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Derivatives of Fourier series and integrals
by

RICHARD L. WHEEDEN (Chicago, Illinois)

I. Notation and definitions. Throughout this paper we shall be
dealing with n-dimensional Euclidean space E", n > 2. If » = (®yyevey ®n)
and y = (%1, ..., Y¥n) denote points of F", we use the standard notation
Ty = (B 4+Y1, -1 BntYn)y A8 = (A1, ..., Ay) for A real, (z-y) =29+
oo+ BaYn, |2] = (#-2)"", a=/(ay,..., @) Where the ¢; are non-nega-
tive integers, a! = a;!...a,!, lal =a+...Fan, 2® = al... T, l?“
= (8)0m)* =(]0m,) ... (8/0my)™", = 1{py, .., pn) Where the p; are posi-
tive or negative integers, @ ={z| —w <z <w,j =1, cea ), Q. =@
translated by 2mu. A real-valued function f on E" will be called periodic
if it is periodic 2= in each variable. If feL(Q),

i)” a{ fl@) e ¢ e,

where ¢, =

ST = 3,60

If feL(E" is any integrable function,

(2

1

s _ —i(z-y)
fo) = o [T .

B"

We say S[f] is Bochner-Riesz a-summable of order y at » to sum s if

0,6 (1 —2" |uf*)’
elul<1

0 a
- O'g’)(%, E) = (%‘)

tends 0 s as & — 0. We say S[f] is Abel a-summable at x to sum s if

9\ i) o

tends to s as ¢ - 0. Alternately, we say

[P e=ray
En
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is Bochner-Riesz a-summabdle of order y at x to sum s if

)u f Flo) N (L~ ly| ) dy

syl

U'z(xy)(wa €) = ( 0

o

tends to s as & — 0. We say it is Abel a-summadle ai » o s if
a “ N o
falw, &) = (- f Flay) 6D gelv gy
Vg

tends to ¢ as ¢ — 0. We use the notations s, and f, for both series and
integrals since no confusion will arise.

We shall also need a notion of differential for functions defined and
integrable in the neighborhood of a point @. If f is such a function and %
is a non-negative integer, we say f has a k™ differential in L ot 2 it

) [ |ty 37y

lvi<s [EIRS

dy = o(s")

a8 ¢~ 0 for some a,(x), ay(2) = f(x). The a, are uniquely deterll'nined

by.f(l). More generally, we say f has a k™ symmetric differential in I at
zi

keven: g "

f@+y+fo—y) ¥ ol

RASE R A | dy = o(")
[i<s 2 |a| <k a! ’
(2) laleven
bodd: e f |]i(§+?/)—f(w‘—y) Sw o () vl (%)
SO S — ly = o(e"
iz | 2 ik “
|eload

as &~ 0. When % = 0, we assume a,(x) = f(x). It f has an ordinary k"
dlfferentml‘lt also has one in L. If f has a k™ differential in I, it hag
a symmetric %* differential in I. ,

_H' Eesﬂts. We will prove three kinds of theorems. Here we give
their versions for periodic functions. In the body of the paper, however
we state and prove analogues for non-periodic functions, The first kin(i
of result is given in the following two theorems. h

for s;ﬂ;:;m;z;mm A].c ﬁe(t) f;?;@) bef periodic, feL(Q), and let f satisfy (2) ot o
eger k =2 0. Then for an =k 1 s -summabl
M, Y a,lal » S[f] is Abel a-summable

BOGhTHEJoEJ?EM B. Under the same hypotheses as in theorem A, S[f] s
mer-fitesz a-summable of order y at x to sum a,(w) for =
provided y > k+(n—1)/2, o) for amw lol. = &
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For k = 0, theorem B is Bochner’s classical theorem ([1], p. 189)
while both theorems A and B are proved in [5], p. 50-57. The proofs
there are under the hypothesis (1), i.e., # is a Lebesgue point. However,
all that is really needed is the symmetric condition (2) for ¥ = 0. For
the one-dimensional analogues of A and B, see [7], vol. II, p. 60.

The second type of result is the following theorem:

TugoreM O. Let f(x) be periodic, feL(Q), and let f satisfy (1) for
some k& =1 at each point of a subset B of E". Then for almost every z<E
and any |a| =k, 8 [f]4s Bochner-Riesz a-summable of order yo = k+(n—1) /2
to sum a,(x).

Tor % = 0, theorem C is, of course, false. For the one-dimensional
analogue of C, see [7], vol. IT, p. 81.

