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Introduction

Important in the study of partial differential equations of parabolic
type ave classes of mingular integrals of the form

i—z
(1) lim [ wa t; 0y, t—8)f(y, 9)dyds
e
and
t—g
(2) lim [~ [E(y, 82—y, t—s)f(y, 8) dyds.
&0 3 §o)
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82 E.B. Fabes

Here » and y denote points.in E" and ¢ and s belong to (0, co). The
basic assumptions on K(w,t;y,$) are
(i) K(z,t;y,8) =0 for s <O,
(ii) there is an a > 2 such that for every 4>0, K(z,t; dy, As)
= A—n—-uK(a"’ Y, ))
(iii) IK(w7 t;y,L)dy =0..
En

Because of the “homogeneity” of K(x,t;y, ), it is easy to see that
K(z,t;y,8) = K(z,t;y/s’,1)s7"", where f=1/a. The L’-convergence
of (1) a8 ¢ - 0 when K (z, t;¥,s) = K (y, s) is independent of (»,1) was
congidered by B.F. Jones, Jr. in [5]. Also in [5] Jones pointed out the
analogy of his class of kernels with those of Zygmund and Calderén
in [1]. Likewise here the kernels, K (#,1;y,s), are analogous to the
“yariable” kernels digscussed by Zygmund and Calderén in [2].

Chapter I of this work examines again the question of the conver-
gence of (1) and (2) a8 & — 0 in the L”-gense over E" X (0, co) for kernels,
E(z,4;9,8) = K(y,s). Here 1 <p < co. The conditions for LP-con-
vergence ‘are different than in [5]. In particular, no smoothness condi-
tion on K (y, 1) will be needed for the case p = 2.

In chapter II we return to the kernels K (z, t; ¥, 8) and give sufficient
conditions for the L” convergence of (1) and (2) a8 ¢ = 0-for 1 << p < co.
This result is applied in chapter IIT to obtain the existence and uniqueness
of generalized solutions, u(x, t), of parabolic partial differential equations,
satisfying, in somé sense, u(z, 0) = 0.

Most of the notation which will be used will be defined during the
courge of this work. We will, therefore, only list here a few basic ones:

= (Byyeey @)y Y =(Y1yeerYn)y

n
209 = Yo, 3 =

Qe

{wel": o] =1},

d= @#0), fo) =5 [fwe=ray.
o] @ )

We will let ¢ stand for a positive constant, not necessarily the same
at each occurrence, depending only on the dimension n of E" and p.

Unless otherwise stated, the functions f(=, 1), which we will con-
sider will belong to I”(E"x (0, 00)),1 < p < oo, -and we will consider
them extended to all of E™** by setting f(z,t) = 0 for ¢ < 0. The terms
“IP.norm” and “IP-limit” will genera,lly refer . to the I’-norm and IP-
limit over E™ X (0, o).
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I. I? . CONVERGENCE

1.1. L*theory. We begin by studying the case whenfe L2 (E" X (0, oo)).
Extend f(y,s) to all of B"™ by setting f(y,s) = 0 for s < 0. Sct

K(z,t)  for s<t<R,

K, p(x,t) = .
2(: ) ‘ 0 otherwise,

forle, ) = [ [E, pla—y, t—o)f(y, s)dyds = f+E, n(, 1)
0 gm
and, finally, set Q(z) = K(z,1). We will always assume conditions (i),
(ii), and (iii) on K (z,t), given in the introduction.
LeMmA 1. We have

) 11%E,R(w <o [le J)|{1+ry1+ log ‘ dy,m' ==
an z'oy| Jee]
i) If f 14+ 1y))1R2(y)|dy < oo, then for t;/:O
lim ]imK,,R(m, t), Lm limKE,R(m, t), and ]imff, rlz, 1)
R—00 £=0 &0 R—c0 00 '
R

all exist and are the same.
Proof. Assume ¢ > 0. We have

N 1(9:011) its ’b(:tq’y)sﬁ ils
K, n(@,1) = ff@(y/s e dyds = f!z y)f dsiy.
13 En
Hence
. BBz s i w
K, r(z,1) =« f-Q(?!) f —;——deﬁl; @’ =%

E™ x|

Before proceeding to look at the last expression, we will state a lemma
which will be useful and whose proof is given in the appendix of this
work.

LemMA 2. For a 2, the integrals

R N
Biws em" B 6:‘:1.8 em(va)"
——ds and f —ds
$ 8
1 1

are unwiformly bounded in v >0, R > 1.
Recall that
Rfjz HEovs fil]im1%s®
—a f o) [ S dsay.

b Pz

Ks,R(mi t)


GUEST


84 E.B. Fabes
If Rf|z| <1, then, since [Q(z)dw =0,
E?‘I/
Rhja) ou)s
" e [€ —1
K, g, =a f 2(y) f gl )“[-ms——wjdsdy.
B fz|
Hence
Ko z(z, 0] < a [ |y]1Q0)|dy.
En
If f|z| > 1, we can write
) Rz[if'oyl e:hiaei(q,s)n
(3) K. g, 1) = Q(y) dsdy,
" Ry 2oy}

where R, > R, >1 and v = t//|z]|2'0y|.
If R;|a’oy| > 1, then using the second integral in Lemma 2 we see
from (3) that

Koz, )] <C [|20)]dy.
E’VL

If R,|z'oy| <1, again from (3) we have

[ fl;dsdy < [10Wiog .

Fo By |zoy]| B

K, 2, 1)] <

Since R, =1,

0g . —
Rl oyl + glwoyl o8 sy
‘We conclude that.
K, n(@, )] < lm(m 8 |
A

If Rila'oy| <1< Ryla’oy], we write

“ 1 k18 ,t(va)*
R, plo, 1) = f!z(y){ [ s

b Ry’ oy|

R
2120 k18 o)

ds} dy.
‘As in the above situations, we can write

of {

IKBR (@, 1)|
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Finally we consider the case when &’|#] <1 < Rf|#|. But again

1 Rbal Fwov) gty
K, r(z,1) = fﬂ(y){ f—l—f ¢ ds}dg/.
eﬂ[:l: 1
Hence
(4) |, nl@, 1] <0 f 2 i+ 11+ log 17— yl|

For t< 0 we first note that K&R(m 1) = ER(—~w, —1) and that

K(y,s) = (y/s")[s"**, s > 0. Since
[eway =o
En

we see that equation (4) is also valid in this case.
This completes the first part of Lemma 1. We will now show the

pointwise convergence of ﬁfs' r(z,t) for t £ 0 under the assumption that

Ja+mhiew)dy < .
We have B

its i(zoy)st

- o f4

Eﬂr
e [ e-ri(zw)sﬁ 1
- f Q) { f - Tas+
E"’ &

f 6 [61. a:oy)sﬂ 1]

8

dsdy

ils i(zoy)sh

J-e ¢
, 8
< Cla|ly].

'i(xcv)sﬁ
ds.
u (ds ) $

Integrating this last expression by parts we see that for (z, ?) fixed,
t 0,

cls} dy.

ds

8

eus 'L(zc]/)sﬁ

[=—

1

g 18 gitmov)sP
f —_—ds
8

1

Since (1--[y])1LQ(y)| e L(E™), Lebesgue’s dominated convergence the-
orem applies and the second part of Lemma 1 follows,

< Co (1 191)-
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TrporeM 1. If feL*(E"x (0, oo)) and if

flﬂ(y) {H— lyl+log o +lo gJyII}
e

|
where C s independent of «', then
i) [Ifs e < OHf”zy

( ii) there ewists ]ﬂ,eL2 such that ||f,z—fillo >0 as R - oo;

(ifi) there emists feI® such that (f.—flls—0 as &— 0.

Proof. Since K, p eL(E™), we have fe,R = fI;T,_R and from Lemma 1
it follows that [f,zlls = |fe,&llz < Clifla-

From Lemma 1 and Lebesgue’s dominated convergence theorem we
have

Wfur—fezlls = Ifur—furll >0 as

Hence (ii) follows. Note that

f, = im K, »f
R0

R, R — oco.

almost everywhere. Therefore ||f:——f:,[|2 = ||fi—]?,,||2 -0,
Lemma 1. So (iii) follows.
REMARE. For almost every (m, t)eH" X (0, co),

f—s

f me —y, t—8)f(y, s)dyds.

1]

again using

fulm, 1) =

Proof. There exists a sequence f,, B > fg pointwise almost everywhere
a8 B; — co. Observe that for t fixed and R, > t—s,
)

[ [Erla—y,1—)f(y, )dyds = [ [K(a—y, t—s)f(y, s)dyds.
v

0 gn 0
1.2, Weak type (1,1). In this section we will use the notation |F|
to denote the Lebesgue measure of the measurable set F.

Definition. Suppose T is a linear operation from It (B % (0, o0))
into the set of measurable functions on B"x (0, co). 7' is said to be of
weak type (1,1) if for every number M > 0

e, 0] ITf] > M} <

where 4 is some positive constant independent of f.
REMARK. For feI*(B"

A/ fllis

% (0, o0)), f. is finite for almost every (@, 1).
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Proof. It will be sufficient to show that fs(a}, t) is finite for almost
every (z,0)eB"X(0,R), 0 <R < oo, and we may assume f>0. We
have

R ® R . ) .
[ [1flawa < [ [{[ [IE.(e—y,t—s)dadt}f(y, s)dyds.
0 gn 0 gn 0 gn .o

Since
2 ,
[ [I1K.(a—y,t—s)|dods =

0 pn

HIK

, b—s ldmdt
is 0 for s > R, we have

R o
[ [\fe, )idait <

0 g
Tor the next theorem we introduce the following set: y >0, a =1/8,

W,(y,s) = {1 t> 20|, t > ls]-}_-}/lyl“},
9. In addition to the hypotheses of Theorem 1, assume that

Oe, Il

THEOREM

|K(x—y,t—8)—K (z,1)|dodt < 0,,
Wy“/rs) ot
where O, is a constant depending only on y and K and not on the point (y,8)-
Then the operation f — f, is of weak type (1,1). More specifically, for any
M >0,
[{(, D] f(w, )] > M}
“with A independent of e.
Proof. We may assume f > 0. Given any M > 0, there is a sequence
of non-overlapping rectangles, I = E"x (0, co), of the form I{x I{)
where I{ is an n-dimensional cube, and I{ is a 1-dimensional interval,
satisfying
(@) I NP1 is contained between two positive absolute con-
stants mdependent of & and M;

f f < O0M, C absolute constant;

< A/M|fls

|Ik|
(¢) f < M almost everywhere in the complement of Dy = UIk

(See [4], p. 224, and [B].)
Set
f (w) in D}y = complement of Dy,
h =
ff in each Iy.
I

Ll
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Claim. heI' ~ L? and ||, < CVMHfH;. It is clear that heLl(E”x
x (0, °°))

oo

[ [, rdedt = [ h2dedt+ [ 1hj2dmds.
o gn Dy Dar

Using (b), (¢), and definition of %, we have
[~ o0 1 2
|M2dwdt < M | |f| dwdt -+ {——— f} dudi
ofE‘[ D;‘{ gl}cf i ka

<Mufnl+0M2w‘ [ {ﬁlk—[ [ f}dwdt

k=1 Iy I
< O0XM|fl,.

