STUDIA MATHEMATICA, T. XXXIX. (1968)

On normed lattices
topologically isomorphic to some Orlicz space \(L^\varphi \)

by

KÔJI HÔNDA (Muroura)

1. Introduction. Let \(\mu \) be a non-atomic, completely additive measure on a set \(\Omega \) with \(\mu(\Omega) = 1 \).

The Orlicz space \(L^\varphi(\Omega, \mu) \) consists of all real-valued functions \(x(t) \), \(\mu \)-measurable on \(\Omega \), such that

\[
\int_{\Omega} \varphi(a|x(t)|) \, d\mu < +\infty \quad \text{for some real number } a > 0,
\]

where \(\varphi \) is an \(N \)-function which satisfies \((\Delta_2)\)-condition (1). Then, the space \(L^\varphi \) is not only a Banach space with the norm (2)

\[
\|x\| = \inf \{ \|f\|; \varphi(\|f\|) \leq \|x\| \},
\]

also becomes a conditionally complete vector lattice (3) by the usual ordering.

In the preceding paper [7], we gave a characterization of \(L^\varphi \). The purpose of the present paper is to characterize \(L^\varphi \) under the topological equivalence without containing the function \(\Phi \) in the condition by which \(L^\varphi \) is characterized.

We shall easily see that an \(N \)-function has an equivalent \(X \)-function with the continuous derivative. Therefore, we shall assume in this section that \(\Phi \) is continuously differentiable. Then, the modular norm on \(L^\varphi \) is

\[
(1) \quad \lim_{t \to \pm \infty} \Phi(\|f\|) = 0 \quad \text{and} \quad \lim_{t \to \pm \infty} \Phi(\|f\|) = +\infty \quad ((9), p. 9).
\]

(2) This norm is called the modular norm or Luxemburg norm.

(3) A continuous convex function \(\Phi \) is said to be \(X \)-function if

\[
\Phi(f(\|t\|) = 0 \quad \text{and} \quad \Phi(\|f\|) = +\infty \quad ((9), p. 9).
\]

(4) A vector lattice \(E \) is said to be conditionally complete, if for \(E \cdot a \geq 0 \text{ for } a \in A \) there exists \(a \in E \) such that \(A = \bigcap_{a \in A} g_a \).
smooth and monotone (9). Furthermore, we can see that for each \(x(t) \in L^*_p \) there exists only one \(\mathbb{E}(t) \in L^*_p(\Omega, \mu) \), \(\Psi \) is the complementary \(N \)-function, for which the equality in the Young’s inequality holds, i.e.,

\[
\int \mathbb{E}(t) \Psi(t) d\mu = \int \Phi(|x(t)|) d\mu + \int \Psi(|x(t)|) d\mu.
\]

Indeed, \(\mathbb{E}(t) = \varphi(|x(t)|) \text{sgn} x(t) \) where \(\varphi \) is the derivative of \(\Phi \) (cf. [13], Theorem 39.1, and [21], p. 64). Hence, we obtain a transformation \(T \) from \(L^*_p \) into \(L^*_p \) through the correspondence \(x(t) \rightarrow \mathbb{E}(t) = \varphi(|x(t)|) \text{sgn} x(t) \).

This transformation \(T \) has the following properties:

1. \(0 \leq x \leq y \) implies \(0 \leq T x \leq T y \),
2. \((T x)[p] = T([p] x) \) for any projector \([p]\) (9),
3. \(T(-x) = -T x \).

Let \(R \) be a conditionally complete vector lattice, and \(\bar{R} \) be its conjugate space, i.e., the totality of all linear functionals \(f \) on \(R \) for which

\[
\inf_{x \in R} |f(x)| = 0
\]

for any system \((s_n; \lambda \in A) \) in \(R \) with \(s_n \downarrow 0_{R} \). A transformation \(T \) from \(R \) into \(\bar{R} \), with conditions (i)-(iii) is said to be conditionally similar \((12), (13), p. 294)\).

Recently, the present author and Yamaudro [5] have shown the following theorem:

Let \(R \) be a conditionally complete vector lattice possessing a norm with \(|x| \leq |y| \) implies \(||x|| \leq ||y|| \), which has at least two linearly independent elements and its conjugate norm be strictly convex. If there exists a one-to-one conjugately similar transformation \(T \) from \(R \) into its conjugate \(\bar{R} \) with the condition

\[
(x, T x) = ||x|| \cdot ||T x|| \quad (x \in R),
\]

then \(R \) is of \(L_p \)-type \((p > 1)\).

(9) The norm on the normed space \(X \) is said to be smooth, if at every point of the unit sphere of \(X \) there is only one supporting hyperplane of the unit sphere of \(X \). This is equivalent to the Gateaux differentiability of the norm \([8]\). The norm on the normed lattice \(X \) is said to be monotone, if \(0 \leq x \leq y \) implies \(||x|| \leq ||y|| \) for \(x, y \in X \). If \(\Phi \) satisfies the \((\lambda)\)-condition and \(\Phi > 0 \) for each \(\lambda > 0 \), then the modular norm is monotone \((13), (13), p. 33)\).

