), let & = {Ep} be any
partition and consider

_ S LEEL), g
G”%”"’(nﬂumm el

where #* is an element of the unit sphere of £*. Since & is a step function
on m, and ||#¥*|| = 1, by theorem 9,

_ @\
116 = 3% (o a0
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‘With this choice of @,

Z | (B || |6 (Ba)ll (En)“
WE i o4 (

) 1|
- 2 (ullﬂnw(fwn )” e 2 ”’(?’(m))““ﬂ“’

since with this @ there is term-by-term equality in Young’s inequality,

B (By) ) o
—)"‘ (n%wwﬂ” ) (Ba)+ I (@),

(B HF(En)H) B
o (E0) (uﬁummﬂn) )

Since the left-hand side is finite, so iy the right-hand side and
Is(6) < oo If Ip(@) <1, the preliminary result yields,

| ()| ) [ (Eu)l| G (En)| .

Pl——r (-En < i %
X (#Tonty) #B < 2 [ Fllop(Ea)

If Iy(@) > 1, the same preiiminary result implies

B (By .
Y H"m 0 ) ) U0 L ()5

17 (E)| HG(F‘
[Fllo o (B

12 ()| o
,,2 @(M)/‘(En) ~0.

VP E]
L e n) = L.
Z (HFHW(En))ME )<t

Since the partition z is arbitrary

ad N7 o (B <
Ip(-o—) = (B |
(“F”m) Slj})% (D(”F”wM(En))M(E”) <1

This establishes the lemma if & is continuous.
Suppose @ jumps at M > 0. If it can be shown that

17 (B)l
120 e (B)

for any HeZ, of positive u-measure; then (|1 (B)||/|F|lyu(B)) < oo,
and the proof given above for contmuous @ applies without moditication.

Is(@) 2

g0 that

In either case

<M
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Since @ jumps at M, ¥ (z) <M for all #. Hence

]
= [ W)t < M|
0

and Ny(H) < MN,(H). For any HeZ, of positive u-measure, consider

Ly

= Mum) "

1

where o* is on the unit sphere of 2*. Ny (G) < MN,(G) = 1. Therefore

1P (I G (B
il L LT T
) VFlo
But
IE @I EE] I EN L
w(B) w(B) M’
Hence
@I .
<M, qed
Flonm =M L

Some important consequences of this lemma are collected below:
THROREM 19. (a) If @ and ¥ are complementary Young’s functions,
and FeVO(Z),GeVE(X*), then the following Holder type inequalities
are valid:
1) ¥l 6]
" ()| |6 (B _ | (oo e
2 Sy S W Ne@Ele,
n, 2as
(ii) 2N,(F)Nu(G).
(0) No(F) < [|[Fllo <2No(F).
Consequently No(-) and |||l are equivalent norms on V(&) In par-
ticular, V® (&) is a Banach space under ||-|ls as well.
Proof. (a) If either F or @ is 0, the assertions (i), (ii), (iii), and (b)
hold trivially. If neither ¥ nor @ is 0, lemma 18 states I W(G/HG]!@
Hence Ny(G/||Gly) <1 and

L6 I 6 (2
< 1Pl
L < 1l
whence
IFEEE)] _
wp Yy < el

This establishes (i).
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To prove (ii), note that Na(F/N,(F)) < 1. Therefore,

L No(Fiu(Bn)

B (7, |G Ey,
sgp;’-—m————-” LR < o,

(ili) is already proved as lemma 12.

(b) It follows from (iii) that |Flls < 24 (F). According to lemma 18,
Io(F[|Fel) <1. The definition of N, implies Ny (F) = [|#]|s. Combining
these inequalities, one obtains

No(F) < [|Fllo < 2No(F).

Consequently the two norms are equivalent, . e. d.

II. The Orlicz spaces L®(X) and the injection of L®(X) into V(X)

The basis for this section is also a non-negative extended real-valued
finitely additive set function  defined on a field X of subsets of a sot .
2y < Z'is the ring of sets of finite u-measure. The (point) functions to be
congidered will be defined on Q, are totally u-measurable in the sense
of [9] and have their values in a real or complex B-space Z. Orlicz spaces
(possibly incomplete) of such functions, denoted by L*(%) will be defined,
and elementary properties of these spaces will be disenssed. Finally,
an isometric injection of L®(%) into the corresponding V' (&)-space
will be constructed in & natural way. The integration procedure to be
employed is that of [9], Chapter III, and coincides with the familiar
Bochner integral when Y ig a o-field and %18 a countably additive measure,

lzefinition 1. Let @ be a Young’s function. L&(Q2, %, u,%)
(= Ly (%)) denotes the collection of all totally-u-measurable ([97], IIL.
2.10) Z-valued functions f such that o

f¢(ﬂ£ﬂ-)dy <1 for some % > 0.

Q2

By the norm N,(f) of an element FeL§ (%) is meant the quanbity

Folf) =inf{7o>0: bf@(—"-g!-)dﬂ <1}

icm®
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LemMa 2. LJ (%) is a semi-normed linear space under the semi-norm
No(-). Moreover No(f) = 0 if and only if f is p-null.

Proof. The second statement follows from standard properties of
the integral. The proof of the fact that N, (-) is a semi-norm is essentially
the same ag the proof of theorem I. 11 and need not be repeated here.

In view of lemma 2, it is natural to consider classes of functions in
L3 (%) equivalent under the relation: f iz equivalent to g if and only if
f—gis a g-null function. With this identification, we denote the resulting
space by L®(2, 2, pu, &) (= L°(%)). The following theorem is a direct
consequence of lemma 2:

TueorEM 3. L*(%Z) i8 a normed linear space.

Unfortunately L”(%) is not, in general, a complete space. If it is
ingisted that X be a o-field and u be countably additive, then the L®(%)
spaces defined above are automatically complete, and in fact, coincide
with the familiar Orlicz spaces [11,22,24] when % = R, the real line.
For this reason, it is natural to eall L®(Z) an Orlicz space. Hereafter
a function feL®(%) means that f is a representative of its equivalence
clags. Paralleling ([22], Th. 6) is the following

TuRoREM 4. If f is in L°(%) and g is in L¥(Z*), where © and ¥ are
complementary in the sense of Young, then |f|| llgll is integradle and

T1£1 lglldp < 2Na(f) Nu(9).
Q

The proof is essentially the same as that of [22], Th. 6, and will be
omitted.

The next result links the L®(#Z) and the V*(&)-spaces and allows
many properties of L”(%) to be deduced from the corresponding prop- -
erties of V*(Z). ‘ '

THEOREM 5. Let @ be continuous.

(a) Bach feL®(X) is integrable on all sets of finite u-measure. Conse-
quently, the set function Af defined on X, by

HB) = [fdu, BeZ,
I

is finitely additive and p-continuous.

