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ABIACTCA MareMaTmyecKuM omupamuwem If(x*) pacmpepmenenms P (mn
crydsaitnoit Bemmamuel x*). flcHo, uTO

wo: wel, [#* (o) > [B@*)} = o(2*) >0

ma mo6oro QUKCIPOBAHHOrO IHHERHOro (QyHKIHMOHANA @w*e X *, Onﬂamo,
HaK IIOKasbIBaeT npumMep 1, ycanosme o(z*) > 0 ne BBLINIOJIHAETCH, BOOGIE
rbBopH, pasroMepHO B X*. VMeHHO B Tpe6OBAHHH 5TOi PaBHOMEPHOCTH
H 3aRII0UAETCA NOCTATOUHOE IUIf MHTErpmpyemocts 1o Ilertucy yemonme
(8), BopasenHoe TakM 0GpasOM B TeX TEPMHHAX, B KOTOPEIX Haerca
camo onpepenenne unTerpana Ilerruca.

IIycrs Temeps @ — HOPMAUBHEI Crywattuniil sieMenT co BHAYCHHAME
B X. IIlvea B BUXy paccMaTpUBAaeMEII ceifzac BOIIPOC, MOKHO CUHTATE,
He OrpaHMYMBasg OGLIHOCTH, UYTO HPOCTPAHCTBO X BEINECTBEHHO. Torpa
#*(w) OymeT mpm Beex a*eX* melfcTBETENHHON TayccoBCHOlM Cryuaitnoi
BENNYUHON H OYEBHIHO, UTO

wo: wel, 2*(0) = B(e*)} = plo: 02, *(0) < B(z*)} = 3.

Orciona  momywaem 6(2*) > . Cmenoarensuo,
CIBMEM TeOPEMEl 1 ABIAEICH CIELyIOMas

Trormua 2. Cywecmeyem mamemamuueckoe oorcudanue 2106020 Hop-
MAMHOZ0 CAYHAUIH0Z0 SAEMEHMA €O BHAUEHUAMU 6 NPOUICOABHOM cenapa-
Geaorom npocmpancmee Banaza.

Hacragie crrygau 9Toli Teopemsl GHimm MOy YEHEI PAHee HElOCPeICIBeH-
HEIME pAacCyuennaMu B paGorax Mypee [3] (cmyuait cenapabensHoro

OPOCTEIM  cleqm-

mpocrparcTsa I'munfepra) w asropa [4], [5] (cmywait mpocrpancts [,
1<p< o0).
JIurepaTypa
[11 8. Xwuame n P. ®uununc, Dyuryuonassunl anams 1 noayepynnu

Mocxkea 1962.

[2] 8. Banach, Théorie des opérations lindaires, Warszawa 1032,

[8]1 E. Mourier, Hléments aléatories dans un espace de Banach, Ann. Inst.
H. Poincaré 13 (1963), crp. 161-244,

[4] N. Vakhania, Sur une propriété des répartitions normales de probabilitds

dams les espaces Iy (1 < p < ) ¢t H, Comptes Rend. Acad. Se. Paris 260 (1965),
oTp. 1334-1336.

[6] H. H. Baxannsg,

- O zaparmepucrmuneoruz Pyrryuonasar das cayualinwz
nocaedosamenvrocmet,

Tpymer BI] AH I'pysumcroit GCP, V: 1 (1968), crp. 5-32.

Begu par la Rédaction 1o 17. 1. 1967

icm®

STUDIA MATHEMATICA, T. XXIX. (1968)

On the general form of subalgebras of codimension 1
of B-algebras with a umit
by

Z. SAWON and A. WARZECHA (Warszawa)

Let X be a Banach algebra with unit e. It is known (*) that

0.1. Bvery subalgebra X, of X of codimension 1 such that e¢X,1s a set
of all zeros of a linear and multiplicative functional on X, and conversely.

In this paper we shall give some theorems on the general form of
subalgebras of X such that eeX, o and codim X, = 1. Their class for a given
X will be denoted by K(X).

1. It is easy to verify that

1.0.1. LemmMA. X, eR(X) if and only if there ewists an o eX* such
that

1. Xy = {weX: aj(z) = 0}.

2. @y(e) = 0, af £ 0.