(9) For the support \(\mathcal{E}(t) \) of an element \(x(t) \in L^*_p \), the projector \([p]\) is defined by \([p] x(t) = x_p \text{sgn} x(t)\), where \(x_p \) is the characteristic function of \(\mathcal{E} \). In a conditionally complete vector lattice \(R \), the projector \([p]\) is defined by \([p] x = \sum_{\|x\|} (x \wedge x_p)\) if \(x > 0 \), and \([p] x = \sum_{\|x\|} (x \wedge -x_p)\) for any \(x \in R \), where \(x^* = x \wedge 0 > -x^* = (\neg x)^* \text{ and } |x| = x^* + x^* \). For \(x \in L^*_p \), if \(\Phi \) is a linear functional on \(R \) such that \((y, \Phi x) = \int \Phi(y) x d\mu \) for all \(y \in L^*_p \). See also footnote (9).

(9) \((y, \Phi) \) means the value of \(\Phi x \) at \(y eR \).

In the Orlicz space \(L^*_p \), a similar behavior to \(L_p \)-space may be seen. For \(x \in L^*_p \) with \(||x|| = 1 \), we denote by \(x^* \) the element in the conjugate space of \(L'_p \), with the norm 1, for which the equality in Hölder’s inequality holds, i.e., \((x, x^*) = ||x|| \cdot ||x^*|| \). This \(x^* \) determines uniquely for \(x \), because of the smoothness of the norm on \(L'_p \).

Then, we shall be able to see the following property:

For any step element \(x \in L^*_p \) (i.e., a simple function), with the norm 1, and for any subprojector \([p]\) of \(x \) (i.e., a projector satisfying \([p] x(t) = \text{const. for the simple function } x\) the equality in Hölder’s inequality in the form

\[
[(p) y, x^*([p])] = ||[p]\|| \cdot ||x^*([p])||
\]

holds.

Indeed, let \(x \in L^*_p \) be the function \(k(t) = 1 \) on \(\Omega \) a.e. In general, for the conjugately similar transformation \(T \),

\[
\begin{align*}
L^*_p \ast [p], [p] = 1, & \rightarrow T x = \varphi([p]) \text{sgn} x([p]) \ast L^*_p, \\
\end{align*}
\]

the relation

\[
(x, T x) = ||T x||
\]

holds and hence we have \(x^* = T x ||T x|| \). Now, expressing \(x \) in (*) by a form

\[
(x, T x) = \varphi(\sum_{i=1}^{n} \xi_i([p]) \ast \xi_i([p]) T x + \sum_{i=1}^{n} \varphi(\sum_{i=1}^{n} \xi_i([p]) \ast \xi_i([p])) T x),
\]

where \([p]\) and \([p_i]\) (\(i = 1, 2, \ldots, n \)) are mutually orthogonal projectors \((9)\), we have, by the property (ii),

\[
T x = \varphi(\sum_{i=1}^{n} \xi_i([p]) \ast \xi_i([p])) T x + \sum_{i=1}^{n} \varphi(\sum_{i=1}^{n} \xi_i([p]) \ast \xi_i([p])) T x
\]

so that

\[
||[p] x|| = \varphi(\sum_{i=1}^{n} \xi_i([p]) \ast \xi_i([p])) ||T x||
\]

and further

\[
\begin{align*}
\left([p] x, \varphi \left(\frac{1}{||[p] x||} T x \right) \right) &= \left([p] x, \varphi \left(\frac{1}{||[p] x||} T x \right) \right) \\
&= \left(\frac{1}{||[p] x||} T x, \varphi \left(\frac{1}{||[p] x||} T x \right) \right) \\
&= \frac{1}{||[p] x||} ||T x||
\end{align*}
\]

namely, (*) is satisfied.

(9) This fact is obtained from (9) and [14], Theorem 3.2.1.

(9) Projectors \([p]\) and \([q]\) are called mutually orthogonal if \([p] [q] = [p] \wedge [q] = 0 \).
To show that the property (*) is a characteristic property of \(L^*_s \) under the topological equivalence, we shall prepare in the next section.

2. Throughout this section, let \(R \) be a normed lattice which has the following properties:

(i) \(R \) is non-atomic and conditionally \(\sigma \)-complete (\(^{24} \)),
(ii) the norm \(\| \cdot \| \) on \(R \) is semi-continuous, i.e.,
\[
0 \leq a_n \uparrow a (a_n, a \in R) \quad \text{implies} \quad \| a_n \| \uparrow \| a \|, \\
\]
(iii) the norm on \(R \) is smooth and monotone,
(iv) \(R \) has a positive complete element \(s \) with \(\| s \| = 1 \), i.e., no element in \(R \) is orthogonal to \(s \),
(v) \(\sup \{ \| p \| : p \} = +\infty \), where \(\{ p \} \) is any orthogonal partition of \(s \), and also there exists a positive integer \(k \), such that for any \(\{ p \} \) orthogonal partitions \(\{ p \} = \sum_{i=1}^{k} [p_i s] \), with \(\| [p_1 s] \| = \| [q_1 s] \| = \ldots = \| [q_k s] \| \), imply \(\| [p_i s] \| \leq \| [p_j s] \| \) for \(i = 1, 2, \ldots, k \).

Remark. It is easily verified that the Orlicz space \(L^*_s \) in section 1 satisfies property (v) from the facts that \(\Phi \) satisfies (\(\Delta_2 \)) condition and \(\Phi(1/\| [p] \|) = 1/\mu(F) \), where \(F \) is the support of \([p] \).