Now set g =f—h. ¢ satisfies the following:
1) g =01in Dy, 2) Ifgdwdt =0, 3) lgll, < 21[fll,-

k
1) and 2) are immediate; 3) follows since

1
o< o+ [n<ine ) / (o [ ffaeas

Iy
Hence [lgll, < 2[jgll, and

{i@, 01 i) > ﬂ}'

H@, )] 1f. > M| < :

fie, 011> 325}\+

Set U = {(a, )| 1§, > M2}, V = {(@, 9| [} > M[2}.
Using Theorem 1, we see that

M ~
V17 < IhJE < OlmiE < oM fy,.
He‘mee IV-J < A/M||fll;. We are left to show that U < 4]/ M||fl],.
For this we first expand, concentrically, each side of I, to a length of

five ;imes the original length. We denote the resulting interval by If.
et

0
i = Ut
k=1
Clearly Dy < D% and
. 1
Dkl <01Du <0 _kZ—ﬁka f <o/,

U=(Un D)o (U~ DY

icm
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and
|U ~ DY <2/M f]ﬁsldmdt.

e
Dy

Therefore, we will be through once we show that

[ 1al <Clfls-

*’
Dy

The remaining proof of Theorem 2 is devoted to this fact. We have

G, )= D [ [ K.(o—y,t—s)f(y, s)dyds,

BB m

fK(w~y, t—s)g(y, s)dyds.

1At ™

Set I = (ay, by). :

Case 1. (ak, bk) ~ (0, t—e) = (a,k, b;) and ¢ > bk+(bk—-ak).

Let (yx, sg) be the symmetric center of I,. From property (b) of g,
we have

ACUED)
k

folw, ) = 3 [ [[K(@—y,t—8)—EK(z—yz, 1—s)]g(y, 8)dyds.
% 70 zm

In this case we have t—s; > 2|s—s;| and since > by+ (bp—ay),
t—s; > [s—s|+y]y—yxl®, ¥ a positive constant. (Recall that [I{)|
= 0|1

Case 2. (0,1—e) ~ (ag, by) < (@r, br) and & > by+ (bp—az).

In this case, I is entirely contained in the hali-space,

{(,8) | s >1—3c}.

Let 5(t) denote the characteristic function of the interval (0, 3).

Therefore
IQ(w——y/(t—‘s)ﬂ)] t—s
K (z—y,t—s)| < W é >

where 1/r, is the function equal to 1/r'f0r r > ¢ and zero for r < e.

Case 3. ap <t < bk+(bk—ak).

For all s; [t—s| < 2/IP!; but since (x,t) lies outside I}, it is clear
that for all yely, l[w—y| > O|I{|", ¢ an absolute constant.
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From cases 1, 2, 3 we see that

ffﬁsrdwdtsz ffg(y,s)mydsx

% I
Dy k

x [ | @y, 1)~ K (0 =y, 1—s,) dodt] +
{81, > 2|55
8> 18— 8| + ¥l —gl®

+ 2 [l snasa| [ o
% I

1 8>¢

'2k1§c1)

+2kj1}cf|g(y,s)ldyds[uf | %&” | i dt]

-yl o

(t_s) B&”—:q/ o i”)ilﬂdavdi]%—

Using the hypothesis of the theorem with y replaced by y—y; and s
replaced by s—sy, it follows that the first sum is majorized by a constant

times
; [ 191dyds < 2|7,

The same conclusion holds for the second sum once we note that

B Re—ylt—s)f) F1 oo
f 8(t s/s)Eldedt_[?E{IQ(m)ldmdt

1-8zs
-0 fm(m>|dm.
En

For the third sum we have
o,

237 {Q ( i |1
z—y/(t—s) 1
f f —W—d@dt f -~ f 10 ()| dvdt.
P, gon) 1/n 0 i (7) 1n
2~y >ClI), Y [zu|>ollsc |
Since

[ 1al12@)ldz < oo,

Bmn

the last integral is majorized by a constant times

21 o
p1a, o I
G | = O <0
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We conclude that
f lgl < Cflls-
Dy

1.3. I*- -convergence. 1 < p < co. Before proceeding to the IP-con-
vergence of f,, we list the conditions on Q(z) = K (z,1) to be assumed
in this section.

f Q(z)dz = 0.

"

(b) E{ (1 -+ |y| + 10g |x—’10_y—]!) 19(3/)] dy < G, independent of 2’ = m/[m[ .

(e) f | K (z~y,t—s)—K (x, t)|dedt < 0,, depending only on v,
Wy(y,s)
not on (y, 5). (Recall W,(y,s) = {(z, )]t >2|s], ¢ > |s| +»[y|%.)
(@) [2(2)] <O(L+[a))™ " 6 > 1.
THEOREM 3. Under the above conditions
1) |[f5|[p Alfllp, 1 <p <2 with A independent of ¢ and f.

2) There is a function, f, belonging to LP(B™ X (0, oo)) such that

fi—flp >0, 1<p<2

Proof. (1) follows immediately from theorems 1 and 2 and the
interpolation theorem of Marcinkiewicz [8]. The proof of the second
part will be accomplished in a series of four easily proved remarks.

CF(B™ x (0, 00)) will denote the class of function f(z, ) e 0°(E™ x (0, oo))
and with compaet support contained in E™x (0, co).

REMARK 1. If feCF(E"x (0, oo)), there is & number R, depending
only on f, such that f;(m,t) =f[,(m,t) for t>R and &,6 <1.

Proof. We need only observe that if {(#,t):¢ > R—1} is contained
in the complement of the support of f, then

R-1
fulw, ) = [ [E(@—y,t—s)f(y, s)dyds.
& E’n: .

REMARK 2. If feOF(E" % (0, o)), then
(i) f:(m, t) converges pointwise as ¢ — 0.
(ii) [];a(w, t)| < M, depending only on f.
(iii) [fg(m,z)—fﬁ(w,t)] L Olal™™ for |x| sufficiently large, depending
only on f, and for 0 <e, 6 <1.
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Proof. Using condition (a) on 2,

11
folmst) = [ [E(y, )ifo—y, t—s)—f (@, )] dyds.

& E’I}
Since |f(z—y, t—s)—f(z, )] < C(|y|+]s]), we see that

. * s
i< f [N Gy spayas = 31 < o0

8
0 gn

(R as in firgt remark).
Assume that B above is so chosen that f(y,s) = 0 if s > R—1 or

if |y| > R—1. Now take » such that || > 2R. Since f,(w,t) —-f:(w, ) =0
for t >R, 0 < ¢ 6 <1, to show (iii) we may assume ¢t < R. Hence

f .Q(w;;y)’dyds.

V<R
Using condition (d), and noting that [y|/s’ < }|«|/s®, we have

i3
- ~ 1
Fulm, 0—~Totw, 0] < 0 [

. . R
fe(@, ) ~Folo, )] < Or [ (14 |o][26) "~ 257"~ ds

< Cpla|™™  for |a| > 2R.
REMARK 3. If feOR(B"X (0, 00)), then |[fi—fyll,—0 as &,8 -0,
1<p<oo.
Proof. From (1) and (2) it follows that

oo o . R - .
Offlfs—fal”dwdt*:f [1f—folPdedt, 0<e,8<1,
En "

[}
and the last expression tends to 0 as s, 6 — 0 since
\fulws ) —fs(@, B < O(1+[al)™.
; REMARK 4. For feIP(B"x (0, 00)), 1<p <2, |[fi~foll =0, as
e, 0—>0. .

Proof. Let {f,} be a sequence of functions converging to f in L?
and such that f,e0F(B"X (0, o0)). We have

WFa=Folls < W ~Fo bt 1Fs—Fllo - [Foe—F ol

_ By the first part of Theorem 3, |If,—F,.llp < A|f—f,ll, and |f,—
~Inlle < A|[f~fullp- Hence the first two terms tend to zero as # - oo,

uniformly in e, 6. By Remark 3, for » fixed llf —Fusllp =0 a8 &, 60
This completes Theorem 3, , Wl A

o
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We now want to consider the case p > 2. The usual proof (see [1])
for this case uses the “inverse of Holder’s inequality” and the fact that
the conjugate operation is of the same form as the original operation.
Here the situation is different, but only slightly. For let f<L?(E" x (0, o)),
p > 2, and let ¢ be the conjugate of p, that is 1/p+1/¢ = 1. Then the
“inverse of Holder’s inequality” says that

if = Sw  |[ [file, gz, t)ded]-
2603 (EMx (0,00)) O EP
lollg<1
Now
fﬁgdmdt= f(Ks*f)gdmdz
g7+l B+l
= [ 9] [ Koy, t—s)g(s, 1) dodt] dyds.
gn+1 B+l

Looking close at the inner integral we see that we want to consider
now kernels K*(x, 1) satisfying:
(i) K*(@,t) =0 for t > 0;
(i) E*(ym,y°t) =y " "K(z, 1),y > 0;
(iil) [E*(#, —1)de =0.
"

E
If we set
) K*(x,t) for t< —e<0O0,
K: (#,8) =
0 for t>= —e,
then
[ E.a—y,t—s)g(z, )dzdt = (g*E3)(y, 5),
41
where - K*(z,t) = K(—z, —t).
Set

gr@, 1) = (Er*g)@,t) = [ [E*@w—y,t—s)g(y, s)dyds
s+e gn
and let Q*(x) = K (z, —1). We will consider the mapping g — g, a8 an
operation from IP(E"x (0, o)) — L*(E").
Proposrrion 1. If geL*{E"X (0, oo)) and if

1
log-—)dy <a,

e’ oyl

[12r [+ 101+
E"

independent of o' = x/|z|, then llgill, < ACglls, 4 an absolute constant
independent of e, g, and K*.
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Proof. Set
. K*(w,t) it —R<<i<< —e,
z,R(wi t) = .
0 otherwise.