The final result is & localization theorem used in the proof of the-
orem C.

TaEorEM D. If feL(Q) is periodic 2n and vanishes in the neighbor-
hood of x, then S[f] is Bochner-Riesz a-summable of order y, = k+(n—1)/2
at » to zero, |al =k =1.

For k = 0, theorem D is false. From theorem B, it is clear that D
remains true if the order of summability is increased to y > y,.

Tn section ILI, we prove theorems A and B and their non-periodic
analogues. In section IV, we prove theorems C and D and their non-
periodic analogues.

III. Proofs of theorems A and B. In the main, we restrict our-
selves to proving theorem B, the proof for theorem A being only techni-
cally different.

1) We begin with the non-periodic case.

THEORBM 1. Leét f(z) e L(B"™) satisfy (2) at some & for an integer k = 0.
Then for any «,|a| =k,

[Hw)e=ay
E’ﬂ

18
a) Abel a-summable at x to a,(x),
D) Bochner-Riesz a-summable of order y > k4(n—1)/2 at © to a.(z).
We will prove b) for n > 2, the case n = 2 being gsomewhat less in-
volved. We begin with two technical lemmas.

LEMMA 1. If Y, (), £<E" (n>2), is any spherical harmonic of
order m and J,(s), — co < 8 < oo, is the Bessel function of order v then

given any unit vector n,

Y () e "ENgE = ™2 5P g (8) Yo —10)5 p=(n—-2)[2.
161=1
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This formula follows from the Funk-Hecke theorem ([4], p. 247)
and [4], p. 175, plus the Legendre duplication formula ([3], p. 5).

Let @,(f) = (1—3)" for 0 <1< 1, §,(t) =0 for ¢t > 1, and if m ig
a non-negative integer, let

;u%) (7‘) = f 8k+ﬂ+1 (by (7’8) Jm..hg (8) ds.
0

For definiteness, consider the case when % is an even integer and
m=F%—2l, 0 <2l <k, an integer.

Lemma 2. For k even, 0 < 21 < &,
Ar™ ™ 0<r< oo n—1
| (Vl 7)) < ! = o ——,
uila(r)] < A, 0<r<1, t—3

Proof. Since |J,(s)] <1,1J, (8)] <s" (8> 0), it follows |Jp4(s)|
<8 '(s>0) and
=1

| (7)) <f G o gy,

=3

To prove the gsecond estimate, write s2 =r~t—r-2(1—7r2%?). Then

0

g (r) = 7'2fs"’f"‘lgﬁy(m)J,c_21+5(s)ds—r"“’fs”“‘lgpy+1(¢3)J,c_zz+0(g)ds,
0 ' 0

' 'Applying the same argument to each integral on the right and con-
inuing the process, we obtain at the I™ stage a sum (with coefficients
41) of integrals

o
[, ) T p(8)ds (G =0,1,...,1).
[}

By [6], p. 373, the expression above is
ZVMI'(')/+j‘|‘1)""’MUHWHJHJ]c—-21+/1+i+1(T——l)'

Since [J,(s)] <s7* (s> 0), this is bounded by a constant (depend-
ing on y) times 7'~ < for 0 < r < 1.

‘We now pass to the proof of theorem 1. Let % be even and # > 2.
Subtracting from f a function g with % continuous derivatives and com-
pact support, Dg(z) = au(z) for |a| < %, || even, it is enough to prove
the theorem for both g and f—g-that is, we may consider separately

the two cases (i) feC* with compact support and (ii) a.(z) = 0 for all a.
In case (i), if |a| = &,

a a
(3 Elf WD (el)ay = [ D) )60,y dy.
"

icm
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Since D°f is continuous, this tends to D°f(z) = a.(x) a8 ¢—> 0 by
Bochner’s result, for y > (n—1)/2. In case (ii), condition (2) becomes

lyi<e

and we must show that

0\ r, .
Iimof)(z, €) = lim (%) E{f(y)e"”'”’é.,(alyl)dy =0

0 =0

for y > k-+(n—1)/2, |a| = k. Fix such a and y for the remainder of the
proof and write &, = &, ete.