() If feL®(Q, X, u, &), then ifeV*(Q2, 2, u, ). The mapping i:
L?(%) - V2(¥) is lnear and No(f) = Ny(Af). Hence 1 is an isometric
injection of L*(&) into V*(Z). _

Proof. The proof of the fact that feL” (%) is integrable on all sets
of finite measure is based on the support line property of convex functions.
Its proof is the same as the proof of lemma I. 13 with an obvious notational

Studia Mathematica XXIX.1 3
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modification. The finite additivity of the set function if follows from
standard properties of the integral. Again from the support line prop-
erty of @, for 0 s feL®(Z), one has

BN _ (I _ e (]
Val) =4 Nelh) ,,f (7ut5

) ap+ (),

for some K > 0, and all FeX;. The u-continuity of the right-hand &i(le‘
therefore implies the p-continuity of the left-hand side.

(b) To prove ifeV®(Z), it will be shown tl}at IAflls < oo. Let
GeVT(&*), Np(@) <1 and the partition = be arbitrary. Then

2 V()] 1162 n nG (&)l I ffduHHf’ «'n)n

ZWA
Z Sy ks { Wlloddn, o= 3 g

but
[#Ugal)dp = T(Gr) < Tu(@)

2

by theorem I.9, where ¥ is complementary to @. Since N w(f) 1,
Is(G) €1 and Ny(g,) <1. An application of theorem 4 yields

WENIEEN. < [ 111 g e < 20 (1) Walg) < 27D
# () g ' .
Since & and @ were arbitrary,

Therefore [|Aflle < oo. According to lemma I. 18, Is(Af/lIAflle) = 1.
Hence fe V®(Z).

To prove qu(f) = Nw(}“f)7

o[-l

for any & > 0 such that I, (Af/k) < 1. (To complete the proof a few rosults
from section IV concerning the behavior of I(-) are needed. Since these
results are independent of the L”(&) theory, they will be used here.)

it suffices to show

icm®
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Let & be such that I5(Af/k) <1 and FeZX, be arbitrary. For each partition
w of E, consider the w-simple function

ffu
szzz 15,
k 2879

From (a), fym/keL'(%Z). The proof of [9], IV. 8.17, shows that

IF =%l

where the limit is taken through all partitions = of . It follows that the
net {f,} converges in u-measure to fyz. By virtue of the continuity of
@ and [9], I11. 2.12, the net &@(||f.||/%) converges to & (||f]|/k) yz in p-measure.
Now, for each E,¢ZX, contained in F,

1./ aul
(]
Ef {15 an -

Sl mi- (%) 5

for each partition  of E. Since A( fxe) is an indefinite integral, the hy-
potheses of lemma IV. 5 (b) are satistied and

(B) Lo(fy B~ ) = Um Iy (M, B A )
strongly in V*(R). This fact and [7], III. 2.15, imply

oo

where the limit is taken through all partitions 7 and A4 of F. Hence the
net {D(||f.lI/k), = a partition of E} determines @ (||fl/k)xz in the sense

of [9], Chapter III; i.e.,
tim {¢(||f,,u)d#
n E k

e

On the ofther hand, (B) implies

Iq,(i]i ) hmIq,(f" ):uaanf@(ﬂkﬂ)d#,
ffos) = ol o

by (4),
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o) o

for each HeX,. From the definitions of I4(4f/k) and “f D(||fl1/%) Ay, it

follows that
ap [ 22
HeZy P %

-

= gup Ip (if— ) from above,
EeZy

nfZd)=nfl), aen

from above. Hence

Remark. In general the mapping A is not a surjection. Indeed, if
1 were always onto V*(Z), this would imply that each member of V(%)
had a Radon-Nikodym derivative. This is not true in general — even
when X is a o-field and u is a countably additive finite measure on Z.
In fact, a counterexample may be found, for ingtance, in [23], p. 130.
In addition, the image of L” (%) under A may fail to be a closed subspace
of V°(). Since A is an isometry, this will be true if and only if L°(Z)
is complete.

Recall that u has the finite subset property (FSP) if and only if
for every set BeX of infinite measure, there exists ByeZXy, By, < B such
that 0 < u(By) < w(E). When x has FSP, the claggical Orlicz norm may
be introduced on the L® (%)-spaces.

THROREM 6. Let D be continuous and u prove the finite subset property.
Then

a) the functional ||l¢ defined for feL®(X) by
Iflle = sup{f Ifll llgldu: geL¥(F*), Nulg) < 1}7
Q

where ¥ is complementary to @, is a norm.

b) If feL®(%), then No(f) <|iflle <
and ||l are equivalent norms on L‘"( Z).

(c) 14fle = Iflle for all feM®(Z), where M®(X) is the olosed subspace
of L°(&). determined by p-simple functions, and A is the injection of theo-
rem B.

Proof. (a) From theorem 4, it immediately follows that |-]s is well
defined and finite on L”(%). Arguments paralleling those of [24], p. 78-83,
show that |- [|¢,. 1s.posm1ve homogeneous and obeys the triangle inequa]ity.
Furthermore, it is clear that |f|l, = 0 if fis g-null. The FSP will be used

2Na(f). Consequently, Na(*)
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to prove the converse of this statement. If f is not u-null, there exists
by the proof of [7], III. 2.22, a sequence of u-simple functions converging
to f in u-measure and satisfying ||f,|| < 2]if]. It follows that there exists
a set HeZ and a positive number a such that ||fyz|| > ayz. By FSP, there
exists Bye Xy, By « F and 0 < u(E,). For this K, one has ”fxE,,ll > axg,-

If 0 # #*eZ™ is chosen such that ¥(||o*|)u(B,) <1 and g = z*yz, then
Nulg) <1 and

Sl gl > 0.
el

Hunce Iflls > 0. This proves (a).

) Let feL® (%) be arbitrary. It will be shown first that |if]ls < [|f]ls-

Let € > 0 be gwen choose GeV¥(2*), Nyp(@) <1 and the partition =
such that

14F () | 1G ()

(B) % ”Af”a)"‘a
Let
_ 2 G (B,) .
=~ 71079 R
Then G, = Ag and Ny(g) = Ne(@,) < Nu(d) <1 by theorem 5 (b)

and the choice of G. With this g, one has

[ IIfl dpliG (Bl
= EBn
Ifle = f!lf” llgll dp = Z PR
Il ffd/«tll 16 ()]
T 13 (Bu) | |G (Bn)| _
>2 ) —Z = Wl
by the choice of G.
Since &> 0 is arbitrary, it follows that |fle = [Aflle. But

[4flle = No () = No(f)
by theorem I. 19 (b) and theorem 5. On the other hand, from the defini-
tion of |fle and theorem 4, one has [flle < 2N?(f). Combmmg these

inequalities yields
o(f) < flle <
and (b) follows.
(c) It is sufficient to prove |flo = l4flo for all p-simple functions
feI®(Z). From the proof of (b), |4fle < Iflle; thus it remains only to

2N (f),

prove the opposite inequality. Let

wek, {Ei};b,:; c Xy

n
"
f= Z Lixu;s

(Y
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be disjoint. If geL*(2™), Nu(g) <1, then
" IAf (Za)ll f”ﬂ”dﬂ
By

Of 11 lgldp = Z umfllE{ lolldn = 2 wBy

where  is the partition {#;}f.,. Let o™ «Z™ be on the unit sphere and
define @ on Z; by

@@ = [a*lgldn.
"

By the choice of #* and theorem 5 (b),

Ne(@) = Ny(@*|lgl) = Nul(g) <1.
Moreover

W (E; p)
by RN Jloldm o)
n ‘u(E") P M(Ei) '

It follows from this that ||flle < |Mflle, q.e. d.