If we also let K, gp(z,t) = K} n(
follows from Lemma 1
= s,R(—‘ma ‘t)-

Now assume Q*(x) satisfies conditions (a), (b), (d). We also assume

(¢) [ [K*(w—y,t—s)—K*(x,1)|dedi < C,, depending on y and K*,

—, —1i), then Proposition 1 easily
in Section (1.1) noting that K!g(w,1)

Wy :9)
but not on (y, s), where Wy(y, s) = {(&, 1) : ¢ < —2]s|,1 < — (|s] 4+ |y|")}.
PROPOSITION 2. If geL'(E" X (0, o)), then the operation g9 is

of weak type (1,1) wzth constant independent of & and ¢.

Proof. We again decompose E"x (0, co) into a sequence of non-
overlapping rectangles, I, = I x I, satistying the conditions stated
in Theorem 2. The proof now follows exactly as before with cases 1, 2, 3
respectively replaced by

1) t‘i"a < gy t < a’k_(bk_a'la)’

2) t+e > ap and ¢ < ap— (b —ay),

3) ap— (br—ax) <t < by.

Prorosirron 8. If 2*(x) satisfies conditions (a), (b), (¢'), (d), then for
1<p <2, |6fln < Algllpy A independent of ¢, g.

Proof. This follows from propositions 1 and 2 and the Marcin-
kiewicz interpolation theorem.

THEOREM 3'. If Q(x) satisfies conditions (a)-(d),
holds for p > 2 :

Proof. We have

then Theorem -3

Wl = Sw | [ file, g0, o],
00 (B (0, c0)) EM+1
lollg

ff(wz (@, t) dwdt = ff(a:,t)g;"(m,t)dwdt,

RN B+l
where
gr@ ) = [ Kio—y,t—s)gly,s)dyds, with K*(n,1)=K(—~0, ).

Fn+L

Since

[ 1E*@—y, t—s)—K*(@, 1) dodt

Wyw,8)
= f K

Wy(‘“ v,—9)

(@+y, t+8)— K (2, 1)] dodt < O,

icm®
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y (¢), condition (¢’) holds and hence

| [ J@, 090, Hdwdt] <11fl, gk @, Dl < A fl-

g+l
Since remarks 1-3 did not depend on the fact that 1 <p <2, we
see that for p > 2, ||f—follz, > 0 as ¢, 5 > 0.

Observation. Theorems 2, 3, and 3’, and the interpolation theorem
of Marcinkiewicz show that for all p,1 < p < oo,

Il < CLA+B)Iflp

where ¢ and y are absolute constants depending only on p and », and 4
and B, satisfy the conditions

1og

e
, )| dxdt < B,.

fue(y [+

K (@—y,t—s)—K(
Wy (¥,5)

1.4. A special case involving Hermite fumctions. In this section
we shall derive bounds for the norms of a special sequence of operators,
which will be useful in Chapter II.

Agsume 7 e(—o0, oo) and denote by H;(r) (j = 0,1, 2, ...) the Her-
mite polynomial of degree j, that is, the polynomials, H;(r), are defined
s0 that ‘

[ Hy(r) Ho(r)e " dr = V25! b,
where 6, ; denotes the Kronecker delta. We state here, without proof,
properties of H;(r) which will be used in this section and in Oha,pter II
(see [7]).
1) e H(r) = (—1) (@/dw) e,
2) Hy(0) = (—1) (2))!/5!.
) |H;(r)e —r2/2] < GZjlz(j )1/z
) (dfdr)H;.,, 'r)-—2(y+1 (7).
The function H;(r)e” 2 iy called an Hermite function, and it is
well known that the sequence of Hermite functions form a complete,
orthogonal system over (— oo, co) [7]. So the sequence of funotions

Hy (20) Hy (@) ... Hy, (@) e "

(k; a non-negative integer) form a complete orthogonal system over E".
We will now adopt the following notation: k¥ = (ky, ..., k), k; non-
negative integer; k! = k! k! ... k!5 k] = ks a® =it .. kn'.-
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Set
//\\

ool — Hﬂk Je e, and  u(0) = [Huly) —Hi(0)162" (a).

Note that
[ 2u(@)dz = 0.
E‘Vb
Finally, set Ty(x, ) = Qp(x/t7) +1.
ProPOSITION 1. We have.

log ‘ d y < O (1) ] ] 2

oyl 20

Proof. Using formula 1 for Hermite polynomials we see that

[ 12w {1+1+
A

Quly) = O()MyPe " —H, (0)e~ .
From formula 2,

[Hi(0)] < 02" [ [ kel (kif2).

k>0
Hence.
f|9k Nay <o [] f|yﬂ’“¢e"y7”dy—| 02 [ [ 1e:I'(ks/2)
kj>0 —o0 k>0
<02""(n1’(k /2) + nkr q/2)-
k>0 k>0
Now
2 n
f e i ylay < Y | ¥ 6~ y) dy
i=1{w 12513t 1<man)
<0 2 [ 1Moy dy < 02" ] kT (kef2).
j=1 gn kg0 )
Therefore,
[ 19490l 91dy < 021" et [ s
v ;>0
J12w)ifoglvllay < ¢ [ lloglylldy(l—l—lffz O)+0 [ Iyl 12| dy
b <1 l¥>1
and again,
J 199 [logly|| dy < 02" [ |kl (ksj2) < 02 (ot} T e
i 1 I
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Finally we want to consider

1
Quy)log——d
f"‘ @ oyl

—dy +C|H(0)]-

ay <0 f e log

flszk(y og

In the last integral, multiply and divide the integrand by (14 |y ")
and apply Schwartz’s inequality to the functions

gLy ) and (hg——]m,i ,)(1+1y1("+1>’2>-1

Y|

Then this integral becomes majorized by

of [ ey,
B
¢ independent of z'. We have

f ly™ eV < o H f lyd ™ dy, < 02™ [Tk,

k;>0 —o0 k>0
n

Juwie vy <03 [ lyle " dy.
i=1 gn

Hence

[ e vy ay < 02 [ [ D(ectn) (etn)
B k>0

< 02M [+ ().

ki>0

We conclude that

dy < 2™ H {0 P (T 1R,

o oyl >0

f [Q(y)|log ——

Oollecting the above results, we see that Proposition 1 follows.
PROPOSITION 2.

\T(@—y, t—8)— Ty (@, 1) dwdt < C2™2 (k1) [ %2
W,0,8) k>0

Studia mathematica 28.1
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Proof. Set
P = |Tp(w—y, t—8)—TLy(w, t)| dwds.
W,{u, %)
We get
P< [ |Tulw—y,t—s)—Ti(w, t—s)| dodi+
>8] 4-y1yl*
+ [ | Tul, t—8)—Ty(w, ¥)| dadt,
t>2|8|
P <111,
Case 1.
(1) Tule—y,t—s)—Ty(z, t—s)
1 |m—yl®

i [g Oi(%i%)kiexlj{ 4 (t—s)¥ }](t“s)‘"ﬁ*u
._[”01‘((tfis)';‘r)kiexp{wi (tfi)‘ff’*}] (1—g) ™1 4

+ (t—s)""-1H, (0)[exp{-—4— i‘f glz}Mexp{——%——(—iljaf%—zﬁ—}].

' - 1 jo—y]? 1 e
| H(0)| (t—s)~ "1 exp{ »-——} exp{»-— } daodt
W, 10,5 4 (t—s) 4 (t—s)*
< |H -1 1 y | 1
< [Hi(0)] (t—s) f exp— — |@——"—| 1 —exp{ — o2} | dedt
, 4 (t—-s)? 4
>8]+ iy b
- 1 y P 1
< [Hy(0 f t f exp{—z 5 —exp{—-—&— imP} dudt.
vy

Applymg the. mean-value theorem to the function e~""* and noting
that |y| /¢’ < C,, we see that the last integral is bounded by

C1H(0)] ly f =18 fexp{~—(Jm| )}dmdth’,,[Hk(O)[.

> yly)® En
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Now
T o (@) 1 foi—l?
2 t—g) "1 ”C( ml_y,i) expl = T
(2) (t—s) I R v P\ Ty

t> 8] +ylyi® B

dadt

-

dadt.

n I 1 w‘i
_QC"(u s)‘*) exp{‘Z(z~s>”}

¥, \M 1
( (t—s)“) exp{_l””

n

Y

- [ el

1> Is|+71y|* En =1

. 2
OiaZ?,]LﬂG s

i=1

Olaim. (2) s majorized by 2™ (K1)* JT k.

ki>0
Proof. We will use induction on the dimension, n.
Case n = 1. We want to consider

(1—8)"! f l

i>[sl+yw®

-

1
% —
wexp{ 4:6}

)=l
—s) 4 (t—s)?

dz,

where 2, ye(— oo, + o0) and % is a non-negative integer. Applying the
mean-value theorem to this integral, we obtain the following major-

ization:
T gy o+t 1 6y
Clyl ft—l ﬁf T exp{—z T — }dwdt—l—
t>y|y|® i "
s ] Oy P 1| by
+-Ck [y| f 17 f o= exp{ Tl }dmdt.
t=ywie —e

Here § = 0(z, y, 1) satisfies |8] <1. Now set 4 = |y|/¥¥ <C,. We

will now show that for any non-negative integer m

+o0
Oy ™ 1 by [* m [ T
— = — | =5 < Om —1.
f &= exp{ 1 =5 }dw Om2™1 3
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For 7¢(0, co) the function # me=lt iy increasing for r < < Vom and

decreagsing for r > V2m. Thus

I

Oy ™ 1 Oy
m——iﬂ— exp ——4— &r— tﬂ

o [ S

Vg < |z 0uftP| <V i 2 d

| oy P\ <V 2m

m GXp { 1
v
B1 < 02™2p™ g™ !, The game inequality holds for B,. Since

e i decreasing for » > V2m and since |} — A4 > V2m in B, we
have

7

} de = By--B,-+By.

Jz— 01//i5| > V24

1
Bo< (lo1—)"exp |~ (ol -]
@|>V a4 )
r n 1
<2 (s—4)"exp —Z(S—A)z}ds
VIm+ 4

<2 f " exp {~ —j—sz}ds.
§ L

Therefore By < Om2™I'(m/2).
This concludes the proof for » = 1. Now agsume # > 1. We have

(t—s) f '2}__

iexa{ Ll Yi
o) P

n

[z

£ s +ylvl
. n L
- ” Osa exp {-— ~mi} deds
i 4
4=l
n—1 :
- Y\ ; A
<0, (t*—S) i f [” O(mm——(———_/:';—)—ﬁ—) exyp {—— —-il ;— —_.glf__‘_q_ } —
> lsl+ylvl® g =l 4 (t—s)

N1

- n Gy mﬂexp {_- T m'»}] wn”e'xl) {"‘ % mvzt} +
( ky 1 2
t-——S ) exyp {——' 'Z } x

¥ P 1
Ty — (t_s>ﬁ(}-mnﬂexp{—~—4«mﬁ} .