3. If @y (z) = 0, then af(?) = 0.

Indeed, if X,eR(X), then X, is a zero-set of linear functional guch
that #7 < X* and since X, is a gubalgebra with ¢ of X, conditions 2 and 3
must hold.

Inversely, if ayeX*, then the set

X, = {weX: a3 (w) = 0}

is a linear subspace of X, codim X, =1 and ¢eX, in view of 2, and if
@, yeX, then

@y (2y) = Iwo[(e+y)*1—1a] [(@—9)2] =0,
whence oy eX and X,eR(X). /

It follows from Lemma 1.0.1 that every subalgebra of the class R (X)
i determined by a linear functional on X which has properties 2 and 3.

() M. A, Hatimapx, Hopmuposanwne xomya, Mocksa 1956, p. 183.
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Let R(X) be a set of all functionals which have properties 2 and 3,
and let

V(X) = {o*eX*:a*£0, V A a*(ay) =" (@9 +5"1)g(=)},

9eX) @,yeX

where ON(X) is a set of all linear and multiplicative functionals on X.
The first section is devoted to the proof of the following

1.1. TeEorREM. @*<R(X) if and only if there ewist gy, g,e M(X),
g1 F g, Such that @y = ¢(g.—gs), where ¢ is a constant different from 0,
or mpeV(X).

The proof of this theorem can be based on the following lemmas.

1.2. LEMMA. If

oy (a3) \2
2 R(X), 0,cX, al(og) #0 and 3(——(2-——) = a} (20) (i),
then for every yeX and every pos-'it'iw integer k
@ (4*) )"’1
220(y)
0 if  wp(y) =0.
Proof. We shall show at first that if o) ¢R(X) and o} (y) = 0, then
(122)  (af () (6™
= a} (9) s (4*) @y (") + [ (9) 25 (4°) — (5 (")) o5 (%)

for . =0,1,2,...
Indeed, since the equation

%(y)( if. @(y) #0

(1.2.1) o) =

@y [y 1)y — 5 (4*)y] = 0
holds for k¥ =0,1,2,... and, in particular,
@ [0 (Y)Y — a3 (y2)y] = 0,
we have
a3 (05 (9)y* — o5 (5" 9) (2} (1) 92 — 3 (y2) )] = 0
and (1.2.2) is & simple consequence of the last equality.
We can now proof the lemma.

If 27(y) =0, then evidently z (y") =0(k=20,1,2,...) and it is
sufficient to conmder the case where uj(y) = 0.
The equation

(1.2.3) o3 (ah) = hai (0,) ( . ;ffi)))

which is obtained from (1.2.1) for y = m,, will be proved by induction.

icm

Subalgebras of codimension 1

It is evident that

*p 2\ 10
o8 (2) = 1-5(aq) (2””‘:(”°’ ) ,

29 (@)

“o(wo) = 2-27(x o)(

and, from our assumptions,

%®=Mw(

2455 (2,)

Let us suppose that the considered equality holds for k — 1
> 3. Then from (1.2.2) and the last equality it follows that

o (5”0)) !
( ) @ (g

@y (27™) =

g (5) at (a4 2o %) ay (w5) o

w:(mo) oy (@ )

=+l o) | )

and equality (1.2.3) holds for £ =0,1,2, ...

n—l) —

s )

;-‘7

@ (2

251

7%}

For any y = @, such that j(y) s 0 it is sufficient to show that

¥ o2v\2
3(222) - atwaty.

From the equalities

23 [ @)y — at W)aw?] = 0, d(ﬁ— '

a (a3 (w0) y — 5 (4) %) = 0,

2 2
wlf (50:(500) Loy — (1"0 m(’)) 2w(nJ(a)’3—{i:3[(’y;J)) (wO) a?o) = 01
we obtain
s (a5) @y () @, (fy )
ai(aig) = ai10) (o) 20b () S S,
* ) % (Y) % 9 Yo (wo_
@3 (#ey*) = @5 (%) (2:17:(1/)) + a3 (y%) 2 (@g)

It is eay to see that

(5 (wa) 23 (y%) = B(ef (w2 ()5 (3°0) — 3y (o) (a5 (9))2 5 () +

+mwww=wwﬂ

and the proof is complete.