III. A generalization of the Radon-Nikodym-Bochner theorem

In this section, we shall investigate some special properties of vector-
valued set functions. A generalization of the Radon-Nikodym-Bochner
Fheorem ([9], TV. 9. 14) for vector-valued finitely additive set fﬁnctions

- is proved. This result is employed in this paper crucially in the study
o_f the struct'ure of V*(%). By ba (2, Z, Z) is meant, as usual, the collec-
mor.x of all finitely additive %-valued set functions of bounded variation
defined on a field X of subsets of 2, where & is a real or complex B-gpace
ca (R,2,%) is the collection of all countably additive members 01'1'3
ba (2,2, Z). Q and X will be fixed throughout this section. The following
lemmas are extracted from [9], IV. 9, for ready reference. |

Levva 1. There emists a totally di

' : ‘ y disconnected Hausdorff space S, and
an z:lfmorphzsm v > 30, the field of all open and closed subsels 1of N
in the sense thc’vt T’(E v F)=1(B)ur(l), ©(B~T =(E ~
and ©(B) = 7(B) (B = Q—F) for all B,FeZ. ,
r ole{‘;Mé 2. () If C'is the comples plane, there is an isomelric isomorphism
A a ( ’)Ei 0) onto ba (8y, Xy, C) determined by the correspondence

w(Hy) =M(T (El)) for peba (8;, Z,, C) and Byel.

. (l;zi fz‘iﬁch uy n ba (8, ; 2y, 0) has a unigue extension to a regular coun-

y w6 measure p, in ca (81, Xy, C) where Xy, s the o-field generated

by Z,. The correspondence U: ; ’
Ty > g 1S an isometric 2 ]
o e rregondine 1 o)_l . metrio isomorphism  of
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The following theorem generalizes the Radon-Nikodym-Bochner
theorem ([9], IV. 9. 14) to vector-valued set functions and constitutes
the main result of this section:

THEOREM 3. Let & be o Banach space, i be a non-negative element
of ba(R,2,C) and Feba (2, X, Z) be p-continuous. If

e
u(E)

w(B)
is weakly sequentially compact in % for each positive integer n, then for each
¢ > 0 there ewists a p-simple function f, such that ¥ (F()— [ fadu) < e,
)

< n, EeZ‘}

where ¥ is the variation norm on ba(R2, Z, ).

Proof. The notation of lemmas 1 and 2 will be used throughout
the proof. In the notation of lemma 2, let M = UT; by lemma 2, M
is an isometric isomorphism of ba(Q, X, €) onto ea (8, X3, C). Let M (u)
= uy, and define F, on X by Fy(E,) = F(r'(@)) for B,eX,. Since
F is p-continuous, it follows that F, is pp-continuous on Xj. Next F,
will be extended to X,, the o-field generated by the field X,. According
to [97, IIL. 7.1, for each F in X, there exists a sequence {B,} in Z; such
that u,-lim#, = F in the sense that limu, (BAE,) = 0, where A is the

n n

symmetric difference operation. Now, it BeX, is arbitrary and {En} = 2}
satisfies p,-lim #, = H, then from the up-continuity of F; on X, and the

% :
gimple relations us(EnAE,) = po(Bp— B ~ By)+ o (B~ By ~ By) and
Fs (B) — By (Ba)ll = By (Bp— B ~ By) — Fo (B — B ~ Bl < 1By (B —
— Ty ~ B4 1P (Ba— By, ~ By, it follows that Lm[F,(Ba)— By (B)li
nm

— 0. The completeness of Z insures the existence of an element
2y in & such that-LmF,(E,) = o5 strongly in %. It is clear that g is
n

independent of the sequence {B,} converging to B since any two sequences
converging to B can be combined into a single sequence converging to E.
Define the function F, on, X, by Fy(B,) = F1(E.) for all B, in 2y and
by Fo(E) = ag if B is notin Xy but is in X,.

The next step is to show that the thus defined F, is strongly coun-
tably additive, u,-continuous, and of bounded variation. Let #*eZ™
be arbitrary. By lemma 2, " F, has a unique countably additive exten-
sion, say G% to ;. On account of the fact that F is py-continuous on
X, #*F, is pe-continuous on %,. An application of [9], 1V. 9. 13, implies
@ is u,-continuous. Replacing G5 in the argument used to define Fs,
one finds lima*(Fy (By)) = G5(E) for any sequence {B,} in X, such that

po—lim B, = B in Z,—Z,. Since strong convergence impliés weak con-

" .
vergence, it follows that G3(E) = o*(F,(B)) for all HeX,. But @ is
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countably additive and z*e%™ is arbitrary. Therefore I, is weakly coun-
tably additive. An application of a result of Pettis ([9], IV. 10.1) shows
that F, is strongly countably additive on Z,. To show F, is u,-continuous,
note that G4(= &* Fy) is u,-continuous for each &* 2™, Therefore »* ()
= 0 for all #* 2™ whenever NeXZ, and u,(N) = 0. Hence F, vanishes on
us-null sets. Another theorem of Pettis ([9], IV. 10.1) then implies F,
is u,-continuous.

Next, it will be shown that ¥ (I7,) = ¥ (F). For, ¥ (F) << (I,)
since ' is “defined” only on a subclass (under identification) of X,. From
[13], Th. 9,

0 = lim ¥ (5*F,—o* F) = lim ¥ (M (a* F,— x* F))
= lm (M (a* F,) M (2* ),
since M is an isometry. Therefore

lim M (a* F,,) (B,) = M (2*F)(H,)

for all ByeX, and a*%™ But M(a*F)(E,) = a*F,(#,) for all B, eZ,.
Lemma 2 (b) implies, by the uniqueness of the extension of #*F, to X,
that M (z* F)(H,) = o*Fy(E,) for all B,eX,. Now, if » iy any partition
of 2, and ™2™

(B (B,
M(@*F) = M(Z ﬁ_'_(.'l ”.En) = 2,”1'1(:7/’.) M(u-By,)

#(By) w(By)
1 & 7 (B,)
= Y (B,
Z B
_Z ?L _____ B — o
/,lz(f Mz . - 21(")

where (%) = {v(B,): BEy,en}. Lombming these results, one obtaing

limm*Fﬂr(")(If]) = o* I, (B)
for all BeX, and «* 2™, It follows that
17 (B)|| < 1iminf 17y, (B

for all FeX,. In view of this, if {8}~ is a partition of 2y, one hag

(B) 2 17508,
i=1

< 2 liminfnl?’,t(n) (8]

111111nf2||ﬁ’2,” )H lnnmf P (Fay)-

@
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But
- V(P Zuszl)n = ZHF(E 7
for » = {B;}. Hence

liminf ¥(F,, ) < #(F).