Yq
(t—s)

+6. [ w o

>8] 4-yly|®

(%—v%)k”exp{—%

X

icm®
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Applying the inductive assumption for the first integral and the
cagse n = 1 for the second integral, we see that our claim is proved.
Therefore we have proved that

[ \Tula—y, t—s)—Tx(w, t—s)|dadt < og™eg) [ .
W,,@,8) k>0
Finally we want to consider

II = Ty (@, t—s)—Tx(a, t)] dwds.
Wy (1.8)

Assume first that s > 0. Thus

n

. ki
@) Tulo, 1—8)—Tele, 1) = (t—)" H 0(“—27) x
1 2 (e feg 1«
T s)”}* ’ HC( ) ep{“_"}+

X eXp { 17
—ng—1 1 —nf--1
+H;(0)] (t—8) exp Il i—s)? —1 exp{—

!

1 2 1 ix2
|Hy(0)] (t—s)~"Texp {~ Zﬁ%} —t~"lexp {—— 1 l;%—} )dmclt
W, .8)
1 1 |z)?
<omlE | Ef [ - T )+

L - 1_@1‘ dadi, 0<0<1
+ (1— 0¥ 272 Xpl “os)? L0 .

This last expression is majorized by

CIH(0 1s1[ IWJeXp{_%l;l:}+

> 218
+ [ g f‘”‘ |-

1>3ls]

Since t > 21s|, t < 2(t—s), and therefore,

1 |z
|H(0)] ‘4‘@“_—8‘)273'}—

W, ,8)

—t nf-1 ex]p {

(t—s)"™'exp {—

m]2
T

< C|H(0)]-

}\dmdt O HL(0)] ]3] f%ds

1>1s]
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Now the first two terms in (3) equals Thus
+o00 . 7
L ki 2 x i 1 x
[ I —p-n (Wi ' 1 o f —_— exp{——l——ﬂ dx
Ci(t—s)~* 1 ((t_zs)ﬂ) eXP{——ZH—;)z"} - J (t—0s)* 4| (1—0s)
- z | { 1] = 2} i
: ——— Xy —— |5
L A 12 < f + f + f _l(t——@s)"] P 4|(t——08)’3
Oyt =) eXP = — 0. o z—0PI<YE  (m - 0s)PI>VE (i P>V
Gl ! 41 iaf(t=0) and jzitb<V]
" irst i i i i lity is major-
. The first integral on the right side of the .a»bove inequa: :
Clatm. For 1> 20s) ized by 02/PfPe~i?j*1P < €2'#jr(j)*+’. This bound holds for the
. wm \ 1 & second integral once we note that
k= i ! o = g
C;(t—s) i l/n((t_s)ﬁ) GX}_){— Y (t~—:‘)2ﬁ} — Hw !ml/tﬂ < 1/2]” <031 1.
o For the third integral we note that
um Z ki 1 2 ‘ o !ml -
— [ [oirﬁ*l/“ (—’) ex; { ‘} dm < 0212 (J! 1/2(] I 702;) s| (t—g)=™n-1, A, Sl N T
o v e e ) k=0 ofelt=e) (t—0s)? i? J
1= C’L

. is i i d b
Proof. We will use the induction on the dimension, . and therefore this infegral is bounded by

Case m = 1 (k now denotes a non-negative integer). We have 1l 1 jel®
f ) P\ T e
oo . 2 \E 1 g i@\ -
—g)~P=1m AN G STy 1) ence
[ e ((t—s)") ex’l’{ 4 u—s)”} (tﬂ) * o o v 1 @
—00 @
. _ —p=1n—1 ex’ i — }d
107 r ol | R e = R =
—f~1n— —o i2 s . —1-1f
XGXP{— TP ds < Ols| f ke(t—6s) 0~V l<m) X < 0P ()P (t—s) 1"
. Case m > 1. We have
1 x? || k+3 1 2 n k; 1 x} - —yn | Ti i
xe —2 Lo ~ﬂ—1/n—1(_—~w ——~-~~~—~}d. e B\ ___‘—}— Ca (5]
|- T b5y P\ T oY [ [ ot Goep) 2\ 2T ” ¥
1=1
. . . T 1 X
In general let us consider the integral 1 —pyn|_Fm__ {__ e }—
& xexp{—zﬁ} = [Cm(i—s) ((t_s)ﬁ P\ T L t—s)?
+o0 .
—p lz| Y 1 1@
{5) f (t—0s)~" 1’”“1( exp{——-w —-——»—--‘~—}dm 1> 218 T\ 1 am, —p=1n = 1}

. (1—6s) & (=67 [ i e (7) — ’ l(}t exp|— 7 r( +
Here j is a non-nega,tive. int(?ger. : ‘ psin|__Fm kmexp wm }[n Gt —s) P x
Let us recall that the function ’ exp { —4r?} is increasing for ¢ (0, V%)) +Com(t—s) i—s) t—s)**

and decreasing for » > 1/23 Now the integral (5) is majorized by m—1 . 1
. Ky 1 -501, —f—1/n v i
(@) o\ s |~ UW 7 )p{ M“ﬂ
)

—
( A(m;t:8)+B(w7t78)‘

+oo
(t—g)~F-tin-1 f

—

2
}dw

jex{ 1 z
S Iy e

*
(t—0s)?
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Using the case m =1, we see that

[14(@, 1, 5)|do < G22Ity ([ ] 1) 69" (5 —s)=2 "]
n

ki>0
Since ¢ > 21s],
[14(a,t,9)de < ozl’c'ﬂ(zoz)W(nkﬁ) [s] (£ —g)~"m=1,
Eln k't>°

Applying the inductive assumption in B(z, t, ) we have for t>2s,

[1B@,t, 8)|dz < 02" (! W(nk)\s ——s)“”””“

n fey>0

Our claim is now established.

Going back to equation (4) and applying the above for m = n, we

have

- ey N[ 1 ad
H Gli=) ((t—s)ﬂ) exp{ 4(t~s)*ﬂ}”

=

Wy(y, 8)

n

kg 2
_ mpim [ T\ 1
[Jowr (G oo {5 5)

t=1

- 1 o\—F=1n Ly ki 1 mg
[J o= ((t~s)ﬁ) exp{"ﬁ—s)”}_

=1

dxdt

<
i>208) gn

k2

Iy 2
- ot Zi) 1 =
Ulo’t (tﬂ) exl’{“ i t”ﬂ}

1
< 02 (1) g f dt<02”‘””(k!)“2( 702).
iy (1—8)? ” ‘

k>0

dxdt

For s << 0 we observe that

|Ty(w, t—8) —Ty(x,t)| dodt = Ty(w, t—s)
Wyffv,e) , ’ ¢>Iqa fl (e, %)
toatylyls

Setting 7 = t—s, the lagt integral becomes
[ [1Tu@, ) —Tw(@, r+s5)| dodr

r>—38 an
O

—Ty(@, )| dwdt.

< f \Tw(@, 7) =Ty (@, r— (—8))| dadr.
Wyv.9)

Hence the case s < 0 is reduced to the case s > 0. Proposition 2 is
now complete.

icm
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ProPOSITION 3. Set

iz
Tio(f)(@,t) = [ [Talo—y,i—s)f(y, s)dyds
and let s
Ta(f) = Ui T, (f)-
in P
1Tk oflp < Cpn2" 2 (1) [ [ REH9 fll.

k>0

Proof. This follows immediately from propositions 1 and 2 and
the final observation in Seection 1.3.

II. OPERATORS WITH VARIABLE KERNELS

We are now in a position to study the LP-morms and the limit in
I” as e — 0 of functions defined by
t—se

[ [E@,t0—y,1—s)f(y,s)dyds
En

0

and
s
[ [Ew,s;0—y,t—s)f(y,s)dyds.
0 gn

2.1. Definition. We will call a function, K(z,t;y,s), a variable
kernel if it satisfies the following conditions:

(1) Thereis a > 2such thatif1 > 0, K(x, ¢; Ay, A%s )= A"""K(z,t;y, )
Hence K (z,t;y,s) = K(z,t;y/s", 1), g = 1/a.
(2) It Qx,t;y) = E(z,t;y,1), then fQ(m,t;y)dy =0
En

(3) Seb

D(m, by y) = f!) (&, 13 2) V% dz.

( n/z

Then for every a, ja] < b5 y)] < Ame 7P,

Set

mn, we assume | (6/0y)

[

= [ [K(,t;5—y,t—9)f(y, s)dyds

0 gn

K.f(z,?)

and

&

t—
Ef@, )= [Ely,s;a—y,t—s)f(y,s)dyds.
B

0
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2.2. IP-convergence. Before we begin to study the continuity of
the above operators, we need to consider a few properties of the Fourier
development of Q(w,1; 4)e""” with respect to the Hermite funectionsg
over B". We get

B, t;9)6"" ~ 3] Cu(w, 1) Hyfy) o2,
k

1 .
(@, 1) = Oy fﬂ(w,t; Y) H(y)dy.
g

LeMMA 1. Sup [Cx(@, 1)) < Cpdn(2¥51)
@1
only on m and n.

Proof. Suppose ;> 0. We have

[ 9@, 15y Huly)dy
EW

“l/z(kﬂn kMG, depends
i

"_{o Hkb(ym dys .. dyn{ [ ( 2y 85 Y1, -~-7yn)Hk1(y1)dy1},

f Qz, 859y, ..., yn)Hkl(f‘/l)dyl

]

1 A A
= P () _£ Q@15 Y1y .0y yn)mﬂkﬁm(?m
(=)™ ‘
- W_f (am/ayl .’D t; Yiyoeny yn)Hk1+1zz(?/1)'

Setting M = (m, ..., m) we see that
(_1)nmk!

= m)-!--mf 6/67 m t 7/)].[]”];1(’!])(!1/.

[ 8,1 ) Epray
n

Hence

12
|0}c(-ﬁht)] = 2|k|lg 7G~|—.Zl/[)‘17i [ f! 6/6y ’L‘ y 43 :1/)]2@111\2‘2?/]

k!
k_.|_M)!:| (2”"]0!) 12,

10k, ] < Om A (™51~ ([T 1),

k>0
/\\
[Hi(2)—Hy(0)]6™ " (y).

< Opd m[

Recall that Qy(y) =

icm
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LEMMAVZ.
12l < O ( ] ) ™51y,

k>0

1<p oo,

and
NGl 0] |Haly) e <

k
C independent of (xz, 1),
Proof. We have

12l < || H lyilFre~vie

The first term is majorized by a constant times ( [] &)(2™ k1™
k>0

provided m > 2.

|y 1E(0)] fle™ ¥,

The same inequality holds for the last term.
The second part of Lemma 2 follows from Lemma 1 once we note
that

Mo |Hy(o)] e < 0(2" k1.