An element \(x \) in \(R \) is called a step element, if \(x \) is of the form \(\sum_{i=1}^{k} x_i [p_i] s \) for certain orthogonal subsystem \(\{ p_i \} \) \(i = 1, 2, \ldots, n \) of projectors in \(R \). For a step element, we shall call \(\sum_{i=1}^{k} x_i [p_i] s \) the projector \(p \) such that \(\{ p \} = \{ p_i \} \) for some real number \(x \).

We denote again the main notation used in this paper.

\(R \) is the conjugate space of \(R \); \(S \) is the unit surface of \(R \), i.e., the set \(\{ x \in R : \| x \| = 1 \} ; B \) is the set of all step elements in \(R \); \(x, y \) means the value of \(xy \) at \(x \in R \); \(x^* \) means, for \(x \in R \), the element on the unit surface of \(R \) for which the equality in the Hölder’s inequality holds, i.e., \((x, x^*) = \| x \| \cdot \| x^* \| \); \(y^* \) for any projector \(p \) in \(R \) and \(x \in R \), denotes the element of \(R \) such that \(y^* (p) = \{ p \} y, x^* \) for all \(y \in R \).

For mutually orthogonal elements \(a_i \in S \) \(i = 1, 2, \ldots, n \), the functions
\[
\xi_k = f_k (\xi_1, \ldots, \xi_{k-1}, \xi_{k+1}, \ldots, \xi_n) \quad (k = 1, 2, \ldots, n)
\]
are called the represented functions of an n-dimensional indicatrix \(C(a_1, a_2, \ldots, a_n) \) \(^{(26)} \) of \(R \).

Moreover, Greek letters \(\xi, \eta, \gamma, \ldots \) denote the real numbers or real functions and small Latin letters \(a, b, x, \ldots \) denote the elements in \(R \).

We shall first give two lemmas concerning the properties of the indicatrix, which connect with \(\xi \) and \(\eta \).

Lemma A. Each represented function \(\xi_k = f_k (\xi_1, \ldots, \xi_n) \) of an n-dimensional indicatrix \(C(a_1, a_2, \ldots, a_n) \) of \(R \) is partially differentiable with respect to the variable \(\xi_k (\pi \neq k) \). Here, the differentiation at the end point in the domain of \(f_k \) means the one-side differentiation.

Proof. Since the norm on \(R \) is smooth, when we denote the right and left derivatives by \(D^+ f_k (\xi_1, \ldots, \xi_n) \) and \(D^- f_k (\xi_1, \ldots, \xi_n) \) respectively, we have
\[
\left\{ a_i + (D^+ f_k (\xi_1, \ldots, \xi_n)) a_i, a^* \right\} = \left\{ a_i + (D^- f_k (\xi_1, \ldots, \xi_n)) a_i, a^* \right\} = 0
\]
by the same method as in \(\xi \), Lemma 2, and \(\xi \), where
\[
\sum_{k=1}^{n} \xi_k a_k = x \in S
\]
If \((a_i, a^*) = 0 \), we have \((y, a^*) = 1 \) for \(y = \sum \xi_k a_k \) so that
\[
1 = \| a^* \| = \left(\frac{y}{\| y \|}, a^* \right) > 1
\]
provided that \(\xi_k \neq 0 \), because \(\| y \| = \sum \xi_k a_k + \| y \| > \| y \| \) by the monotony of the norm. This is impossible and consequently we have
\[
\frac{\partial f_k}{\partial \xi_k} = \left(a_i, a^* \right)
\]
(6)

It is obvious that \(\frac{\partial f_k}{\partial \xi_k} = 0 \) at \(\xi_k = 0 \).

Lemma B. For a represented function \(\xi_k = f_k (\xi_1, \ldots, \xi_n) \), let us assume that \(a_i \xi_1 + \ldots + f_k (\xi_1) a_{i_k} + \ldots + \xi_k a_k \in S \) and that \(\xi_k \) is variable and \(\xi_j \) \((j \neq k) \) is fixed. Then \(a_i, x^* \) is non-decreasing function in \(\xi_k \) \(\xi_k \neq 0 \).

Proof. It is enough to prove the case in which the indicatrix is 2-dimensional, by reason of which the proof in the n-dimensional case is essentially the same as that in 2-dimensional case. Let \(\eta = \eta (\xi) \) be a represented function of an indicatrix \(C(a, b) \) of \(R \) with respect to \(a, b \in S \) with \(a \cap b = 0 \).

\(^{(26)} \) The notion of an indicatrix has been introduced in \(\xi \), p. 342.
By definition, for $0 < \xi < 1$,

$$
\{ a, (fa + \eta(\xi)b)^* \} = \lim_{\varepsilon \to 0} \frac{\| (\xi + \varepsilon)a + \eta(\xi)b \| - 1}{\varepsilon}.
$$

First, we shall prove, for each small $\varepsilon > 0$, that a function

$$
g(\xi, \varepsilon) = \| (\xi + \varepsilon)a + \eta(\xi)b \| - 1
$$

is non-decreasing in $0 \leq \xi \leq 1$. Put, for $0 < \xi < 1$,

$$
D_{\varepsilon}^{\xi} g(\xi, \varepsilon) = \lim_{\delta \to 0} \frac{1}{\delta} \left(\left\| (\xi + \delta + \varepsilon)a + \eta(\xi + \delta)b \right\| - \left\| (\xi + \varepsilon)a + \eta(\xi)b \right\| \right).
$$

Taking enough small δ and ε, with $0 < \delta < \varepsilon_1 < \varepsilon$, by virtue of Lemma A the derivative $\eta'(\xi)$ exists and is non-increasing by the concavity of $\eta(\xi)$.