Since the partition {8;} is arbitrary, it follows, from (B) and the pre-
ceding inequality, that ¥ (¥,) < ¥ (¥). This and (A) imply that ¥ (F,)

= ¥ (F).
Finally, using the second part of the hypothesis, it will be shown
that
F.(B) F(B) }
: Ly =4
{,uz(E) no(B) "

is weakly sequentially compact for each positive integer n. In order to
prove this, it is sufficient to show that 4, is contained in the strong closure
of

{F(E) IEEN

u(®)  w(B)

for each positive integer n. Suppose EeZ, is such that Fy(E)[u,(H) e A,
If BeX), then

n—}—l} = By,

F.(E) _ Fz(T(Eo))
pa(B) /f‘z(":(Eo))
for some HyeX, = F(H,)/u(Hy) By, -

If E¢ZX,, the definition of F, establishes the existence of a sequence
{Hm} < Z; such that

lim #,(E,) = F,(E) (strongly) and limu,(B,) = g (H).
m mn
Since |F,(E)/u,(B)| < n, it follows that there exists m, such that
M <n+1 for m >=my.
g (Bp)

The above argument shows that Fu(En)/uy(Bwn)eBy,,. Moreover

By (Bn)  Fy(B) ”
Mo (Em) po(B

Hence F,(E)/u,(E) belongs to the strong closure of B,,;. It follows
that 4, is contained in the strong closure of B, ;. Since B, ;is weakly
sequentially compact by hypothesis, the Eberlein-Smulian theorem
(9], V. 6.1) implies 4, is weakly sequentially compact. :
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In view of the established propertics of ¥y, I, satisfies the hypothesis
of Phillips’ generalization of the classical Radon-Nikodym theorem to
vector-valued functions ([16], p. 134). This theorem guarantees the
existence of a unique FeL'(S;, 25, g, Z) such thatb

Py(By) = [ fdus

Ty

for all B,eX,. By virtue of the fact that X, is the o-field genem_ted by
Z,, the Z,-simple functions are dense in I'(8y, Zy, ps, &) ([9], III. 8.3).
Therefore, if ¢ > 0 is given, there exists a Z;-simple function

3

fo= 2 ity

=1

aje X, BieXy, By~ By =@, ],

satisfying
JIf—flldps < e.
5

If 7, is the indefinite integral of f,, then ¥ (¥,—F,) < e by [9],
III. 2.20. Hence

V(F—F)|2) < ¥ (F,—F,) <e¢

where (F,—F,)|Z, is the restriction of F,—I, to 2,. But X,(H,)
= F(v~(B,)) for all B, ¢Z,. Therefore if H, is the indefinite integral of

k3
he = D asye (Hy),

=1

then H,(E) = F,(z(B)) for all BeX. Hence

V(F— [hip) = v ((F—F) | Z) <e, q.o.d
)

The hypothesis of theorem 3 cannot be materially weakened. If the
condition on the set function were deleted, the resulting statement would
be false. Indeed, if X were a o-field and x were countably additive and
finite on X, the truth of this statement would imply that each #-valued
u-continuous countably additive set function had & representation as an
indefinite Bochner integral. A counter example cited before algo applies
to this situation and can be found in [23], p. 135. However, if the con-
ditions on F are relaxed, but the conditions on # are gtrengthened, then
the following result may be stated.

The following corollary is basic to the main result of the second part
of this section. - o
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COROLLARY 4. Let & be a reflexive B-space. Let u be a mon-negative
element of ba(Q,X,C) and Feba(R,X, ) be p-continuous. Then for
each & > 0, there is a p-simple function f, such that

7 (F()— ‘ff,d/,a) <.
)

Consequently, if p(2) < oo and X is reflemive, step functions are dense
m VYL, 2, u, Z).

Proof. The first assertion immediately follows from the fact that
boundedness and weak sequential compactness are equivalent in a reflexive
B-space. The second assertion follows from the facts that step functions
in V(&) are merely indefinite integrals of u-simple functions and that
the norm of V(%) is the variation norm ¥ (), q.e.d.

IV. The structure of V(%)

The principal results of this section deal with the closed subspace
of V(&) determined by step functions. The main result here shows that
step functions are dense in V*(%) if & vbeys the A,-condition and &
is a reflexive Banach space.

Throughout this section & is a Banach space, @ a continuous Young’s
function, Q a point set, X' a field of subsets of @2, x an finitely additive
extended real-valued non-negative set function defined for BeX-2y X
is the ring of sets of finite u-measure.

Definition 1. 8°(Q, %, u, Z)(= 8°(%Z)) is the closed subspace
of V°(2,%,u, %)= V%)) determined by step functions. (If & ()
= ||, 8°(%) will be denoted by S:(Z)).

THEOREM 2. If F belongs to S®(%), then

lim N, (F—F,) = 0.

Proof. Clearly im 7, = F in V®(&) for all step functions F. Moreo-

ver, No(F,) < Ny(F) for all FeS®(#) and all partitions . An application
of [9], II. 1.18, yields the result, g.e. d.

Lemua 3. (a) If F belongs to S(Z), then ¥ (T, -), the variation of F,
belongs to V'(R) where R is the real line. :

(b) If F belongs to V°(Z), then Ip(V(F, ")) = Io(F).

Proof. (a) ¥ (F,-) is clearly additive and of bounded variation.
It remains to show that #°(F,-) is u-continuous. Since Fe8'(Z), for
each &> 0, there exists a partition =, such that

V(F—F)=N(F-F)y<e¢ for mzm.
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Thus for any partition 4 = {B,}
N (B, BV (Bay B)| < D) (- By Ty 1)
4 4

= Z ¥V ((F—F,)-
a

Hence lim ¥ (F,, *) = 7" (¥, ") strongly in A'(R). But each,

=N, (F=F,) for w3 mn.

(B, )

is evidently "y—continuous and consequently is in V'(R). The conelusion
follows directly from theorem I. 16.

(b) Let FeV®(%). From the definition of ¥'(F,-), it iy seen that
lim ¥ (F,, B) = ¥ (¥, B) for each FeX,. In addition,
I (B)|

(B

from this and theorem I. 9, it follows that

A//‘(Fn7 ') =

n)

Ia (¥ (P, ) = To(Fs) < Ta(F).