(4) o(@,8) = [flaty)[y*D(ely)] dy,
En
[ B (ely))]” = (2m)™" [2°®(e]a]) e~ Pdux
E"
— (zw)—nftn-}-k—l@( et)[ f & B_itwl(s-n)dgldt’
0 1El=1

x = t§, y = |y|n in polar coordinates. We may write the homogeneous
even polynomial £ = 3 ¥, () where Y,(£) is a spherical harmonic
of degree m. By lemma 1, the inner integral above is

3 [ Teeal®E0aE = F2r)™ 31 Teoalm)(tly) ™ Teoara iyl
1§1=1
After a change of variable we obtain
Froa ~ —nj2 1 —n—k 1y (v) i
(5) LY P (elyl)) = (@m) 7™yl Kzzlgk( 1) Yk-zz(ﬁ)/tk-21<]y]),

y = |y| & in polar coordinates. Since & is even, it follows that [3*®(e ly1"
is even and (4) may be written

A, o =it [TOTHED pegieiypray.
Lm

Each Yy_y(é) is bounded on [& =1 and, by lemma 2, o2 (w, )
is bounded in absolute value by a constant multiple of

[ itetp-tseal () Wt
lvi<s ]

+ [ty (—6—) Tyray,

Iyl
wl>e
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yo = k+(n—1)/2. By (3), the first of these integrals tends to zero with .
To show that the second tends to zero, let 8§ = 9 —y, > 0 and observe

0.8
s

s 2e )
¢ [ )=yl Ty < [w)dy
|¥|>6 U

tends to zero with ¢ for any fixed & > 0. Let

Gt) = [If@+y)+f@—yldy, 1> 0.

lyh<t

By hypothesis, ¢(2) = o (") as ¢ -> 0. But

)
& [ Iflwty)Hf@—y)ly 0 dy = [rrhcag )

e|y|<6

3
= [t“"“"‘sG(t)li+(n—|—7c+s) f t"”“"‘s“lG(t)dt]

. ]
= 0(1)+0(s") [t Lo (") @t = o(1).

This completes the proof of theorem 1 (b).
To prove (a) we proceed similarly, arriving at (4) and (5) with %
replaced by f., @(cly|) replaced by e~* and uf) replaced by

o
V(1) = f 0—rssza-)-ﬂ+1Jm+ﬂ(8)ds'
0

Using repeated integration by parts (d[s*J,(s)]/ds = §'d,_1(s)) and [6],
D. 386, it can be shown that [u,(r)] < Ar for 0 <r <1. Also 12 ()]
< 4%, and the rest of the proof is the same.

2) We now prove theorem B. The method is very similar to that
of theorem 1 (b).

Lmvma 3. Let f(w), xeE", be periodic, feL(Q). There is a sequence
8™ (@) of trigonomeiric polynomials converging in L(Q) to f(z), i.e.,

Um [ |f(z)~8™(@)|do = 0.
'm--»ooQ

For a proof, see [7], vol. I, p. 304,

To prove theorem B, assume % is even and % > 2, the case & =0
bging Bochner’s theorem. Subtracting from f a periodic function ¢ with
k bounded continuous derivatives in E® and D*g(w) = ay(z) for |a| even,
Wwe may consider the two cases: (i) f has & bounded continuous deriva-

icm®
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tives in B, Df(%) = a.(®), and (ii) a.(z) = 0 for all a. For case (i) we

have
. AN i
S[Df]:(—a—m-) E ¢,

and since D“f is continuous,

(o) = 1) 30, 0elul

tends to a,(x) as e - 0,y > (n—1)/2. In case (ii), condition (2) becomes
(3) and we must show that

AY (s
Do, = (5] 3o, elu

tends to zero. Fix a,la] =%, and y > k-+(n—1)/2 for the rest of the
proof and write @ = @,, ete. We claim that (4) remains true in the
periodie case. To show this, let H,(y) = i*[y°®(ely|)]", H, depending
on a and y. By lemma 2 and formula (5) for H,, |H,(y)] < Ae™"F and,
for |yl = e |H(y)| <ALy, s = y—(k+(n—1)/2) > 0. From the
second of these inequalities, it is easy to see that the integral

[fle+y) Ew)dy
EN

converges absolutely for periodic feL(Q). Moreover, H e L(E") for each
e >0 and from the continuity of y"®(s|y|),

*2°d(ela)) = [H.(y)d®dy.
En

In particular,

FEN ) Delul) = [H.y)e'tdy

and

(6) & 3 e dlelpl) = [ 8" (@+y) Ho(y)ay,
<R "

‘where

gy = ) e,

lnl<RE

Fix ¢ > 0. H,(y) is continuous as the Fourier transform of an inte-
grable function. Since the series } H,(y+2nu) converges absolutely and
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uniformly over @, its limit H is continuous and bounded on. @. Thus