Accordingly, we have for some $0 < \theta < 1$

$$
g(\xi + \delta, \varepsilon) = \left\| (\xi + \delta)a + \eta(\xi)b + \delta(a + \eta'(\xi + \delta)b) \right\| - 1
\geq \left\| (\xi + \delta)a + \eta(\xi)b + \theta(a + \eta'(\xi + \varepsilon_1)b) \right\| - 1
= (a + \eta'(\xi + \varepsilon_1)b, \sigma'),
$$
and hence

$$
D_{\varepsilon}^{\xi} g(\xi, \varepsilon)
\geq \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(\left\| (\xi + \varepsilon)a + \eta(\xi)b \right\| - \left\| (\xi + \varepsilon)a + \eta(\xi)b \right\| \right)
= (a + \eta'(\xi + \varepsilon_1)b, \sigma'),
$$
where

$$
e = \frac{(\xi + \varepsilon)a + \eta(\xi)b}{\| (\xi + \varepsilon)a + \eta(\xi)b \|}.
$$

Putting

$$
\lambda = \frac{\xi + \varepsilon}{\| (\xi + \varepsilon)a + \eta(\xi)b \|} \quad \text{and} \quad \mu = \frac{\eta(\xi)}{\| (\xi + \varepsilon)a + \eta(\xi)b \|},
$$

the point (λ, μ) is on the indicatrix $O(a, b)$. When we take again ε_1 such that $0 < \varepsilon_1 < \varepsilon(1 - \xi)/(1 + \varepsilon)$, then, on account of $\| (\xi + \varepsilon)a + \eta(\xi)b \| \leq 1 + \varepsilon$, it follows that $\xi + \varepsilon < (\xi + \varepsilon)/(1 + \varepsilon) \leq \xi$. Consequently, we have, by (8) and Lemma A, $D_{\varepsilon}^{\xi} g(\xi, \varepsilon) \geq (a + \eta'(\xi)b, \sigma') = 0$ which shows $g(\xi, \varepsilon)$ is non-decreasing in $0 \leq \xi \leq 1$. Therefore, by (7), $\{ a, (fa + \eta(\xi)b)^* \}$ is non-decreasing in $0 \leq \xi \leq 1$.

3. THEOREM. Let R be the normed lattice which has properties (i)-(v) in the preceding section. If R satisfies the following condition:

for any step element $a \in S \cdot E$ and for any sub-step projector $[p]$ of a,

$$
(*) \quad \left\| [p]a \right\| \leq \left\| [p]a \right\| \cdot \left\| a^*(p) \right\|,
$$

holds, then R is topologically isomorphic to some Orlicz space L^p, the modular norm on which has properties (ii), (iii), (iv), and (v).

The central part of the proof of Theorem is to construct a function Φ which determined the Orlicz space L^p. Therefore, we shall begin to give the lemmas by which Φ is constructed and its properties are proposed.

In what follows, suppose that R satisfies the condition in Theorem.

For any $\xi \geq 0$, we define a function $f(\xi)$ as

$$
f(\xi) = \sup \left\{ \frac{\| [p]a \|}{\| [p]a \|} \right\} \quad \text{for any} \quad a \in S \cdot E \quad \text{and} \quad [p]a = [p]a.
$$

and hence

$$
f(\xi) = 0 \quad \text{if} \quad \xi = 0.
$$

Remark. $0 \neq (p)a$ and $a \in S$ imply $(p)a = 0$. Indeed, if $(p)a = 0$, then $a = (p)a = 0$ and hence $\| a \| = 1$ contradicting the monotony of the norm.

Lemma 1. There exists a positive constant β such that for arbitrary $a \in S \cdot E$, with $a = \xi[p]a + \sum_{i=1}^{n} \xi_i[p_i]a$, $0 < \| [p]a \| < 1$ and $\xi > 0$,

$$
\frac{\| a^*(p) \|}{\| [p]a \|} \leq f(\xi) \leq \frac{\| a^*(p) \|}{\| [p]a \|}.
$$

Proof. The left side inequality is obvious from the definition of $f(\xi)$. Suppose that $S \cdot E/a = \xi[p]a + \sum_{i=1}^{n} \xi_i[p_i]a$. Then, we have

$$
\left(\frac{[p]a}{\| [p]a \|} \right)^* = \frac{a^*(p)}{\| [p]a \|},
$$

and hence, by virtue of the smoothness of E,

$$
\frac{a^*(p)}{\| [p]a \|} = \frac{\| [p]a \|}{\| [p]a \|} \cdot \frac{\| a^*(p) \|}{\| [p]a \|},
$$

because $\| a^*(p) \| = 0$ from the above remark.

Therefore, for any $0 \neq [q] \subset [p]$, $\| a^*(p) \| = \| a^*(q) \| = \| [p]a \|$ and consequently

$$
\frac{\| a^*(q) \|}{\| [p]a \|} = \frac{\| a^*(p) \|}{\| [p]a \|} \quad \text{for every} \quad 0 \neq [q] \subset [p].
$$

Next, we shall prove that there exist two positive constant A and B such that for every elements x and y in $S \cdot E$,

$$
A \leq \frac{\| x \|}{\| y \|} \leq B,
$$

where $\xi > 0$, $x = \xi[p]a + u$, $y = \xi[q]a + v$, $[p]a = [q]a = 0$, $\| [p]a \| = \| [q]a \|$, and $0 \neq u, v \in E$.