These facts combined with the lower semi-continuity of Io(:) (theo-
rem I.7) imply

I(v(F, ) <liminfl¢("//"(lf’,,, ) < T ().

To prove the reverse inequality, note that ¥ (F, B) = |F (X)| for
each FeX,. The monotonicity of & yields. the 1nequ<m11ty I¢( V(F, )
=I5 (F) and the result, q.e.d.

LeMMA 4. If FeV®(%) and F-BeSHE) for each EeZ,, then
Io(¥(F, ), ) e VN(R) (where Io(?'(F,-),") has the waluc Io(7 (¥, ), R)
for each BeXy). Consequently, I4(F, ) e V'(R).

Proof. For notational convenience the set function ¥ (I, -) will
be denoted by @. From lemma 3 (b) it follows that I,(¢, &) is finite for
each HeXj. That I,(@, ) is additive on X, is assured by lemma T. 6.
Clearly I5(@, -) is of bounded variation and vanighes on #-null sets. Hence
I5(@,")eA'(R). To show that I,(@&, e VI(R), it must be shown that
Is(@, -) is p-continuous. By hypothesis, - 1l e§*(Z) for all HeZ,. From
lemma 3 (a), G-HeV'(R) for all FeX,. Hence by a theorem of Iochner
and Phillips [6],

Hm(G A np) B =1imG B A ny =G E
N0 n
strongly in 7*(R) for BeX, where G A An,u is the set function defined by

G A nu(B) = imE{G(4)+ p(B—4): AeT).

icm

Finitely additive set functions 45

The lower semicontinuity of I,(-) implies

I,(G, B) <limintI, (& A n®, B);

on the other hand, the monotonicity of @ insures I5(G, B)
for each FEeZ,. Hence

I (&)

= I4(G A np, B)
= limIy(G A ny) |
and if # = {&,} is any partition of 2 and 4 = %) E,, then
D To(G Ba)— '
= Z I, (G
= 21@ @, E“,)—ZLP(G A g, By)

LIp(G, A)—TI5(G A np, A)+15(G, A')—
=I15(@)—1s(G A ny).

Io(G A nu, Byl

—14(G A np, By))

Ip(G A ny, A')

Since the partition =z is arbitrary,

Ni(Ia(@, ) —1s(G A np, ) S Ia () —I(G A np),
and

HmI,(G A nu, ) =1,(G, )
n

strongly in AY(R). But I,(G A nu, B) < ®(n)u(E) for each E<X,. Hence
I,(G A nu, -) is u-continuous. Therefore I,(@,:)e V'(R) because V*(R)
is a closed subspace of A'(R). The last statement follows immediately
from the above and lemma 3 (b), q.e. d.

LeMMA 5. (a) If FeV®(X), then for each choice of & > 0, there exisis
a set AeZy such that I,(F,A") <e

(b) If PV (Z) and F-EeS" (%) for each E in Xy, then
I,(F, ") = imIy(F,, )
strongly in V*(R).
Proof. (a) Let ¢ > 0 be given. According to lemma I. 5, there exists
a partition z = {¥,} such that

S I (F)—Io(Fa) < e.

Let A = {J B,. Then A eZy and Ip(F,) < I(F, A) < Io(F). Whence
n

I,(F, A) = Io(F)—I4(F, A) < Lo(F)—Io(Fa) <.
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This proves (a).
(b) First note that if FeXy and u(¥) # 0, theu

17|
dﬂ@

o) <

)mm<nmwm

hence

Iy(F, B)
w(@)

In view of this inequality, if = = {&,} is any partition, one has

7w
rutt) = X0 (Bt uwm < 3200w — 1, o,
so that
Ip(Fyy ) < Tp(Fy +)a
for all 'partitions 7. Now for any partition o,
Fo(Io(F, ) —Io(Fy, )
SN(Lo(F, ) =To(F, -)o) + Vi (To(F, )a—To(Fy, )

= Ny(Io(F) )= To(Ty o) +To (F, -)u( )~ To(Foy ) (R),

since I,(F,, B) < I(F, E), for all FeZ, and the variation of a non-
negative set functicn is its value on the whole get 2. But

Is\F) ). (R) = Ip(F, Q) = I (F),
and
Io(Foy W) = Io(Fyy Q) = Io(F,)
Hence
HF(Im(F)—I@(Fa))

llle(T@ —To (B, )e)--0

by theorem I. 9. Now let &> 0 be given. By part (a), there exists on
AeZy such that I,(F, A') < e Tor any partition = refining the trivial
partition {4}, one has
N1(IG(F7 ')"Ia)(-lﬂ’ )n)
\NI(LD F,)A4~ Iy (F ) A)‘!‘Nl(lm(l’ ’)‘|‘N1(Iw(1”7')n'*4)
SN({Io(F, ) A—I,(F, ), A) 42, (To(F, -)-4'),
=N\(Io(F, ) A—Io(F, ), A)‘|‘°I¢> I, 4
SN(Io(F, ) A—Io(F, ), A4)+
by the choice of 4.
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Now I4(F
IIT. 5 implies

;') AeVH(R) by lemma 4. Since u(4) < oo, corollary

1im_N1(I¢(F, N-A—TI4(P, .)".A) = 0.

Since & > 0 is arbitrary, this implies
Lm Ny (Io(F, )= Ip(F, -),) =0,

which, in view of the above inequalities, implies

i Ny (Io(F, ) —Io(F,, ) =0, q.e d

The principal results of this section are the following theorem and
its corollaries.

THEOREM 6. If FeV(%) satisfies (i) Ig(aF) < oo for all scalars
a, ond (ii) F-BeSYZ) for all BeZ,, then

Hm Ny (F— )

Proof First 1t will be shown hmI‘p(F F,) = 0. Let ¢ > 0 be given.

Accouhng to lemma B(a), there ex1s’us a set 4 « X, such that I,(2F, 4)
Now if {4} <& <@, then

Is (F —F,, 4" _IQ(V(F,, F,),4'),
by lemma 4, ) ]
ST (F By N+ V(B ), A')
<Is(2 7(¥,),4") by monotonicity of &,
= I4(2F, A), by lemma 4,
< ¢ by the choice of 4.
Hence

To(F—TF,, A') < Hminile(F,—F,, 4') < e

. 2
Therefore, it can and will be assumed that u(R) < oo.
Let 6 >0 be given and fix y > 0 such that &(y)u
each partition =, form the u-simple function

. VO E(E)
Cofe= Z H(En)'m"

[ fa—fulldn = Ny(Fo—B,,).
Q .