3 (1)
25 (4)

:
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1.3. LEMMA. If a5 <R(X) and, for some @, X, 2° for o} (3+9) = 0, @i (2) = —atly)
K 2v\2
aita) %0, 3(*5) — af@)atiad, s o) = BE) L B _ aleaie)+aea)
2 2 * *
then the functional % (@) 2wy 2 () 25 (y)
mo*(m"o) if  wj(z) =0, _ % o () ah( () — o} (0*) 5} () m’;((y—m)(y-[-m))
sy = | 245 (&) a3 (y) 2m5 (y)
a; (4°) . * (o
/ Y+
() if @ (@) 0, ) = J%W = g(z+y).

belongs to M(x) and for every m,y X the following equality holds:
! Hence g(z+y) = g@)+g(y) for every ux, ysX

* X *
@y (zy) = oy (@) g (y)+ a5 (y) g (). The equality g(2?) = (g(x)]* for x such that a¥(z) = 0 is a conse-
Proof. It is evident that the equality g(iz) = Ag (@) holds for every quence of the equality
zeX and every A . * «
It is easy to see that if a(y,) # 0, then @ [2(a (w2o) o (20) )] = 0.
@ (8Yo) _a_p,’," (wam,) If w5 (w) % 0, then from Lemma 1.2 we have
@3 (4o) a5 () m*(wz) 3
for every & such that o} (2) = 0. Let a(z) = «(y) = 0; then a; (o) = 4aj (z) (“2;*(@) )
0
* 2 %k : * y ) N
go) = B2 ey Bo030) glety) = ﬂﬁiﬂ@ whence g(a%) = (g(a))" for 4} (a?) 5 0.
" g () %o (@) %o () If @y (@) # 0, &} (#?) = 0, then
a
@ ()
z4+y) = g(a y). 3 S/
* . g@+y) 9*( )+9() ) ’o) @) _ ) ate)  at@) ﬁo(w)(2w;=(m)) B
I 25(2) = 0,35(y) +#0, then w3(a?) =0, a}(e+y) # 0 and 2wy Y @)  wm@ @@
wy (2 @y (y? xy (2 @y (¢
g{@)+g(y) = ;*((w ;) + 2;,,{?(/) = 0*( .y) + 205?/) Consequently, the equality g¢(a?) (g(m)) holds for every zeX,
o (%, o (Y) o (y) %o (y) and the functional g is linear and multiplicative.
_ s (%) + 20 (w4) + 35 (17) w:((m‘ﬂl)z) (@+1) We shall complete the proof if we show that
a 2y AR =@y,
o () @ (2 4-y) @y (0%) = 23 (@)g(w).
Now let m.,(m) # 0,7 (y) # 0; then
1° for gy (p+y) 0 If m,, Y (1) = 0, then o7(z?) =0 and o (@) =0 =2m;(m)g(w).

It ‘w5 (z) # 0, then

@)+ g(y) = @) B@) _ o @)al )+ o)) al (@)

27 (m) | 27 (y) 2y () wh (1) 2m},“(w}g(w) = 205 () ;;;a(;)) = x5 (27,
at (mz)+w:(yz)+ (mo (@) )2 wy (y )“[‘(To (%) ) s () q.e.d. ' ‘
- @5 (@) a3 () 14. Leves. If a7 eR(X), mpe X, 5 () £ 0 and weX, o (a) 0,
2{a5 (@) + wé‘ ®) then
oty (@)} (@)~ B @) _ dab (o al(ad)— el )
2@ty Y ’ (w5 ()" B (3 (@0))"
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Proof. In the proof of Lemma 1.2 we obtained the following equality:

e (o)) (w3 (@) 3 (wg («h))° (a} ())°
o paitt —  EEESLEEN 3 BRSO oo,
Consequently
4oy () 73 (") — 3} (o))}
@]
3oy (@) (wr (@) 8(a (23))’ (g (@) n 4oy (@))'ap (@) 3(m} (2%
B (mn(mo)) (mo( ))4 (w:(mo))4(m: M))”‘ (wo (wo)) (mo (@) (wa"(W))‘

4y (m) @y (a3) — 8wy (a))*
(w: f“‘”o))4

)

q.e. d.
Let #eX and aj(®) # 0. Let us write

4oy (w) @g (4°) — 3 ()
(e ())*
1.5. Levma. If a5 eR(X), wge X, o) (wy) # 0, then the functionals

Mao) =

s i) =0,

0 \*¥0.