14. Studia Mathematica
If such constants do not exist, on account of (12), there exist some elements \(a_n\) and \(y_n\) in \(S \cdot E\) which satisfy the following relations:

\[
\begin{align*}
0 &< a_n = \xi_n[p_n] + \eta_n b_n, \quad b_n \in S \cdot E, \quad [p_n] b_n = 0, \\
0 &< y_n = \zeta_n[y_n] + \xi_n y_n, \quad d_n \in S \cdot E, \quad [y_n] d_n = 0, \\
1 &> \|a_n[p_n]\| = \|\eta_n[y_n]\| = \xi_n^{-1}, \quad \xi_n > 0
\end{align*}
\]

and

\[
\|\eta_n[y_n]\| = g(n) \|a_n[p_n]\| \quad \text{with} \quad g(n) \uparrow n + \infty.
\]

For simplicity, we put \([p_n] r / \|[p_n]\| = a_n\), \([y_n] r / \|y_n\| = y_n\). For the represented functions \(\eta = \eta_n(t)\) and \(\xi = \xi_n(t)\) of the indicatrix \(C(a_n, b_n)\) and \(C(c_n, d_n)\) respectively, as is shown in (6), we have then

\[
\left[\frac{dy_n}{dt} \right]_{t=0} = - \frac{(a_n, y_n^n)}{X_n} \quad \text{and} \quad \left[\frac{dx_n}{dt} \right]_{t=0} = - \frac{(d_n, y_n^n)}{Y_n}
\]

and hence

\[
0 \leq - \left[\frac{dx_n}{dt} \right]_{t=0} = \frac{1-g(n)}{\xi_n(t)} \left(\frac{\eta_n(t)}{\xi_n(t)} \right) + \frac{d\eta_n}{dt} \left[\frac{dy_n}{dt} \right]_{t=0},
\]

because \(1 + \eta_n(t) b_n + \xi_n(t) y_n = 1 + \xi_n(t) y_n = \xi_n(t) 1 = \xi_n(t) X_n + \xi_n(t) y_n = 1\) and \(Y_n = g(n) X_n\) by condition (5) in the theorem.

On the other hand, it is easily seen that for enough large \(n\),

\[
1 - t_n < \eta_n(t_n), \quad \xi_n(t_n) > 0, \quad 0 < - \left[\frac{d\eta_n}{dt} \right]_{t=0} < 1, \quad 0 < Y_n = X_n g(n)
\]

and \(
\lim_{n \to \infty} \left[\frac{d\eta_n}{dt} \right]_{t=0} = - \infty.
\)

Consequently, we have

\[
0 < - \left[\frac{dx_n}{dt} \right]_{t=0} \leq \frac{1-g(n)}{(1-t_n) Y_n} + \frac{1}{1-t_n} < 0
\]

for enough large \(n\), which is impossible. Thus, there exists a constant \(A > 0\) satisfying (13). By (12), (13) and the definition of \(f(\xi)\), we can see that Lemma 2, with \(\beta = E\).

Lemma 2. The function \(f(\xi)\) defined in (9) is a real-valued, non-decreasing function in \(\xi \geq 0\) and more \(f(\xi) > 0\) for \(\xi > 0\).

Proof. It is evident, by Lemma 1, that \(f(\xi)\) is real-valued and \(f(\xi) > 0\) for \(\xi > 0\) from the remark for the definition of \(f(\xi)\). Suppose \(0 < \xi_i < \xi_j\). We choose a projector \([p]\) such that \(0 < \|\xi_i[p]\| \leq 1\) \((i = 1, 2)\). Moreover, we consider \(a_i \in S \cdot E\) \((i = 1, 2)\) such that

\[
\eta_i = \xi_i[p] + z \eta_i[y_i] + \eta_i[y_i],
\]

where \([p], [y_i]\) \((k = 1, 2, \ldots, n)\) and \([y]\) are mutually orthogonal. Then, if we fix \(a_i\) \((k = 1, 2, \ldots, n)\), the represented functions \(\eta_i(\xi)\|\eta_i[y_i]\| = \lambda_i(\xi_i, \eta_i, \ldots, \eta_i)\) are differentiable at \(\xi_i(1 = 1, 2)\) respectively; namely, derivatives \(\eta_i'(\xi)\) exist by Lemma A. Therefore, by Lemma B, we have

\[
\frac{\partial\|\eta_i[p]\|}{\partial\|\eta_i[y]\|} \leq \frac{\|\eta_i[p]\|}{\|\eta_i[y]\|}.
\]

Hence, in virtue of the condition (4), we have

\[
\frac{\partial\|\xi_i[p]\|}{\partial\|\xi_i[y]\|} \leq \frac{\|\xi_i[p]\|}{\|\xi_i[y]\|} \quad \text{and more} \quad \frac{\|\xi_i[p]\|}{\|\xi_i[y]\|} \leq \frac{\|\xi_i[p]\|}{\|\xi_i[y]\|}.
\]