(Q) < 8/2. For

Consider
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The facts F - E eS8 (%) for every HeXy and u(Q2) < oo imply ¥ eS8 (%)

Consequently, from theorem 2, it follows that

0 = lim N, (F, — Fy,) = lim f g — ol e

It Enl,nz {w: ”fnl —fnz(w H
0= lim [|[fy—fldp > lm [ [fay—falldu >

.y O wne 1

Whence lim u (B, ) = 0.
71,7
Now congider for m; < m,
I(D(Fﬂz_Fnl) :IQ(P anpnlng)—l'z'ﬂ(p Tn17'Dn1n2)

< Q(Y)lu'( 7!1,7!2)“‘—‘1'?(.11 By B

= g "1 7!2)
S P u(D +Io(¥ (Foy—Fay), By )

’y}, then I, ., ¢Z and

llm W(Enl,ni) 2>0.

Mg

by lemma 3(b),
SO+ I (Y ( By VF Y (Fryy )y By )
<824 1,27 (F), By ,,), by monotonicity of @,
= 62+ 1, (2F, E, ), lemma 3(b).

But limu(#, .,) = 0. By the u-continuity of I4(2F, ) (lemma 4)
71,70y

there emsts a partition =, such that

I5(2F, By ) < 8/2  for o0y 2 @y > m.

‘Whence
Io(Foy—F,) < 8/2+6/2 =16
for =, > m; > my. This comhbined with the lower semi-continuity (theo-
rem I. 7) of I(') yields

In(F—T7,) < hmmin(F F.)<d for

) Ty 2 Ty

Since § > 0 is a,rbl’urary, it follows that im Iy (F—TF,) = 0. To ¢om-
n

plete the proof of the theorem, note that if I satisfies the hypothesis

of the theorem, so does F/[k for any % > 0. From the above analysis for
each k > 0, there existy m;, such that

P—F F F
I CA I 3 R
"’( % ) I"’(k k)<1

= aip. From the definition of ¥4 (-), one hag

for all =

Nﬁ(F"Fn) <k
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for = > m,. Since k> 0 is a,rbltrary, it follows that

ImNg(F—F,) =0, q.e.d

Combining the results of section 1 with those of this section given
the following result which will play a major role in the presentation
theorems of section V.

CorROLLARY 7. If @ obeys the A,-condition and % is reflexive, then
8°(Z) = V().

Proof. Let FeV?(%). From lemmsa I.13 and corollary IIL 4 it
follows that F-EeS' (&) for all EeX,. Since & obeys the A,-condition
I5(aF) < oo for all sealars a. Hence FeS*(%), q.e. d.

Applying the preceding results to the L®(Z)-spaces, one has the
following theorem:

THEOREM 8. If & obeys the A,-condition, then u-simple functions are
dense in L®(%).

Proof. Let feL? (%) and A be the isometric injection of L? (%) into
V?(%) of theorem II.5. Since u-simple functions are dense in I'(%)
by [9], IIL 8.8, it follows that if-HBeS'(%) for each FeZ,. The A,-con-
dition ensures that Is(alf) is finite for all secalars ¢. Hence, by theorem 6,

m N (Af — (Af)) = 0.

Since A~'(Af), is a w-simple function and A is an isometry, the con-
clusion immediately follows, gq.e. d.

Remark. If &(z) = [2°, 1 < p < oo, thisz result was proved in
[9], ITI. 3.8. Generalizing that method, one can also obtain an independ-
ent proof for this theorem.

V. Linear operators on V% (Z)

In this section, the general bounded linear operator from 8% (%)
to an arbitrary B-space % is characterized in terms of a certain “integral”
representation involving operator-valued set functions. Then it is shown
that the space of such operators is isometrically isomorphic to a space
of operator-valued set functions W¥(B(Z,%)} which is related to
a V¥(&*)-space in a natural way. As corollaries specializations of these
results are given for operators on L®(Z).

The problem of representing bounded linear operators on IP(Z),
1 <p < oo, to an arbitrary B-space has been a recurring one. Although
some special cases have been resolved [4, 7,16,17], only partial results
have been obtained in the case of the general bounded linear operator
on L®(Z). One of the papers cited above, the paper of Bochner and Taylor
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[7] allows itself to be abstracted to the V(%) setting. It ig this paper
and [13] which motivate the considerations of this section.

Let 2, %, 2, and x be as in section I. & and % are B-spaces with,
conjugate spaces ™ and #* respectively. B(Z', #) is the space of bounded
linear operators from % into % with uniform norm. & is a continuous
Young’s function. The first lemma is concerned with agsociating an oper-
ator-valued set function with a bounded linear operator on. S%(%).

Leava 1. Let heB(S®(%),%). Then there emists a unique finitely
additive B(Z', ¥)-valued u-continuous set function I, defined on 3, and
satisfying

H (B,) [F(By)]

h(F) = lim Sw e M R

A
@ " (B

for all Fe8%(X), where the limit is taken in the Moore-Smith sense through
all partitions = of L. '

Proof. If @, ®,¢% are arbitrary and a,b are any scalars, then
h((aw,+bay) - B) = h(aw, p- B) + h(ba,u-B) = ah (@, p )+ bh (zy - 1) for
any HeZ,. Hence the set function H defined for each J in Zo by

H(B) = h(-u B)
is a linear operator from & to @ satisfying H(B)[a] = h(zw-E) for all
xeZ and each Hel,

Now consider

1) 2] = (o BY) < BN o (2 B)

= bl ol Yo (4 B) =[] ua:uinf{zc >0: I, ("I'f ) < 1}

= |[B]l J}int {K >0: @ (}:}E)M(E) < 1}

for any weZ, E<X,. This shows first that

H(B)eB(Z,%) for each fleZy,

and second that

lim ||H
[ (B) 2,9,

o 1
< ||#]] lim inf : o= =
<l HM(EHm {I(> 0: @(K)u(E) <1} =0,

icm®

Finitely additive set functions 51
since @ (x) < oo for & < oo. To show H is finitely additive, let H,, B, X,
B, ~ E, =@. Then
H(B, v B)[w] = hlop-(B; v By))
= h{s(p: B+ p By)) = h(zp-B,)+h(vp-Ey)
= H(E,)[s]+ H(E,)[s] = H(E,)+ H(H,)[«],

for all ze¢Z. Therefore H is finitely additive.
To establish representation (A), let FeS®(%). Then lim N4 (F— F,)

= 0 by theorem IV.2. The continuity of h implies
lim |}3 (F) — h (F,)|| < [R|Him N (F— F,) = 0.

Thus h(F) = imh(F,). Now, the linearity of h and the definition
of H yield

=1 ( 5 28

=2 L (F(B,) p E) =2 H(E) [ F (En)]
T ul(B) u(En)
for any partition s of . Therefore

H (E,)[F(E,)]

h(F) = lHmh(F,) =1im2——7@,—)————.

The uniqueness is simple. For, if
. H'(E,) [F(Ey)]
h(F) = lim —_— o
=5 2,,: #{(En)
for all Fe8%(%), then by the definition of H,

) (w1 (Bn ~ RE)]

= '
# () el

for each #¢Z and HeZ,. Hence H = H', q.e. d.