THEOREM 4. If feIP(E"X (0, o0)}, 1< p < oo, and if m > (n-6),
then

1) Eflly < Cllfllo; 1Eflp < Cllfllns

2) K.f and K,f converge in LP (E"X (0, o)) as &— 0.

Proof.
(m, t;y/s%)
f f n5+1

Zok , 1) Hly ) — e

K. f(z,1) fla—y,t—s)dyds.

(@, t; y)e™ =
Since Q(z,t;0) = 0,

3 xle, OLH —H(016" = 2o, t9).

By Lemma, 2, this last series converges in every LY (E"),1 < ¢ < oo,
to Q(:v, t; y). Also from Lemma 2, the series

(016" (y

g

—

D Crla, ) [H(e) —H,
k

2075 .1‘ t .Qk

converges in every LY(B"),1 < ¢ < oo, to 2(x,t;y). Hence

0 A
N ouiw, 9 298D
k

1), &> 0, to Q(x,1; y/s?)[s"

converges in every L?(E"X (¢,
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Therefore

Kf(2,1) = ) Cu(@, ) Trouf (@, 2)
k

where

Oy /s
T, of (1) = ff ’“nﬂl). x—y, t—s)dyds.

(See Chapter I, Section 1.4.)

Ml < D) Sup (0@, )] il
& ¥

Using Proposition (1) of Chapter I, Section 1.4, and Lemma 1 of
this section, we have
([

K. flp < O 2wy

Teg>0 k>0

. Henee if m > n-+6, we have ||K,fl|l, < O|fllp, C independent of
and 1.
Now

Rof = D Th.(Cuf) (@, 1)

and therefore

1B < X1l [Cfl < X80 10(@, 0] Zsl Il
T ot

K.l < Cllflp, C independent of ¢ and f.

Concerning the L*-convergence of K,f, we first note that 7 ,f con-
verges in I” a8 ¢ — 0 to Tyf: ’

S+ Y o, O[Tk f—Tif).

k<M (kl>M

Zk: Ok(xa t) [Tk,ef—ka] =

Clearly

| 3 Oulw, )(Tef —T0f) (a, t)” >0 as &-0.

k| <M

But

2 n k&n—m) /2

%
(Fi>22 K> DL 7y >0
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icm
is small for M large. Hence we have shown that I f converges in Ir
to 3 Opl®, 1) Txf(x, t). Similarly it ean be shown that EK,f converges in
k
IP to D Tw(Cuf)(e, ).
k
REMARK. If there exists o fived A >0 such that

I(0]ay)* 2 ‘Ea Byl < Cae—Amz? la] < nm,
then Theorem 7 holds for
s
Kf(e,0)= [ [E@t;o-y,1—fy,)dyds
0 gn

and

t—2

Rifw,t)=[ [Ey,sz—y,t—s)fly,s)dyds.

0 gn

Proof. Set Q,(zx,1;y) = (4=, 1; Ay) and

t—e

Ko fl@,t) = [Eil@,t;0—y,t—s)f(y,s)dyds.
0 gn i

i—g

K f@,1) = f [E (o, 50—y, t=s)f(y, s)dyds
E"

_A"fs fK( (@[4),t; A{w/A)—y), 1—

0

s)f(Ay, s)dyds.

Set (Tf)(z,1) = f(Aw,1). K. f = ATy K, Tuf. Since O, 5 9)
= A" Q(Ax, t;y[4), 2, satisfies conditions of Theorem 7.
Similarly by setting @:(z,1;y) = 2(»,1; Ay), we have

Kaf = AnTl/AzllsTAf-

2.3 Hilder continuity. We prove .

Lemma. Suppose f(x,1) eLp(E"X (0,00)),1 < p < oo, is continuous
in (@,1), and satisfies |f(@, ) —F(y, )| < Olz—yl, 0 <y <1, C independ-
ent of t, then (Twf)(w,t) is Holder continuous in both 'zvamables (z, 1), of
order By.

Proof. It is clear that hm Ty of (@, 1) = Tef(2, 1) exists pointwise

for every (z,1):

Tof (@, ) —Tuf (v, ) = [Tif (@, ) =Tuf (v, )1+ (Tuf ¥ ) —Txf(y, $)1-
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Consider - fivst Tyf(z, 1) —Tif(y,1). Set o = |[w—y|+|t—s|. If ¢ < 0%

then
Tuf (2, ) ~Trf(y, 1)

i
= [ [Tule, ) [flw—s, t=r)—f(@, t—1)+f(y, t—r)~F(y—, t—)]dedr.
0 gn

Hence
\Tef (@, ) ~Tuf (4, O < O [ [|Tule, )| [2]" dedr < Co? |4,
(U 12
Assume now that ¢ > p*:
Q[L
Tof @, ) ~Lif (4, ) = [ [ Tulo, ) [f (0 —s, 1—r)—f(y—2, t—r)]dedr+
[} E"

—2, t—1)—f(y—=, t—r) ] dedr.

t
+ [ [Tule, n[f(a

o E™

The first integral is, of course, to be understood as lim f f As

in the case ¢ < ¢ the first integral is majorized by Co¥ l]!)kul We rewmte
the second integral as

I= [ [[Tulo—z,1)=Tuly—2, 1)1{f(z, t—r)f(@, t—r)} dedr,

Qa En
] r Y ¥
n<o [ | =~ ~Qk(7—ﬁ »z) dedr
o B
>y P 1 T y @5 e
i=1 eCl B
Claim. If 0 <y <1 and [w—y|}* < 1, then
@; &y A 2
(+) f‘nci(ﬁ _zf) exp{ P }*
Bl i
_ Y \4 11wy | @ v
]j_[cf(wSf z,) exp{-——z 7_27 } ;ﬁ—nzl dedr

is < O@EMpye iy

k>0 r

icm®
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Proof. The case n =1 follows the exact same lines as in the proof
of a corresponding claim on p. 99. For general %, we observe that ()
is majorized by

i @; k 1| 2 oy y; ky
{G’n\E{ Hc;(;ﬁ —zj) eXp{_Z[_ﬁ —& } —]l—[cj(?— —z,-) X
Xexp{——i— U—J—zj 2} % :;,'y %—zn ]‘nexp{——} % }dz—!—
wiau || [To% = o | ([ =)
xesp{— 1% ) - (5 ﬁ)p{_%ii_ 1 " (e as.

In the first integral use the inductive hypothesis and in the second
use the case n = 1. The “claim” now follows and from this it is not

difficult to see that
(2" k! 1/2Hk2 ¥

k| 1
i1 <e@mmiye [ [ ef T <

k>0 k>0
Hence we have shown that
(@) Tf (@, ) —Tif(y, )] < C(2ME)™ [[R3e.

k>0

)] and assume, for simplicity,

Consider now [Tif(y,t)—Twf(y, s

that ¢ > s:
T (4,0 =Tuf g, 9) = [ [1Tule, 1) —Tale, o =1ty —=, rdedr &
+f kaz t—7)f(y—=, r)dedr = A+ B.
i—8 ¢ " .
B=[ [Tule,n)fly—s,t—r)—f(y, t—)]dedr.
¢ En

1Bl <0 f T (2, )] o’ < C12lhe™

—=z, r)dzdr

I

A [Tr(z, t—r)—Tr(z, s—1)1f(y

[Tr(z, 7+ (t—8)—Ty (2, 7)] [f(y—2, s—1)—f(y, s—r)]dedr.

i

i
[
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If s < 29, we proceed as in B. Assume then that s > 2¢. Then
4= { f f f[TL &, 4 (t—8)) —Tr(z, 7)] X
0

Eﬂ 20 En
X[fly—=, s—r)—Ff(y, s —r)1dedr = A;4-4,.
A; handle ag in the case of B.

[4s] < f [1Ts(e, 7+ (1—8) —Tn(z, 7)| |o]” dedir .

% gn

()  Tulz, r+(t+s) —Til2,7)

B exp|—lal2/4(r+ (t—28))*}  exp{—|a[2[4r*
"H"(O)[ [r+(t—(s)1”ﬂ“ - ’”’”/ }]*

—np—1 %

; ___'L%-_— g o] —nfi— - 2 ]zlz
Xg”’([rﬂt—snﬂ) ex] - pyp )ﬁ}—f =[] cy(wj) exp{_m}_

Congider

exp{—|e/’/4[r+(1—8)1"}  exp{—[2[*/4r*}

H
I k(O)l [7‘—|—(t——s)]nﬁ+1 : pnB1

2 pgn

|2|" dzdr .

Sinee 0 < (t—s) < p < §r, this expression is majorized by

3]

C|Hy(0 f 5 dr (o) < 0(2M )P,
2
The first two terms in (ii) equal

. 2 ) him 2 L [
: (gc"w(t_s)] ﬁ I([r+(t—s)1ﬂ) 2\~ ] -
° i\ K 2
[ oo 22
Claim. For r>2(t—s), 0 <y < 1,

f|z|7 (n +(t—s))" ﬁ—lm(%)ky’exp{ l

4{r =+ (1—s)) t—~8) B

m

[Jorriefeel-

< 0(2]74]0[)1/2 ( k%-wlz) (,.-m/ﬂ—1+ﬁ7)(t —s).

dz
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Proof. We will again use induction on the dimension m.

Case m = 1. Here we proceed exactly as in the case m =1 on
p. 102. For the case m > 1, we note that [2” < 3 |2 and that

mn

w[n Glrt =) W((w z )k )kje"p{_ 4+ W‘*} -

j=1

m
AL 2
[ferli ot
J=1

= i [alr+ =" () o s

k 2 -\ ks 2
I PAL 2 32\ ]
—er? ””(Wg) exp {——4—7‘;”}“ ch(y—lﬂ) exp {_4_1"2—"} +

J#l

1yn i & zz 7
+01(7"+(t——3))'ﬁ_ / (7‘-—{-—(:1—5‘—)73) eXp{_i(r—{—(;a—s))nﬁ} lzll
pim 1% i 5
[[J ot {ig) oo b i~

J#l
Ga\ " 2.
—p—1n 7 7
n ur (rﬁ) eXP{ 4725}]'
r#lL

‘We now proceed using the inductive agsumption (for the case y = 0)
and the result for the case m = 1.
Henece

144l <c(21k1k!)1/z(n k’“""ﬂ)t 8)f m—— 2|klk|)1lz(”k2+wz)

k>0 k>0

This completes the proof for the Holder continuity of T.f.
Remark. Under the above assumptions on f(x,t), we have
Tufla, ] < o@Mry= ([ ] w07,
E>0
To see this remark observe that if g(z, t) e L*(E™X (0, o0))y lg (s, t1) —
—g (g, ta)] < M (|5 —ms| + [t —12|)” and |gll, < eM, then lg] < eM.
We now introduce a new assumption on Q(m t; 2).