Therefore, for each element \(x = \xi_i[p] S + \eta_i[y], \|\xi_i[p]\| \leq 1\), \(p = [p]\), and \(\|\xi_i[p]\| \leq [p]\|\|\eta_i[y]\|\|\eta_i[y]\| = \xi_i[p]|[p]|\|\eta_i[y]\|\|\eta_i[y]\|)

we have

\[
\frac{\partial\|\xi_i[p]\|}{\partial\|\xi_i[y]\|} \leq \frac{\|\xi_i[p]\|}{\|\xi_i[y]\|} \leq \frac{\|\xi_i[p]\|}{\|\xi_i[y]\|}.
\]

Lemma 3. For the convex function

\[
M(\xi) = \int f(\xi) dt,
\]

there exists a convex function \(\Phi(\xi)\), equivalent to \(M(\xi)\), such that

(i) the derivative of \(\Phi(\xi)\) is continuous,

(ii) \(\lim \Phi(\xi)/\xi = 0\) and \(\lim \Phi(\xi)/\xi = +\infty\),

(iii) \(\Phi(\xi) > 0\) for \(\xi > 0\).

Proof. Putting

\[
\Phi(\xi) = \frac{1}{2} M(\xi)
\]

we have

\[
\frac{1}{2} M(\xi) \leq \Phi(\xi) \leq M(\xi) \quad \text{for} \quad \xi > 0.
\]
so that $\Phi(\xi)$ is equivalent to $M(\xi)$. It is evident that Φ satisfies (i) and (iii). In order to prove that Φ satisfies (ii), it will suffice to prove that
\[\lim_{t \to 0} f(\xi) = 0 \quad \text{and} \quad \lim_{t \to \infty} f(\xi) = +\infty. \]

For $0 < \xi < 1$, choosing $x_\xi = \xi[x_\xi] + \eta(x)[\xi]x_\xi E$, with $[\xi][\eta] = 0$, we have
\[\lim_{t \to 0} f(\xi) = \lim_{t \to 0} \|x_\xi\|^2 \|x_\xi\|^2 = \lim_{t \to 0} \|x_\xi\|^2 \|x_\xi\|^2 = \left(\|x_\xi\|^2 \left(\|x_\xi\|^2 \|x_\xi\|^2 \right) = 0. \]

Next, taking $x_{\xi} = \xi[x_{\xi}] + \eta(x)(\xi x_{\xi} E)$ for each $\xi > 1$, it follows from the property (v) for R that $\|x_{\xi}^2\| = \|x_{\xi}^2\| = +\infty$. Therefore, we have, by Lemma 1,
\[\lim_{t \to 1^+} f(\xi) = \lim_{t \to 1^+} \|x_{\xi}^2\| = \lim_{t \to 1^+} \|x_{\xi}^2\| = +\infty. \]

4. The proof of Theorem. We shall make use of the spectral theory of H. Nakano [12; §§ 8-13 and §§ 20-23] and [13; Chap. III]. Therefore, we state at the moment several results obtained by H. Nakano.

Let \mathcal{S} be the proper space of R, i.e., the compact Hausdorff space consisting of all maximal ideals in the space of all projections in R which form a Boolean algebra with respect to the set operation, i.e.,
\[U_{\pi \mathcal{S}} U_{\eta \mathcal{S}} = U_{\pi \mathcal{S} \cap \eta \mathcal{S}} \quad \text{and} \quad U_{\pi \mathcal{S}} U_{\eta \mathcal{S}} = U_{\pi \mathcal{S} \cap \eta \mathcal{S}} \quad [12; \text{p. 32}]. \]

For $x \in R$, the function $(a|\pi, \mathcal{S})$ on \mathcal{S} is defined by
\[\left\{ \begin{array}{l}
\|x\|^2, \\
+\infty, \\
-\infty,
\end{array} \right. \begin{array}{l}
\text{if} \quad \mathcal{S} \subseteq \prod_{\pi \in \mathcal{S}} (U_{\pi \mathcal{S}} \cup \eta \mathcal{S}), \\
\text{if} \quad \mathcal{S} \subseteq \prod_{\pi \in \mathcal{S}} (U_{\pi \mathcal{S}} \cap \eta \mathcal{S}), \\
\text{if} \quad \mathcal{S} \subseteq \prod_{\pi \in \mathcal{S}} (U_{\pi \mathcal{S}} \cup \eta \mathcal{S}).
\end{array} \]
Lemma 6. For \(x \in E\), \((x)\), \((y)\), \((z)\) are integrable by \((x), (y), (z)\) for any \(a \in E\), and we have
\[
\left(\int_E x, \phi \right) = \int_{E \phi} (x) (y), \phi \right) (z).
\]

Lemma 7. \(i\). For \(0 \neq a \in E\),
\[
\lim_{p \to 0} \left(\int_{E \phi} (x), \phi \right) = \left(\frac{a}{a}, \phi \right) \text{ for } \phi \in C_0 (E).
\]

\(ii\). For any \(a, b \in E\), there exists
\[
\lim_{p \to 0} \left(\int_{E \phi} (x), \phi \right) = g(\phi) \text{ for } \phi \in C_0 (E)
\]
and the limit is independent from \(x \in E\) [Theorem 5.1.5].

The above limit \(g(\phi)\) is denoted by \((b, \phi)\) and integrable by \((y), \phi\) for each \(y \in E\) [Theorem 5.1.5].