Now that a representation of members of B(S"’(ﬂ&"),@) in terms of
operator-valued set functions has been established, one immediate question
is this: what space of operator-valued set functions has a topology com-
patible with the uniform operator topology of B (S*(%), #)? The following
is devoted to defining a space of set functions W¥(B(Z, %)) which is
then shown to be isometrically isomorphic to B (8*(%), @).
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Definition 2. The space W(Q, X, u, B(Z,¥)) = W*(B(Z,?)
congists of all finitely additive u-continuous B(Z', #)-valued et functions
H defined on %, which satisfy

() Y¥*HeV2(Z*) for all y*e Y™

(i) | I§up No(y*H) < oo where y™H is the set function defined for
1741
EeZy, by

Yy H(B)[a] =y (H(D)[«]).

(Here @ is an arbitrary Young's function).

. The additivity of H(-) and the fact that H(H)eR (%, ¥) for KX,
imply y*H(:) is a finitely additive 2™*-valued set function on Zj; so (1)
and (ii) are meaningful.

TrmorEM 3. The functional | |lys defined for H ¢ W™ @) by |1H|bo
=sup{No(y*H): 4« ¥*, lly*| <1} is o mnorm, and W®(B(Z, ) is
a normed linear space.

Proof. If.H =0, evidently [|H|jye = 0. On the other hand, if H = 0,
then there exists HeX, and @< such that H(H)[z] s 0. By a conge-
quelice of the Hahn-Banach theorem, there exists ye in the unit ball
of ¥* such that y§ H (F) [#] % 0. Consequently y¥ H # 0 and N,(y}I) > 0.
Therefore ||H|jms > 0.

The other two properties of a norm follow directly from the corres-
ponding properties of N4, q. e.d.

_ A proof of the completeness of W*(B(%,%)) can be given in a way
which is only a slight modification of the completeness proof for A®(%),
but the completeness of the W®(B(#, #)) spaces of interest here is a con-
squence of the main theorem of this section. The next two lemmas are
preliminary to this result.

Levsia 4. If FeVO(®X), then | Fle < Ip(F)-1.

Proof. If ¥ is complementary to @, by definition,

P, = E I (Ba)) G () |}
“ ” NS%’QSEP - "n)
I (Bl G (T
<N£<‘%’<l(s‘3.1’ Zﬂ @(7@“> )“‘E"’ e Z: ‘f’('“;;'((?ia;;fﬂ) “(”n))

= sup (Io(F)+Iu(6) <Ip(F)+1,

NeG< q.e.d.

LEMMix 5. If a*e&™* and & > 0 s arbitrary, there emists we® such that
(@) = lla"| and |lo —1| <.

Proof. This immediately follows from the definiti *
lincarity of o+ g e definition of |4*|| and the

m*
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The principal result of this section is . . .
THEOREM 7. Let @ be a continuous Young’s function and ¥ be its com-

plementary function. Then :

(a) To eack heB (Sqj (%), %) there corresponds a wunique H in

W¥(B(%,¥)) such that :

H(E,)[F(By)]

(B) h(F) = Hinzw

for all Fe8%(Z).
(b) The correspondence h—>H maps B(S®(%), %) linearly onto
WY (B(%, %)), and if 8°(Z) is normed with |-lls, then

IRBsow.e) = |HlwyB@)2)-

Consequently, B(S”(%),¥) and W¥(B(Z,%)) are isometrically iso-
morphic. .

Proof. (a) Let the norm of 8° be the Orlicz norm ||, and
heB(8%(%),¥). If h =0, then H =0 W¥(B(Z, %)) satisfies (a). So
let h s 0. Lemma 1 establishes the existence of a unique wu-continuous
finitely additive B(%,#)-valued set function H which satisfies (B).
To complete the proof of (a), it remains to show that He W¥(B(%, #)).

First assume that ¥ is continuous (i.e., ¥(x) << oo for 2 < oo). Let
£ > 0 be given and y* in the unit ball of #* be fixed but arbitrary. For
an arbitrary partition z = {&,} of 2, form the %-valued step function
G = ) @, u- B, where the @,eZ are subject to:

@ o, w( ly* H (B, )
12l oo (Ern)
(ii) The z,% satisfy y*H(E,)(e) = llv* H (B,
¢>(Hznlw( lly* H (By)l )) _ ¢(w( ly* 2 (B)| )) e
(12]] & (B Lairey] mu(Bn)
where m is the number of sets in . The existence of such 2,’s is ensured
by lemma 5 and the continuity of @. According to lemma 4,

=9,

(i)

110 > 101 > L e <1,
L * = i_ \7,* .
= -”h—“./ h (;mn,u-En) = il % Y h(Bn B,)

_ ﬁzy*ﬂ(m [z,], by the detinition of H in lemma 1,
L k29

WAE)

1 N .
=2V EE M‘”( T ()
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by the choice of the x,’s,
.2 lly* H (&, (II@/*H (En)”))
]Ihll (1ol e ()
by the choice of the 2,

lly* H (B, (ny*mﬁn)u) )
B/l (Bm) "\ 1[Bl] 2 (Bn) "

Hence by equality in Young’s inequality, we have I,(G)--1

: lly* H (B) II) (H?/ H{(B)||

C) (D( P, ) ).

© e e ) 2 Ty )
But G is a step function on m. According to theorem I1.1.9,

_ leEN (@
I (@) Zﬂl’@(——rﬂn) )M(En)—gfli(llznll p(—h———”h“”(% ))uwn)

by the definition of . Substituting this into (C) yields

1+ Z (lznllv»( qullhllﬂ( . ))M(E,,)
> Sl () e o+ 20 iy o

Hence

1+Z! uznu

uy HE) [ (g HB) ||
() )) ‘D( ( Wl

ly* B (Z,
- Z ( |y1h1m<un)

From the choice of the 2,’s in (iii), it follows that

llyv* H (B,)||
v e bt 2 1 i .
: 2 ( 1B g2 B )F‘(Dn)<1 Lg.

' (Bn)

) ().

Since the partition x is arbitrary,

Iy v ly* H ()|
(%) =+ ng( (5 o) < 1o
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Since & > 0 iz arbitrary, it follows tha.t L(y*H]IB) <
y*HeV¥(2*) and

1. Therefore
Np(y*H) < 1.
Since y* was arbitrary in the unit ball of y* it follows that
He WH(B(%,%)) and
(D) 1Hlwe = sup Ny(y*H) < |||
IS
This proves (a) in the case that ¥ is continuous. If ¥ jumps at M > 0,
the same proof will be applicable provided it is shown that
lly* H (B)]
1l o ()

for any FeX; and y* in the unit ball of y*. Let E and y* be fixed but
arbitrary subject to these conditions. If u(#) = 0, then H(E) = 0, and
the quotient above becomes 0/0 = 0 by convention. If x(#) >0 and
ze% is arbitrary, then

ly* H(B)[2]] = ly*blop- B < |ly* bl lop: Bllo-

Now
R llou(B ~ B
lou Blo -Nj(1(§)<ls1’1tp A G (En).