4. (%) = * ) VT ()
SOEACIEEL i) o,
e i e =0,

9a(w) = . PR
SOG40

(where V2{w,) 18 a fized root of the constamt A(m,)) are linear, muliiplicative
and gy # g, iff
@y () \?
352 at(aat .
Proof. The equalities

9:(@+9) = @)+ g:ly), gu(w?) = (gs(@)p, =1,2,

are trivial in the case of w}(z) = 0, @y {y) = 0.
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Let us suppose that @f(z) = 0,2} (y) £ 0. Then we have x5 (@)
# 0 and

72 (%)+ g2 {y) = @y (w2,) L o5 (y2) V(@) (¥ ()2

@5 () 2a5 (y)
_B(@y) | a ) +HV) (e @)}
5 (y) 2a; (y)
_ %o (@) + 2 (oy) + 25 (*) +Vi (@ +y) (23 (2 +y))!
2 (y)
_ #(@+9))+Valo+y) g @+ y)f

If 3 (@) # 0 and @ (y) # 0, then
o3 (%) 4 V(a) (o} (a)? AR A AC)s

01(@)+0:(y) = 2&7:(.%) Zm;(y)
nly—2)y+e)  @lw(o+y) - _
_ f G- & Bty =0,
| al@+y Ve r ) @ty . .
[ 208 (@) it a(z+y) 7?0-

Consequently, the functional g, is additive and since it is homogeneous,
it is algo linear.

We shall now show that g,(#2) = (g, (%))%

If @y (x) = 0, then the lagt equality evidently holds. Let ) (w) # 0,
@ (#%) # 0; then

%) - A (, lw’ > ()2

and it is sufficient to show that
wy [y (@) — 247 (w) 2y (%) &0+ (5 ()] = 0.
But this equality immediately follows from the equality
@3 (w5 () &* — a3 (%) 2] = 0,
which evidéntly holds.’
If o) (x) # 0 and w; (2?) = 0, then

2 * _ @ (&) _ ACED)
(9:(@)] = A (@)(w} (@) = @) - oey

and the proof of the multiplicativity of ¢, is complete.

= g,(®)*
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Similarly, we can prove that g, is linear and multiplicative. Now
we find
o () VA (@,) e
91(20) — 9 (%) = '(‘9“'0;:‘)‘_—0 = mg(mo)l/}*(wo)~
o (o)
It

L] 2
3(%3”1) £ at (wo) 5t 43,

then A(wy) # 0 and g, (o)~ ga(®,) # 0.
1.6. Lemma. If o} eR(X), wye X, o] (2,) 0 and

m* m?) 2
3( ") ajtogatad,
then

(161)  gu(@g) #gala),  wilz) = —0(2) S (5:(0)— g2 (0).

51(“70)—92(500
Proof. If ay(m) =0, then g,(x) = g,(w) = 0 and equality (1.6.1)
is trivial.
Let o3 (w) # 0. Then, taking into account that A(@) = A(x,), we have

@) e i) VI @)f
) —galag) 0800 = Vimme)y s
@y (@)

q.e. d.

The proof of Theorem 1.1 is an immediate consequence of Lemmas
11.2-1.6, namely:

1° If 23 eR(X) and for every <X the equality

. (w:m
2

) = ag (@) a5 (a)

holds, then from Lemmas 1.2 and 1.3 it follows that oy e V(X).
2° If a3 ¢R(X) and there exists an w,eX such that

a2
352 % ab(enaiad,
then evidently #}(z,) + 0 and from Lemmag 1.4-1.6 it follows that

a3 (1) = o(g, (@) g,(w))
‘where :

¢ =

1
VM%‘) F0 ?’nd ‘ 915 §2¢M(X), g1 # 7.
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3° It is evident that if @) = ¢(g,—g,) where 91, 02« M(X), gy # g,
¢ #0 or wy eV (X), then wgR(X).

Theorem 1.1 gives a characterization of the class R(X) by functionals
of a certain special class N(X) < X*,

There are two kinds of such functionals. A functional of the first
clags can be written in the form ¢(g;,~—g,), where G1, §2eM(X), g, - go,
¢ # 0; a functional of the second class satisfies the equation

@5(wy) = a4()g(y)+ w4 (y) g (o),

where g is a functional of M (X).