(4) There exists y,0 <y <1, such that for all B = (Byy---sPn)s

18] < mn
1(0/0 B (@, t; ) — (9]0 B(y, 55 2)] < Oplla—yl+lt—s) e,

¢, depends only on f.

Studia mathematica 28.1 8


GUEST


114 E.B. Fabes

icm®
TarorEM 5. If K (,1;9,s) is a variable kernel satisfying conditions
(1)-(4), and if f(z, 1) is in LP(B" X (0, o)), continuous in (z,t), and Holder
continuous in m, uniformly in i, then Kf(z,1) and Ef(z,t) are Hilder
continuwous n both the variables » and t.
Proof. We will consider only Kf, Kf being completely analogous:
From the above remark and the estimates on ¢x(x,?), it is clear
that Yex(w, t)Trf(x,) converges absolutely and uniformly in (z, 1) to
<

Ef(w, ). Moreover, if M = (m, ..., m), then as in the previous section,

ex(@, t)—en(y, 8)

(—)""F! PR 2
= g ), 010 12 6= 0, 53 o)
Hence
e, ) —auly, 8) < @ B ( [T 7" (a—y|+ le—sl).

k>0

Using the previous lemma, we see that there is a § > 0 and a number
1 >1 such that

lex(, 1) Tof (2, 1) — ey, ) Tuf @, ) < e [] 0]~ (lo—yi+ [t—s1)".
) ki=>0

Therefore |Kf(w, 1) —Ef(y, )| < C(jw—y|+[t—s])’.

Remark (i). If Q(x,t;y) satisfies the condition
(4" (0102 8, 15 2)— (9)02Y @ (y, 15 2)| < o5 (lo—y[") o™
for |p| < mm and ¢, independent of ¢, then under the above aséumptions
on f, Kf(z,t) is Holder continuous in @, uniformly in ¢, but Kf(w,1) is
Holder continuous in both variables. To see this we need only observe
that

lew(@, )—euly, D] < (@ %)~ []1F) ™ la—yP,
Fi>o
¢ independent of .
Remark (ii). Theorem 5 and remark (i) also remain valid if con-

ditions (4) and (4') on f)(m,t;z) are respectively replaced by

(5)  1(0]02Y2(x,t; 2)— (302 Ry, 83 2)| < callw—y| -+ [t—s|) e 47,
¢g, A5 depending only on 8, || < mn.
(3) (0[P Q, t;2)— (8]0 Q(y, t; )| < ¢5(Jm—yl)' e 47", |8] < mn.

Remark (ii) follows immediately from the remark at the conclusion
of Theorem 4.
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III. APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS
OF PARABOLIC TYPE

3.1. The space Ly™'(E"x (0, R)). In this section a = (ay;..., @)
will denote a vector in E™ with each coordinate, a;, a non-negative in-
teger.

(0/0m)* = 8“1 /023t ... 0% [Oxz,

la} = Zal.

Set S = E"x (0, R).

We let 0™!(Sgz) stand for the class of functions u(z,t) defined on
the strip Sp such that (9/0z) u, |a] < m, and (9 /0t)u exist in the classical
sense for every (w,t)eSg, are continunous functions in this strip, and
w(e,t) =0 in 8, = E"x (0, 8) for some 6> 0.

We will write the Lj-norm of a funetion, f(z,1), over E"x (0, oo)
by il and its p®norm over Sk by |flls,sg-

For 1 < p < oo, we set 0™1(8z) equal to the set of functions
weCy'(S8g) such that

[1%lm,n = 2 11(8/0)* ullp, 55+ 11(8]08) I, 5 < 04
|6j<m
and finally we define Z3™'(Sz) to be the closure of ™1 (Sg) with respect
to the norm |*|m,.
TemorEM 6. a) If |o| < m and weIf™ (Sg), then for every w(z, 1),
infinitely differentiable in Sp and with compact support in Sg, we have

ot = ata? ... o,

R
ofR EL u(D/Bm)“wdwdt=‘~1)1“1 of Efn (8 0x)°u w dwd

and
R R
[ [w(@jot)yw dwat = — [ [(@/8tyuw dwdt.
0 E" ¢ E"
b) L™ (8g) is @ Banach space.
¢) The set of functions V (%, 1), infinitely differentiable and with com-
pact support in E"X (0, c0), are dense in I5™(Sg).
Proof. a) Let u,<0p"'(Sg) be a sequence of functions such that
([ —g/lm,y — 0 a8 K — oo. We have

R R
[ Ef” w(9/0m)*w dodt = lim Oj Efn 5o (0 )0 w deds.

0
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Therefore
R b id
[ [w(8)0w)* w dwds = (—1)"lim [ [(@payusw
o En ko gn

R
= (—1) f f(@/ﬁw)“uw.
y3

0

Exactly in the same manner we have

R R
f fu(ﬁ/at)w = (—-—l)f f(a/(')t)uw.
0 gn 0 gn
b) From part a we see that L%™'(8g) is a linear subspace of the
space of functions u(xz,t) such that (9/0x)*w, |af < m, and (0/0t)u exist
in the sense of distribution and belong to L?(Sg). This space of functions
is known to be a Banach space with respect to the same norm as we have
introduced for LZ™!(8z). Hence part b follows.
¢) Suppose %(z, t) e LY™! (8g). For |a| < m, extend (9/0z)*u(x, 1) and
(9/0t)u to be 0 for t < 0. Let {(x, 1), D(x, 1) be functions infinitely diffe-
rentiable and with compact support in Sy and such that

[ o, azdt =1
1

:;1)3(11 ®(x,t) =1 in the neighborhood of the origin. Set (p(wt) =
EY M (kw, kt) and Oy(w, t) = B(z/k, t/k). Set
12
Up(@, t) = ury(xz, t) =f fu(y, 8)ir(@—y, t—s)dyds.
o E"

Clearly wy(®,?) =0 for ¢ mear 0 and w;eC™(B"X (0, co)). Also
{lux,—ul|, — 0. By the same method of proof as in part a, it follows that

(0/82) wy = u*(8/02)° Ln = (0[0y) urly(®w, 7).
Hence for |af < m, ||(9/02)"u, —(0/0x)" 1|, — 0, and since
(0[Ot wy, = ux(3/08) &y = ((0/08)unly)(m, 1)

we have |[|(8/0t)u,— (3/0t)ull, — 0.

pr let Vi(x, t‘) = u(w, 1) Dp(x, t). Since Py(x,t) — 1 for each (x, 1),
and since each adenva,tive of &(x,t) converges uniformly to zero, we
ha,Y)e Emt I (ﬁ(/g;va) [0, Pr.] — Dy (0 0)" uye ||;—0 and || By, (8 /0)* uz,— (8 [0)" wz ||
— 0. Hence )" Vi, — (8/02)  ull, — 0. Similarly ||(8/dt) Vi— (0 -
Theretore e Pl s 0 N y [1(0/8%) Vie— (0 [0t) u |lp—>0.

icm®
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3.2. The differential operator. The differential operator we wish to
consider is:
) D au(@, 0)(0/00)" u(w, 1) — (0/0t)u(x, t) = Lu.

lef<m

We will always assume that i) if

P(n,t56) = ) aalw, 9)(i2)",
af=m

then, for |2| =1, Re(P(w, t;i2)) < —& < 0, 4 > 0 independent of (z, t),
i) aq(@,?) is a bounded function of (z, t)eSz.

We will think of I as a linear operator from I2™(8g) into LP(Sg)-
Tt is clear from the definition of norms and condition ii) above that L
is a continuous operator from I5™(8g)— L”(8g).

We will now discuss some important properties of the differential
operator, L, when each of the coefficients satisfy a Holder condition
in (@, t). The properties discussed here have been proved in [3] and [6].

Set

_ v 1)nl2 f LEbins s g,
T
En

W(x,t;59,8)
Wiz, t;9,8) is a fundamental solution of the equation
P(z,t;0/0y)u—(0/0s)u = 0.

It is known that for |of <m
evgiylsllmim{m—l

(2) |(8[0y)Y W (m,t5y, 8) < G, STl
g—Clustim{mim=1
(3) [(D[08YW (m, 85y, S)| < 01~'—s'(n’,m)+1—7

Cy, ¢ are absolute constants.

Set now that K,(x,t;y,8) =
(0/0s)W (2, t5 9, 9)-

Tf the coefficients of L are Holder continuous in (x,t), then for
f(x,t) infinitely differentiable and with compact support in Sg, there
is a function, w(z,t), with m continuous derivatives in z and one der-
ivative in t satisfying Lu = —f in Sg and the initial condition #(z, 0) = 0.
In fact, u(z,?) can be written as

(8/0y)*W (, t; ¥, 5), and E (2, 15y, 8) =

1
w(@, ) = [ [ Wy, s;0—y,t=s)[f(y, 8)+ (AN, )]dyds
"
with ’ .

(Af) (@, 1) = fﬂfncb(m,t;y, )f(y,s)dyds .
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Here @(x,t;y,s) is the solution of the integral equation,

D (z, ;9,8 = Z o (@, 1) Ko (y, 85 2~y,t—8)—K(y, S;x—y,t—s)+
la|<m
t

+ [ [[ 3 tulw, 0K, 050~ M, 1—0)—K (M, 0;0— M, t—0)] x

s E" Tlajm

| XO(M, 0y, s)dMAH.
Since
iZ 8.y, K, (Y, 83—y, 1—8)—K(y, 50—y, t—s) = 0,
a|=m
we have
@ P, ty,8) = D (6a(@, ) —au(y, 8) Ky, s; 0—y, 1—s)+

o=

+ > e, O E,(y, 50—y, t—s)+

la]=m

4
+ [ [ 3 (@ale, ) —au(3, 0) K, (M, 65 0— M, t—0) -+

§ ET Tlg<m

+ D aue, )E (M, 0;5—M, t_0)]¢(M, 0;y,s)d 0.

lal<m
If we set
. No(z,t59,8) = 2 (‘h(m: ) —a(y, S))Ka(ya 83—y, t—s)4
laj=m
+|2 ao (2, 0) K, (y, s; 08—y, t—s),
al<m

i
Nz, t59,8) =f f-Nn(w5 t; M, 0)No(M, 0;y,s)dMaf,
8

En

s EN

No(w,t5y,8) = [ [ No(w,1; 2, 0)Ney (M, 65, s)aMao,
then l

D(=, t59,8) = ZNv(myt;y,S).