Lemma 8. If \(f(\phi)\) is integrable by \((b), \phi\) in \(E \phi\), then \(f(\phi)\) \((b), \phi\) is integrable by \((y), \phi\) in \(E \phi\) and
\[
\int_{E \phi} f(\phi) (x) \phi = \int_{E \phi} f(\phi) (x) \phi
\]

Now, we consider such a completely additive measure \(\mu\) on \((E, \mathcal{F})\)
\[
\mu(\mathcal{F}) = \left(\int_{E \phi} (x), \phi \right)
\]
and suppose that \(x \in E\) such that \(0 < \|x\| \leq 1\) and \(\|x\| \leq 1\).

By Lemma 1 and condition (\#), we have
\[
\left(\int_{E \phi} (x), \phi \right) \leq \|x\| f(\|x\|) \leq \beta \left(\int_{E \phi} (x), \phi \right)
\]

Therefore, we have, by Lemma 7,
\[
\lim_{p \to 0} \left(\int_{E \phi} (x), \phi \right) = \left(\frac{x}{x}, \phi \right) \text{ for } \phi \in C_0 (E),
\]

so that
\[
\text{(17)} \quad \int_{E \phi} \left(\frac{x}{x}, \phi \right) \phi \leq \|x\| f(\|x\|) \leq \beta \left(\frac{x}{x}, \phi \right) \phi, \text{ for } \phi \in C_0 (E).
\]

On the other hand, \((x)\), \((y)\), \((z)\) for \(\phi \in C_0 (E)\) \((i = 1, 2, \ldots, n)\) and by Lemma 8,
\[
\int_{E \phi} \left(\frac{x}{x}, \phi \right) \phi (x, y) = \int_{E \phi} \left(\frac{x}{x}, \phi \right) \phi (x, y) = \phi (x, y) = 1.
\]

Consequently, on account of (15) and (17), we have
\[
\text{(18)} \quad 1 \leq \int_{E \phi} \left(\frac{x}{x}, \phi \right) \phi \leq \beta.
\]

For \(\xi \in \mathcal{F}\) finding in Lemma 3, there exist two constants \(0 < \gamma \leq \delta < +\infty\) such that \([\xi]/f([\xi]) \leq \Phi(\delta|\xi|)\) and \(\Phi|\xi| \leq \|\xi|/f([\xi])\|\), because \(\|\xi|/f([\xi])\|\) is equivalent to \(\mathcal{M}(\|\xi|\)). Consequently,
\[
\text{(19)} \quad 1 \leq \int \Phi\left(\frac{x}{x}, \phi \right) \phi \|\mu \| \text{ and } \int \Phi\left(\frac{x}{x}, \phi \right) \phi \|\mu \| \leq \beta.
\]

For any \(x \in E\),

In [8], we prove that for any \(0 \neq a \in E\) there exists a sequence of step elements \(x_n \in E\) such that \(0 < \|x_n\| \leq \|x\|\). Hence, by the Lebesgue's bounded sequence theorem,
\[
\lim_{n \to \infty} \int \Phi\left(\frac{x}{x}, \phi \right) \phi \|\mu \| = \int \Phi\left(\frac{x}{x}, \phi \right) \phi \|\mu \|
\]

so that, from (19),
\[
\text{(20)} \quad 1 \leq \lim_{n \to \infty} \int \Phi\left(\frac{x}{x}, \phi \right) \phi \|\mu \| = \int \Phi\left(\frac{x}{x}, \phi \right) \phi \|\mu \| \leq \beta.
\]

Thus, the function space \(A = ((x), \phi); x \in E\) comes to a modulated space, with the modular
\[
\phi(x) = \int \Phi\left(\frac{x}{x}, \phi \right) \phi \|\mu \|,
\]
which is topologically isomorphic to \(R \), that is, for the modular norm
\[
\left\| \frac{p(x)}{q(x)} \right\| = \inf_{\alpha(x) \geq 1} \frac{1}{\alpha(x)} ,
\]
it follows that \(\| \alpha \| \leq \left(\frac{\| (\alpha, \beta) \|}{\| (\alpha(x), \beta) \|} \right) \) \(\beta \| \alpha(x) \| \) for each \(x \in R \).

Therefore, the modular norm \(\| \cdot \| \) on \(A \) is continuous (by the continuity of \(\| \cdot \| \) on \(R \) and \(A \) is non-atomic (by the non-atomicity of \(R \)). Consequently, the modular \(\varepsilon \) on \(A \) is finite \((11; p. 62) \) and \(9(\S 10) \), i.e., \(\varepsilon(x) < +\infty \) for every \(x \in A \).

These facts show that \(R \) is topologically isomorphic to a subspace \(A \) of the Orlicz space \(L_\Phi (\sigma, \mu) \), however, we can verify that \(\Phi \) satisfies the \((A) \)-condition, so we know the inclusion \(L_\Phi (\sigma, \mu) \subset A \), by the same method as in the end of the proof of the theorem in \(7; p. 150 \) and \(589 \).