The shape of functionals of the first kind does not require any further
explanations. But it seems useful to consider in more detail the form
of the second group of functionals, that is the functionals of the class
V(X).

Some results concerning the problem of the form of functionals where
X is a B-algebra with one generator ¢, are given below. The problem of
a full description of these functionals in the general case is reduced t
the problem which is formulated at the end. )

We begin with

2.1. TurorEM. Let A be the algebra of all compler fumctions holo-
morphic in the disc 2] <1 ond continuous Sor 2] <1, with norm zed,

llofl = sup la(2}],
lel<1
and pointwise multiplication. Then

(2.1.1) V(4) = {g%ed*: Vv V A o*(@) =cz'(2)}.
c#0 [Zgl<l Ted
Proof. It is evident that
" @ ed*: vV V  Adt(@) =o' (20)} < V(4).
¢t |2gl<] zed

Let ©*e¢V(A). Then there exists a g,eM (4) such that for every

z,yed
o* (wy) = &* (%) 9o (y) -+ (4)g0(2).

But g,(@) = x(2,), where [z, < 1, whence
a* (") = ckeyl, k=1,2,..., a*(1)=0.

As |I?")| =1,k =0,1,2,..., and a"eA*, the sequence (*((")))
is bounded. Consequently, |z,| < 1 and (2.1.1) follows from the fact that
polynomials are dense in 4, g.e.d.

17 — Studia Mathematica
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2.2. CoROLLARY. @) ¢R(4) if and only if there emist 2y and 2, such
that 2, # 25, Jou] <1 and
@(21) — 2 (2,)
B — Ry

a3 ((2)

(@) =

or there exists a |z, < 1 such that
w5 (1) = wy ((2)) ' (#o).

2.3. TueoreM. Let X be a B-algebra with unit ¢ and with one generator
ey ond zoelnt Sp(e,). Then there cwists an ay e X* such that ¥ (e) = 0,
o (ef) = ke, k=1,2,..., and evidently 'eV(z).

Proof. For 2eSp(e,) let g, be a functional such that GeeM (X) and

gs(e1) = =.

If weX, then the functional %,(2) = g,(w) is continmous on Sp (ey)
and holomorphic on IntSp(e,) since it is a Gelfand transform of ». Hence
for z,eIntSp(e,) the function

dhy
=g

satisfies the conditions of Theorem 2.3 and the proof is complete,
2.4. Definition. Let z,eSp(e;) and let us suppose that for weX
there exists a
i _9(®) — gy (0)

ey 9s(0) = geye)”

where g, g, ¢ M (X) and g,(e,) = %, §u(€1) = 2. Thig limit will be called
a derivative of o at 2, and we ghall denote it by @’ (2,).

2.5. CorOLLARY. If 2,eIntSp (er), then @' (2y) emists for every weX
and, &(z)) = 0, (¢)'(20) = kef™, k=1, 2, ..., @' (20) € V(X).

The proof is an immediate consequence of Theorem 2.2,

2.6. COROLLARY. Let o*¢V(X) and

a*(é})

24" (e,)

-

e IntSp (e,).

Then for every weX there emists an

o (ﬁ(eﬁl))) md o (o) = m’( a*(e3) )

20* (e, 20" (e,)

This remark is a consequence of Thenrems 2.2 and 2.5.

iom®
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It remains to consider the form of functionals #*eV(X) such that

" () )
2 (ey) ¢IntSp (e,)
(evidently @*(e})/22*(e,) eSp(ey)).
It is easy to verify that there exists an z*e V(X) such that the deriv-

ative
m* 2
& *(31)
227 (e,)
does not exist for some zeX (2).
So the following problem arises:

PrOBLEM 1. Let 5 « V(X). Do there exist a sequence of functionals g,
and a functional g, such that

(1) Iny JoeM(X), g #9, (n=1,2,..),
_ a(d)
(2) gole;) = 297:(61)’
(3) gn(@) = go(2) for every zeX
and
m:(m) = lim Gn (%)~ g0 () o ().

100 n(€1)— go(€1)

We shall now give some of the properties of the set R(X).

2.7. THEOREM. The set R(X) is weakly sequentially closed.

The proof is based on the following lemmas.