V=0

In [2] the following estimates are shown:

-l (@)1 (- g im|mi(m—1)
’Nv(m7tiyys)l <Aye .

T (s 0<y <1,

icm
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where >4, < oo. The proof in [3] also shows that >4, depends ouly on
R, the bounds of all the coefficients; the constant of parabolicity (i.e. d),
and finally the Holder exponent and constants involved in the Holder
continuity of a,(z, ?) for |a| = m. The } 4, does not depend on the Holder
continuity of the lower order coefficients. Hence the operator, 4, given by

i
AP, ty= [ [ @@, t;y,9)f(y,s) dyds
o En -
maps IF(Sg) continuously in L”(8g) and [|4] < C(Y4,), C an absolute

constant. Moreover, if the lower order coefficients are Holder continuous
in @, uniformly in t, then there exists numbers g and 4,0 < g < 1,0<A<1,
Zs—Y

such that
m(m— 1)}
™

(t—s)M+a ’

(5) |® (1,5 Y, 8)— D@2, 4 Y5 8]

_ mj(m—1)
& —Y ﬁ }+8Xp{—0

exp{——C’ (—tjs—)—lﬁ;b

< B, iy —2,|*

where B, and € are absolute constants.
In [3] and in [6] it is also shown thatb for |f] <m—1,

(6) (@/0w) u(@, 1)

7
= [ [@/ox)'W (y, 32—y, 1—5) [f{y, $)+ (A1) (¥, 8)1dyds,

o E"
and for |a] = m,
€ (8/0z) ux, 1)

i—e

=lim [ [ (802} W (y, 55—y, t—9) [y, $)+(4N(y, 5)]dyds,
E™

&0 o

(8) (00t u (=, 1)

i—e

—tim [ [(@/0)W(y,s;2—y,t—8) [y, 8)+
09 E"
+ (AN, 8)1dyds —f (@, ©) — (4f) (=, 1)
The above limits are pointwise Hmits.

3.3. Existence. We are now ready to give our first application of
the results of Chapter II to establish an existence theorem for the equation
Lu = f, feI”(Sg), in the class IE™1(8R).

TaroREM 7. In addition to the boundedness of the coefficients and
the parabolicity of L, we assume that the coefficients of highest order only,
i.e., aa®, 1), |a| = m, satisfy |a.(z, t)—a.ly, 8)| < O(le—y*+ [t—s|%) with
0<6,<1,0<8, <1,
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Then given any feL(Sgp), 1 <p << oo, there Yis a function u(x,t)
L™ (8g) satisfying Lu = f for almost every (m,1t)eSg.

Proof. Suppose f(x,?) is infinitely differentiable and has compact
support in Sr. We first assume ag(a, 1), [f| <m—1, is Holder continuous.
Define

2
L t) =u(o,t) = — [ [Wly, s;2—y, t—8)[f(y, ) +Af(y, s)]dyds.

0 B

From (2) of Section 3.2, it is clear that for |a| < m—1,

1002 ul,s, < Olfl,sp+ 1451s,2) < Cllflp, sz

Noting now that for |o] =m, K.(2,t;y,s) and K(wz,t;y,s) are
variable kernels, it follows from Theorem 5, Chapter II, that for |a| = m

1(0/02)* ully, 55 < Ollflln,s, and  [(8/08)u(@, t)llp,sp < Cfllp,sg-

Since w(xz,?) =0 for ¢ near 0, u(z,t)eL?™*(Sz) and ]]If‘lfum1
< B|[fllp,s5, B independent of the Holder continuity of the lower order
coefficients.

We now extend L™ to a continuous operation from IP(Sy) into
Ly™(8g). Since L(L7'f) =f for a dense subset of I?(Sy), it is clear
that L takes LZ"™ l(SR) onto LP(8g) for the case when the lower order
terms satisfy a Holder continuity in (x, f).

Now assume that as(x,?), |f| <m—1, is merely bounded in Sj.
Let wﬂ(a; t) denote sequence of functions infinitely differentiable in Sg,
such that

Sup |} (z, 1)] < Sup as(a, )]
Sg Sg

and aj — a; pointwise almost everywhere in Sg.
Set

N{)(wyt;y,s) = 2 [a'u(m)t)"’aa(?/zs)]Ku(yy'S§m”":l/1i_S)+

{a|l=m

+ D dl(z, ) Kuly, s30—y, 1—s).

|af <m

Clearly for almost every (z,#)eSp, N, t; Y, ) tends pointwise to
the limit

Nol@, 59, 8) = ) [aa(®, ) —u(y, $)1Kuly, s; 0—y, t—s)+

laj=m

+ Z ag(@, ) Koy, s; —y,t—s) for every (y,s),s < t.

té=m
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Set
11
Ni@,t;y,8) = [ [ Ni(z,t; M, 0)NJ(M, 65y, s)aMas.
s EW
Now
. . (l_t_ vlj(t-3) ll'm,)m/m‘ 1
|N{)(1’)t5yns)|<AoW‘, 0<y <1,

A, independent of j, y depending only on Holder exponent for aq, || = m.
Tlence Ni(x, t; y, §) tends pointwise for almost every (wz,t) to

Nz, t59,8) ffl\ (w,t; M, 0)No(M, 0;y,s)dMdo
s B for every (y,s), s<<t.

In general, Ni(w,t;y,s) will tend pointwise for almost every (z, 1)
to

No(@, 139, ) =f [ Nolw, t; M, ) Noos(M, 85 y, ) dLd0
s B for every (y,s), s<<t.
Sincé’ . o~Cli@—y)j—a)limpmim=1
[No(@y 259, 8)] < AnW‘ y
Ay mdependent of j, the same 1nequahty holds for N,(z,t;y,s). Set
@ (#,1;9,8) —Z'N'O @,8;9,8).

Clearly & (z,t;y,s) tends pomtmse for almost every (u,t) to

B(,159,8) = le,t; Y8
=0

and ‘3°_’ e C](z_y)/(g..s)llrn!nz/;»z~;
(2, t;y,8)] < (L\J A.,,) W;"*
v=0

Set .
t)=[ [®(@, t;9,8)f(y,s)dyds.
s ET

We have shown that for almost every (z,t)eSz, Nu(®,t;y,8)
- Ny(z,t;y,s8) for every (y,s),s<i. From this it follows that for
almost every (z,1)eSg, ;(x,t;y,8) —~P(z, 1Y, s) for every (y, s),s <ti.

Therefore if f(x, t) iy infinitely dlfferentmble and has compact sup-
port in Sz, (4:f)(x, 1) converges pointwise for almost every (z,t). Since
(A1) (2, 1) is dominated by

(24 )f [ gcliemre=nimim= g £y, 5| dyds

s BP
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which is a function in L?(8g), 4;f converges in L”(Sg) a8 j — oo and
I 45flb,sz < Cllfllp,sz, C independent of j. Hence 4;f converges in L”(Sz)
for every feL”(Sg).
Set
Iy = Y auw, 1)(0/00)—0[0t+ Y dh(w,)(0/0n)".
|a[=m je[<m

Let
11

wle, ) =L f = — [ [W(y, 50—y, t—s)(f+4()(y, s) dyds.
0 EP

For any feL”(8Sg), from the first part of the theorem, we know that
u; (@, 8) e LP™' (Sg) and Lju; = f almost everywhere in Sz. More than
that, we know for |o| < m ‘
i—e
(0/0m)"u; =lLm [ [(2/0)W(y, s; 2—y, t—8)(f+As)(y, s)dyds
0 "

&0

inLP

and that for almost every (z,?)eSg,
t—s
(@/0tyu;(0,0) =Lim [ [ (0/60)W(y, 83 5—y, t—3) (f+A;f) (¥, s) dyds +

&0

nzp°

+f(@, ) +A;f(w, 1).

Since 4;f converges in L”(Sg) to a function which we denote by Af,
it follows that [[u;—uplly,, — 0. Since LF™!(S8z) is a Banach space, let
%(z, t) denote the limit in this space of the u,’s. Clearly | Lu—L;u, Ilp, 55> 0
a8 j—oo. But ILyu; = f almost everywhere in Sp. Therefore Lu — f
almost everywhere in Sz.

3.4, Uniqueness. We first assume that for all a, a,(x, ¢) is infinitely
differentiable in Sy and every derivative is bounded in 8z.

LevmA. If u(w, t) is infinitely differentiable and with compact support
in E"x (0, oo), then

.t
w@ ) = [ [Wia,t;0—y, 1—8) (Lu)(y, s)dyds+-
0 E"
i
+ 2 [ [019)77 (0,8 0—y, t—5) (au(@, ) —auly, ))u(y, &) dyds+
laj=m 0 E™

+ D (=1 [0)0yYW (@, t; a—y, t—5)(0/y) (aa(@, ) —aaly, £)) X,
r+pj<im 0 EN
yl<m—1

. .
xuly, s)dyds— [ [ 3 (—1)7(@ /oy) (W (2, 4; a—y, t—s)) uly, 5)dyds.

0 E"|fl<m
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Proof.
t
[ W, oy, t—5){ > aula, @0y uly, 5)— (0ds)uly, )| dyds
o K"

|a|<m
i—e

= limf f[ 2 (—D)(8/3y)* (W (m, t; 2—y, t—s))+
&0 A0S jaj<m
" +@/os (W (x, t; 23—y, t—s))]
u(y, 8)dyds —lLim f Wz, t;5—y, e)uly, t—e)dy.

&0 gn
Since Y au(w, 1)(2/0y)* (W(x, t; 0 —y, t—8)+(2/08) (W (@, t; 3—y , i—s))
|laj=m

= 0, we have

f [Wa,t;0—y, i) 3 eula, 0(0/0y)"uly, s)— (8ds)u(y, 5)} dyds
o B jal<m
17

= [ [ D ap@t)(—1)"@/0y)" (W (2, t; 2—y,t—s))uly, s)dyds —

0 E™|fl<m

—lim fW(m,t;m—y,e)u(y,t—-a)dy.

&0 gn
From the definition of W it is clear that Ean(m,t; z—y,e)dy =1,
& > 0. Therefore :

[ W@, t;a—y, eJuly, t—e)
En

= [ W, t;5—y, ) (u(y, t—)—u(z, D)y +u(, ).
E?L

Sinece |u(w,t)—Uly,t—e)| < C(|z—y|+e) and since
g—l(z—ﬂ)/Rl[ﬂlimlm_l
|W(z, t;2—Y, g <0

m H
&M

lim fW(w, iy o—y, &) (uly, t—e)—u(z, t))dy = 0.