In order that Ny (G) <1, it must be true that |G'(B)|/u(B) < M
for all EeX, (otherwise Iy(G/K) = oo for K < 1). Hence

o Bllo < sup D low(B ~ Bn)| M
= sup D' |w|u(B ~ Bn) M = M|jo]|p(E)
Therefore
y* H (B) [@]] < [y* Rl M izl n(B)
< ¥ ) 2 Yol o (B < IRl] M ola (),
since |y < 1. Whence
| W*H (@) <

Sup 1R}l B ol o (B) = |IRl| DL ().

Accordingly, [ly*H (B)|/ [l
of (a).

(b) To show the correspondence h -»H is onto W¥(B(Z,%)), let
He W?(B(%,®)) be arbitrary. An heB(S°(%), %) will be defined-such

(E) < M, which completes the proof
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that it corresponds to H. Define h on all step functions F.e8°(Z) by

} H(B,)[F (B,)]
ME) = Dy

It is easy to see that % i linear on the step functions. Moreover,
if y*ey™* and = = {B,} is a partition of 2, then

" = | mmmmw,’fmmmwﬂ
h F,, = B e = T RN A
Rl =y 2 p(Hh) % ()
< SV HEF (B

el Ny HOY L
(1) <Ny (y" H) [ Fllo

by theorem I.1.21. (a). Hence
[P (Flly = sup [y*h(Fn)] < sup N (y*H) | Fllo = |He |,
st <

&

and 4 is bounded. Now,
1 (Foy) = B(Fa )| = 1A (Fay — Fu )| < W flw (| Py — Fyllo
< [ H o (| ~ Tl - [ — Fasl) -
Therefore by IV. 3 and I. 19 (b)
B [Ih () — B (Fp )|l = 0.
7157

Thus Lmh(F;) exists strongly in @, and we define h(F) for
FeS®(%) by

R(F) = lim E H%M (= limh(Z,)).

Computations which are the same as those above show
(E) B (B < 1 Hllwe 2]l

Henge heB(S*(%),®). Clearly H(E) =h(-u-J). Thorefore 7 is
mapped into H by the correspondence of (a).

. Now, the correspondence 1 — H from. B(8°(%), %) onto WY(B(#, %))
is obvmusl_y linear. Moreover, if h - H, then (D) yields | H [lwe =5 b))
and (B) yields || < [|Hlwe. Thus b = |Hywl, q.c. d.

;&n 1n.1medq.}ate conseque&ce of theorem 6 is that the conjugate space
to 8°(&) is V¥ (&™*) since W (B(%, %)) collapses to v¥(B(%, %)) in the
case where ¥ = &, the scalars.

COROLLARY 7. Let & obey the A,-condition and & be reflewive. Then
theorem 6 remains true if S°(%) is replaced by V®(%).

Proof. Under these hypotheses §%(Z) = V*(@), q. e d.

e ©
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COROLLARY 8. If @ and its complementary functions ¥ each obey the
As-condition, and % s reflexive, V* (&) is reflemive.

Proof. Two applications of corollary 7 yield the result, g. e. d.

Applying these results to the L?(Z) spaces, one has the following
corollary:-

COROLLARY 9. Let @ be a continuous Young’s function and ¥ be its
complementary function, and u have FSP, then

(a) to each heB(M®(%), %), where M®(Z) is the closed subspace of
I%(%) determined by u-simple fumctions, there corresponds a unique
He WY (B(%,%)) such that

H(Eh) [Ef fau]
£ w(By)

E

h(f) = lim

for all fe M®(%).

(b) The correspondence h —H maps B(M®(Z),%) linearly onto

WY(B(Z, %)) and if M” is normed with ||s, then
Hh“B(M@(_‘I),W) = ”H“WW(B(!Z',@)) .

Consequently B(M®(Z),¥) and W*(B(Z,¥)) are isomelrically iso-
morphic.

(c) If @ obeys the A,-condition, M®(%Z) may be replaced by L*(%)
in (a) and (b).

Proof. From the definitions of M®(Z) and §°(%), A, the isometric
isomorphism of theorem IT. 5, maps M®(Z) onto a dense subset of §°(%)
isometrically by theorem I. 6. The result immediately follows from theo-
rem 6, corollary 7, and theorem IIL.9. )

Remark 1. A specialization of this result shows that (M°(Z))*
is isometrically isomorphic to V¥ (Z*) and when & obeys the A,-condition
(L (2))* is equivalent to V*¥(2™*).

Remark 2. Employing the general bilinear vector integral of Bartle
[3], we see that the representation

H(En) [Ef fip]

takes the form A(f) = [fdH.
2

The referee has kindly brought the author’s attention to the inter-
esting papers of Albryeht and Orlicz [1, 2] which contain certain results
related to the earlier part of this work. Unfortunately, the author was
not aware of these papers at the time of the preparation of this work.
However the work of [1, 2] and the present paper largely complement
each other.
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The spectrum of an infinite product measure
by
R. EAUFMAN (Urbana, IIL)

The infinite produet of certain probability measures on compact
abelian groups was discussed by Varopoulus [4]; the measures he con-
sidered are included in the present description. We are mainly interested
in showing how the orthogonality criterion of Kakutani [1] may be used
in place of the almost-everywhere-convergence calculations of [4]. Besides
this we give some elementary facts which aid in constructing examples
in the harmonie analysis of measure algebras.

0. Let G, G, Gy, ... be compact abelian groups ## 0, ¢, the unit
measure at 0 in @, , m,, the normalized Haar measure of §,. Let 0 << @, << 1
for 1 <» and p, = a,6,+(1—a,)m,. Finally,

G=ﬁGn’ #=ﬁﬂn-
1 1

TEEOREM 1. The Fourier tramsform g vanishes at infimity in I' = @,
if and only if a, — 0 (Varopoulos [4], p. 3806).

THEOREM 2. The measure u, as an element of the complex Banach
algebra M (@), has purely real spectrum if and only if

i) 3 (L—an) < oo.

ap>1/2

(ii) For some integer k=1, Y af < oo.

ap<lj2
1. The proofs are divided into one paragraph for the first theorem,
and two for the second.

Proof of Theorem 1. It is well-known that a continuous character
of G is composed in an obvious way from a finite number of characters
Vis Yoy ey Ve ON Gy, Gy, ..., G5 Tespectively, and that z takes the value

8

I1 #(vs) on the composite character. This degenerates to II'ay, II' being
1
the produet over non-trivial components y,. It is clear that if
a < limsupja,] < b,
N-r00
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