In what follows, we shall only prove that \(\Phi \) satisfies the \((A) \)-condition. By property \((v) \) for \(R \), which is described in section 2, there exists a positive integer \(k_0 \) such that
\[
\| (q_i) \| \leq \frac{1}{\beta} \| (p) \| (i = 1, 2, \ldots, k_0)
\]
and for any orthogonal partition
\[
(p) = \sum_{i=1}^{k_0} (q_i)
\]
with \(\| (q_i) \| = \| (q_i) \| = \cdots = \| (q_k) \| \). (The possibility of such an orthogonal partition arises from the facts that \(R \) is non-atomic and has the continuous norm). We have therefore
\[
\left\| (p) \right\| = \left\| \sum_{i=1}^{k_0} (q_i) \right\| = \sum_{i=1}^{k_0} \left\| (q_i) \right\| = \sum_{i=1}^{k_0} \left\| (q_i) \right\| \leq \frac{1}{\beta} \left\| (p) \right\| \sum_{i=1}^{k_0} \left\| (q_i) \right\|
\]
and hence
\[
\left\| (p) \right\| = \frac{1}{\beta} \sum_{i=1}^{k_0} \left\| (q_i) \right\| .
\]

On the other hand, we have, by \(13 \),
\[
A \leq \left\| \sum_{i=0}^{\infty} (q_i) \right\| \leq B
\]
for non-zero projectors \(x, y \) with \(\left\| x \right\| = 0 \) and \(\left\| (x) \right\| = \left\| (y) \right\| . \)

Accordingly, we have
\[
\left\| \sum_{i=0}^{\infty} \left\| (q_i) \right\| \right\| \leq \frac{h_0 B}{2} \left\| (q_i) \right\| (i = 1, 2, \ldots, k_0).
\]

For any \(\xi > 1 \), we take a projector \((p) \) satisfying \(\| (p) \| = 1 \) and use \((p) \) instead of \((p(x)) \) in \((22) \). Then, for the orthogonal partition
\[
(p) = \sum_{i=1}^{k_0} (q_i)
\]
with \(\| (q_i) \| = \| (q_i) \| = \cdots = \| (q_i) \| \), we have
\[
\left\| 2 \xi (q_i) \right\| \leq 1 \quad (i = 1, 2, \ldots, k_0).
\]

Therefore, considering \(\xi = 2 \xi (q_i) \), we have
\[
f(2 \xi (q_i)) = \frac{1}{\beta} \left\| \sum_{i=0}^{\infty} \left\| (q_i) \right\| \right\| \quad \text{(by Lemma 1)}
\]
and hence
\[
\left\| \sum_{i=0}^{\infty} \left\| (q_i) \right\| \right\| \leq \frac{1}{\beta} \left\| (q_i) \right\| \quad \text{(by (22))}
\]
and
\[
\left\| \sum_{i=0}^{\infty} \left\| (q_i) \right\| \right\| \leq \frac{2 \beta}{B_k} \left\| (q_i) \right\| \quad \text{(by Lemma 1)}
\]
and hence
\[
\left\| \sum_{i=0}^{\infty} \left\| (q_i) \right\| \right\| \leq \frac{2 \beta}{B_k} \left\| (q_i) \right\| \quad \text{(by (22))}
\]

Namely, we have
\[
f(2 \xi (q_i)) = \frac{2 \beta}{B_k} \left\| (q_i) \right\| \quad \text{for all } \xi > 1
\]
and hence \(M(\xi) \) in Lemma 3 satisfies the \((A) \)-condition and consequently \(\Phi(\xi) \) satisfies also the \((A) \)-condition, because \(\Phi(\xi) \) is equivalent to \(M(\xi) \).

Thus, the normed lattice \(R \) having the properties \((1)-(v)\) is topologically isomorphic to the Orlicz space \(L_\Phi (\sigma, \mu) \). The theorem is proved.

References

A norm satisfying the Bernstein condition

by

ROY O. DAVIES (Leicester)

In the research that recently culminated ([1], [3], [4]) in the proof that all separable infinite-dimensional Fréchet spaces are homeomorphic, one step (not however used in that proof) was the introduction into c_0 of a new norm, equivalent to the original norm but in addition satisfying the "Bernstein condition". Bessaga [2] gives a rather complicated construction and proof, communicated to him by Kadets. The purpose of the present note is to point out that the very simple norm

$$||x|| = ||x|| + \sum_{i=1}^{\infty} a_i |x_i|$$

for $x = (x_i) \in c_0$,

where $\sum a_i$ is any fixed convergent series of positive numbers, will serve the purpose equally well. In view of the inequalities

$$||x|| \leq ||x|| \leq \left(1 + \sum_{i=1}^{\infty} a_i \right) ||x||$$

it is obvious that $||\cdot||$ is an admissible norm, equivalent to $||\cdot||$, and it remains to be shown that it satisfies the Bernstein condition. Thus, we have to prove the following

Theorem. If $x_i \geq 0$, $y_i \geq 0$ ($i = 1, 2, \ldots$), $x_i \to 0$, $y_i \to 0$, and

$$\sup_{i \geq 0} x_i + \sum_{i=1}^{\infty} a_i x_i = \sup_{i \geq 0} y_i + \sum_{i=1}^{\infty} a_i y_i = \delta_j \quad (say)$$

for $j = 1, 2, \ldots$, then $x_i = y_i$ for all $i = 1, 2, \ldots$

Proof. Suppose not. If k is the first index for which $x_k = y_k$, and say $x_k > y_k$, then the inequality $x_i \geq y_i$ cannot hold for all $i \neq k$, otherwise (1) would fail for $j = 1$. Hence there exist indices m and n such that

$$1 \leq m < n, \quad x_m > y_m, \quad x_n < y_n,$$

and $x_i = y_i$ for $m \leq i < n$.

MURoran Institute of Technology, Japan

Reçu par la Rédaction le 31. 8. 1966