=0 gn
Hence
u{z, 1) =
=ffw<w,t;m—y,t—s>{ S aa(w,1)(00y)"u(y ,5)— (0/08)u(y, )| dyds—
o E" . jaf<m

i1
—[ [{ 3 ast@, 0)(=1)"(0/0y)" (W (&, 15 0 —y, i=8) uly, $)dyds.
0 E" |gl<m
Adding and subtracting
(Lu)(y, 8) = D) aa(y, $)(0/0y) u—(0]ds)u

|al<m
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in the first integral above, we have

1
w(z, t) = [ [ Wiz, t;2—y, t—s)(Lu)(y, s)dyds+
0 E"
i

+‘]rf Wz, t; 2—y, t_s){ 2 (a‘a(my B —a.(y, 8))(0/0.7/)uu(y’ S)}d?/ds"‘
0 E” |aj<<m
i

— [ [ 3 as(@, 0)(—=1)"(0/3y)" (W (@, t; 2~y, t—8))uly, s)dyds.

0 ER|gl<m
Integrating by parts in the second integral, the desired representa-
tion of u(z,t) follows.
Using the above lemma and the estimates for (@/0y)" (W (@, t; 52—

—y, t—s)} given in Section 3.2, it follows that for infinitely differentiable
and with compact support in "X (0, oo),

[llp,s, < CllLtlly,s,+C1 (&) |ully,s,
where Cy(¢) >0 as ¢—0. Hence for all ¢ sufficiently small %]l &
< 'C HI'}u]lp,,gs. Since this inequality holds for a dense subset of L?,“'m'I(SR); s
being independent of 4, it is valid for all % e LE™(Sz). Therefore if Lu = 0

1:11 Sg, then u = 0 in §,. Applying the same argument we see that % = 0
in §,. Hence 4 = 0 in S8g.

Now for the general case we assume
L= D a.x,1)(0/0m)—0ot
) |aj<m
where a,(x, ¥) is a bounded function in & r, and for |a| = m,
19a(2, ) =aaly, )| < My(jo—y["+[t—s["), 0 <y, <1,0 <y, <1.

Suppose w (%,%) > 0 in Sy, infinitely differentiable there, with com-
pact support in Sz and such that fw =1.

Set d (2, 1) = j" " fa,(@—y, t—s)w(jy, js) dyds. Now d’.(v, 1) - a,(z 1)
for almost every (z, t)eSg and ’
Sup |& (z, t 1 < M
W? e (@, 1)) < S(;l})a @, (3, 8)] < My,

Also for |o| = m it is clear that |a (2, {)—d’ y
el laa (@, 1) —aly(y , 8)| < My (Jo—y|"+

L= D' d(z,(0/00)—0/ot
|a)<<m
By, ti0) = D' dl(w, t)(ie)",
|a|=mm
For Jo| =1, Re(Py(z,1;42)) < —6 <0, 6 independent of j.
lllp, 55 = IL7(Lyw)|lp, 55

From the proof of existence we know that L' < 4, A depending

icm
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on My, My, 8, y,,y.. Hence 4 is independent of j. Therefore [lull, sy,
< ALy ully,sp < AL —L) ully,sp+A | Lt 5

Letting j — co, we have [ullysp < 4 | Luflp,sp-

We combine Theorem 7 and Section 3.4 into

THEOREM 8. Under the hypotheses of Theorem T, the differential oper-
ator I maps LY™Y(8g) in a continuous, one-to-one manner, onto L"(Sg).

‘We end this chapter with an application of Theorem 5 concerning
the Holder continuity of (9/dz)*w and (8/0t)u where u is a solution of
Lu =f.

THEOREM 9. In addition to the hypotheses of Theorem T, assume that
ag(@,), |Bl <m—1, is Holder continuous in x, uniformly in t. Given
feIP(Sg),1 < p < oo, let uely™ (Sg) be the solution of Lu = f. Then

(i) 4f f(z,t) is Holder continuous in (2, 1), the same holds for (0[8x)"u,
la| = m, and (0]0t)u;

(ii) if fla,t) is bounded, continuous, Holder continuous in x, wni-
formly in t, then (0/0z) u, |a| = m, is Holder continuous tn both variables
(z,1) and (8/0t)u is Holder continuous in x, uniformly in i. ’

Proof. From our previous discussion, it is clear that

i—e .
(0/ow) ule, t) = —lim [ [Ku(y,s;z—y,1—8)(f(y, )+ Af(y, ) dyds
=0 g "
and
(0/0t)u(z,t)
t—z
= —lim [ [E(y,s; 52—y, 1—9)(fy, ) +Af(y, 8))dyds +f(z, 1)+ 4f (@, 1)
&0 §  gn .

The above limits are pointwise limits. In terms of our notation
of Chapter II,

(0/0z)u = E.(f+Af) and  (9/ot)u = E(f+Af)+f+Af.

It is clear from (5), Section 3.2, that in both (i) and (ii), Af is
bounded and Holder continuous in #, uniformly in ¢ Using Theorem 5,
the conclusions in (i) and (ii) are now immediate.

Appendix

We will now prove Lemma 2 of Chapter I which is gtated here in
two separate parts.
LevMA 2'. For a =2,

B s &7
U‘e e—«dst <0,
1

C independent of R = 1,v> 0.
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Proof. If » <1,

B 0 o4 R
gv.s e:{_ws 1 G:L_ws d st
ds = — — = ds.
8 i) 8
1 1

ds
Integrating the last expression by parts, we have

R : R . . R
s X o L
P 6;{;17)& +1v8 g 18 ej:m

Hence
B s tivs

fe z ds = 0(1).

1

So we may assume v > 1. Now

R Rv .
v eq(s,v)a e;l;'ls

o L
&5 v

ds:f —ds.

{ 8 s .

v

ei(z/v)“ Prd
f —dz

I &

‘We first consider

over the contour, I', as shown:

——|1v R

By goeitmla)® -

(1) 0= — é'zaei("/“)ds _
s
P
e . .
@) —i f 40 e g 1
0
A
3) . +i f B gind jiRvei0 a6

0

By 61'(3/1)) "611&
+ f ——ds.
5 8

lf : ds=0<1)+0(v>[i;§—ds+0<1>f s

(1) is majorized by

Rv
f&

v

(2) is majorized by

~—sin(m/a)8

s
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o0
ds < f ¢ SIn(m8 gs oo,
1

nja

f e—sm(ns)e-vsm(a)de < 7c/a.

0

(3) is majorized by

/@

!

Therefore

independent of R, v.
Now consider

Let 2 = a(a—2)/(a

P

J-1

Rv N
81(811:)“ P
—ds

8§
Py

Therefore

g—R“sin(uB) e—Rvsin(a)de < ﬁ/a.

v . a
e’t(s[r) eﬂs

IE

ds! <C

Ry a
ei(s['v) P

[—

v

—1). We may assume Rv < ¢"~" since otherwise

Rv
a
+ f (Note a— = —— >1).
. a—1
[
B —1iv8 B —ivs .
- @l g1 f 7 g
ia §* ds
pa—T—1 pe—2—1
e—ius eis“
=01)+— —ds
pa—2—1 §
oc
ds v a—z—1y1—a
= — (0 .
v s a—1 ( )
po—2—1
BY ey ,~is
l f "——i—ds\ — o)
”u—z S

if (a—z—1)(a—1)—1 > 0.
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(a—2—1)(a—1)—1 = 0D @ —ar—2a+a = 0{Da(a—2) = x(a—1). COR is —ia (rja) j—ivee~H(2)
: @) 0= f s
Since & = a(a—2)/a—1, we have ¥ 8
1(9/1) e —1ig : . dap i
‘ f mdgl 0. @) — f ¢ o030 1
ra ~(fa)
L By ; - ic;"‘R“ei“ﬁ —ivORE? e
Since [ is of the form [ with Rv <o"™, we may begin with 3) 1 e e a6— f - ds.
[ v —(/%)
this assumption. Hence B < v*"*% Set ¢ = (, = 2/ra < sin(0)/sin
P . ra < 5in(0)[sin(af), (1), in absolute value, is majorized by

0<0<nfa (a>2) Note 0, <1. If C,R <1, then
CR —v8sin(r/a)

1 (s/v)* e —18 1/0"1 f i—-——- ds = 0(1)

!f -ds | < f —ds. s
1 $ !
. ypiformly in B >1 and v >1.
Hence assume O, R > 1. Therefore (2), in absolute value, is majorized by
s/v) e —18 Cgltv 1(51: Ol i8¢ —dug /e "
f = f f - f e e ds+0(10g}_)_ fgsmw)g»m(")da —0().
v v O Ry 7 § Ua

(3), in absolute value, is majorized by

So we want to finally bound the integral . Ja a
. ) 'l
f IO R%in(a0)-CRos®)] 3 < J‘ (OB a~1Ra—1),vsm(uo) Sin(0} 74 .

Cq ) .
6’LS e—’L'US‘ °
ds.
$ Now
. ' Ca—lRa—l
Consider — —— gin(af)—sin(6) <0
CE eiz“ 6""1‘7"2 o .
’ f —dz if and only if
e—1 pa—1 s
i ? 'R < _sm(ﬁ)n
v sin (af)
over the contour given below: But
a— -1
G lRp gau~ly(u—1)(u—l‘x)~1
v
and (a—1)(a—1—2)—1 =0. Hence
Ga_lRu L o< sin(@)_.
- 1 CR. v sin(af)
-/
We note that ° ' < C since a >»2 and ¢ < 1. Therefore
| & £ i

studia mathematica 28.1
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LEMMA 2. v : e “’

’ f J:’zs @('vs)

C independent of R >1,v>0. -
Proof.

"4 <o

vy !

8

B xis ef(a/(l/éj)f' : O :
f ds.zj ;" ds, . w==1fv.
; ‘

If w <1, then

\
u

Ry it R,

£18 Hi(sf®. ) a +1i8 )
f f..e__ds ="re _fz.ef(slu)" ds .
. 8 ds

w s

Hence

o0

B xis gi(ei)® o ' 1
—ds| <01 1 —
[ e <omron [ g

So we may assume u > 1.

R

B i gils/u)® g it
[ as = [ -0 g
. ‘ s

Yu

Suppose first Rju > 1.

B pius s 1 Rju s st
f LA fj g = dn,
o 8

8
1y yu 1

|B] € C by Lemma 2'.

1 GO

1 Bié
A:-———f =) g,
it ( s @

Integrating by parts we see that

S

ds
4 <01 =
4] >+qu,a o).
Hu
If R/u <1, then again
Ry ¢ iiw?c'is“ . 1 Ryju d is

8
1w § :b Mt dS

cm
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Integrating by parts once more and using the fact that B > 1, we
have

R ~ sot
' ei tus als

If s*dsgéc'

Yu
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