2.8. Levma, Let o5 eR(X). There exisis an M > 0 such thai for every
weX the inequality |zy (0%)] < M ey (@)]||z]] holds.

(%) It is so for example in the algebra X of all functions ze A such that there
exists a limit
i D=3 (D)
nsco  #m—1
where (2n) is a fixed sequence of numbers different from 1, converging to 1. Multipli-
cation in X is as usual, and
% (2n) — (1)
n—1

lloof} = sup |2 (2)| + sup
lel<1 n

It is easy to see that

o() = lim 2l —a(l) V()
N0

but 2’(1) does not exist in the whole of X.
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2.9. Levma. If o5 R(X), then
n(ag) = inf (I > 0: A lo5 (@) < M a5 (@) [l2ll} < l12e;— @5 (e3) ||| ]
De.

We shall omit the proofs of lemmas.
Proof of Theorem 2.7. Let xR (X) and ) e a3 then

x3(e) =liman(e) =0 and a(e,) = liman(e,).
00 Nero0

From Lemmas 2.8 and 2.9 we have
lem (2°)) < () lon () ] < (12— e () el hll [l [ (a2) |
< |26, —ah(eDell M - |l 13 (w)]
Hence from. the last inequality we obtain (as »n —> co)
I (2%)] < |12e,— a5 (e)ell - M |y (@) [Jol] < DL* oy (@) [}

Consequently, if @ (z) =0, then @ (2") = 0 too, which completes
the proof.
2.10. CoroLLARY. We have

o a%(0) = (o) LE oo 3,4, 4 < ),
where the line on the left-hand side denotes weak sequential closure.

Now we can reformulate Problem 1 as follows:

ProBrEM 1'. Does the equality

R(X _:{ * X, gt — 91 (2)— g.(@) ¥ ‘o}
(X) (4 =" () gl(el)_ga(elyglygzssm( )s g1 # (s
hold?

Problem 1 (or the equivalent Problem 1') can be generalized in the
following manner.

Let X be an arbitrary B-algebra with unit. Let
U(X) = {g"eR(X): 0" = e(g,—g4), g1, §acM (X), gy 5 ¢, € 7 0}

* 21\ 2
(evidently U(X) = {m: e%(X):x:{Xw:(m.,) #0, 3(‘”"5(;”")) o (mo)m:;(mﬁ)}).

_PROBLEM 2. Is it true that U(X) = R(X) (where U(X) denotes,
as in the previous cage, weak sequential clogure U(X))?

Regu par la Rédaction le 13. 4. 1967

e ©
lm“ STUDIA MATHEMATICA, T. XXIX. (1968)

A modern version of the E. Noether’s theorems
in the caleulus of variations, I

by

J. KOMOROWSKI (Warszawa)

INTRODUCTION

A growing interest in problems connected with the Noether's theo-
rems can be noticed in the last years. It it a result of a popularity of the
Lagrange approach to physical theories.

In the period of time following the original paper of E. Noether [10]
there were written many works developing its subject (Bessel-Hagen [2],
Rosenfeld [11]) or treating about some mathematical foundations (de
Donder [4]). Since 1950 we have had a lot of papers due as well to mathe-
maticians as to physicists concerning those problems (Hill [9], Bergman
and Schiller [1], Trautman [16], Fletcher [6], Schmutzer [12], Edelen 5],
Funk [7], Steidel [13] and [14], Trautman [17] and [18], Demmig [3]).

In spite of the fact that the Lagrange formalism has a geometrieal
sense the authors use at every level of considerations a coordinate system
for a description of geometrical objects. (One of such geometrical objects
is a function, i.e. a scalar field, which being defined at the points of a space
can not be considered as a function of their coordinates.) Such concept
does not make easier to set off the gist of the matter and sometimes leads
to misunderstandings.

As we will see, the notions of a differentiable manifold, a veetor
bundle and a jet-bundle are very useful in geometrical formulating of
the variational problems ().

A general variation of a functional defined on cross-sections of
a finite-dimensional vector bundle M is considered, wherein the variation
of the functional is induced by a variation of the cross-section, i.e. a one-
-parameter “smooth” family of cross-sections. It is easy to see that all
such variations of a cross-section can be given by differentiable vector

(*) It is pointed out also in the recently appeared paper, Noether equations
and conservation laws by A. Trautman in Commun. Math. Phys. 6 (1967), p. 248-261
(added in proof).
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