[8™a+y) Hy)dy = ) [ 8™(@+y) H,(y)dy
QM

b
= f 8™ (@+y) H, (y +2mp) dy
—fs"' o-+y) Hy (y)dy -

Letting m — oo and observing that ¢y — ¢, (lemma 3), we obtain
from (6),

i X6, b (s ul) ffw+u VYY) dy = [flo+y) H,(y)d
En
Hence for periodic feL(Q),
(7) (@, ) =i* [fla+y) [y, (cly)T dy.
ol

Let .
[ 1fo+y)+f(@—y)idy,

i<t

By hypothesis, G(t) = o({"**) ag t— 0. Since feL(Q),G() = 0@ as
t — oo, Using (b) and (7), the remainder of the proof follows that of the-
orem 1(b).

IV. Proof of theorems C and D.

1) We begin with the non-periodic version of theorem C.

THEOREM 2. Let f(x)eL(B") and satisfy (1) for k =1 at each point
of a measurable subset B = E". Then for almost every e E and any |a| = %,

JHy) iy

>0,

48 Bochner-Riesz a-summable of order y;{ =k+(n—1)/2 to a.(z).

To prove this theorem, we need five lemmas.

Luvma 4. Given feL(E") satisfying (1) for some & =1 and oll ze<k,
E bounded, -there is a closed subset P < B, |B—P| arbitrarily small, and
a decomposition f = g-+h satisfying

(i) geC® with compact support,

(if) f(#) = g(#), @(®) = D°g(x) for weP, |a| <F,

(i) ™" rf [h(z+y)|dy = o(s") for weP,

h
f | I‘ﬁi;ii dy < oo for xeP.

icm
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For a proof, see [2], p. 189.
Let @,(t) be defined as usual. Then
Lemma 5. For y > —1, n > 2,
[, (ely)T™ = Cpe™™ (e Y ™ Tupayp (77 1915

with €, = 2"T'(y+1)(2x)™""
Proof. We have

[‘Dy(l‘yl)]A = (2m)”" f (1_]‘r]z)yg—i(x.y)dm
<1
= (2ﬂ)—nftﬂ"1 _tz [ [' 0—1t|y| ,,)dE]
0 18l=1

where # = t&,y = |y|y in polar coordinates. By lemma 1, we obtain

n—2
5

1
(@m)™™ [ -y Iyl Tp(tly e, B =
0

By [6], p. 373, this is
2" I'(y-+1) (27‘7)-1”2".’/[#”]2—?‘ n/zq-y(lyi)z .

and since [w(ey)]” = & ™4(y/e), the lemma follows.
LEMMA 6. Forla] =k >0, y, = k-+(n—1)/2,

ly

—n—k
&

- |
Iy, (ly)T7] <€

’
with C depending only on n wnd k.
Proof. By [6], p. 45,

D Tl = syl Taeal))-
0y;

Continuing, we see that the derivatives of order k of ly|7"J,(ly}) are sums
of terms ‘
Pyl w91

whereﬁxs a multi- mdex and 0 < |f] <m <k By lemma 5, D“[@,,ﬂ(s]yl)]"
=*[y" D, (ely))] " i a constant times a sum of terms

(8) G A Ca ] R PPN Ca )
where » = n/2+y, = n+k—%. In absolute value, (8) iy less than

&k (e )T, L (67 YD)
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_ Since |/, (s)] < ¢" (8 > 0), each such term is bounded by ¢~ * < ly |~
it Jy| < e. Since [J,(s)] <57 (s> 0), each term is majorized in |y| = & by

I ey T < e
since m—|f] > 0.
LEMMA 7. For v > —4, 6 >0, FelL(§, oo),

Py T, (e ) dt = o(s'?)

A

as ¢ —> 0.
TFor a proof, see [6], p. 457.
Levma 8. If heL(E") and |a| =% =0,
lim [ h(e+y) [y By (e y)]dy = 0
0 yize
for any 6 > 0.
Proof. From (8), [y“(byn(em)]'\ is a constant times a sum of terms

6—1/2+m—lﬂ|yﬁ‘y‘»-w—-m Jar-H71(5~1 ,Z/D ,

v =mn+k—4, 0 <[fl <m <k Hence it is enough to show each
s*‘”l [ Wo+9)y" 1", (e ) dy
Y|320

tends to zero. This integral may be written

eV [ PRS0 (7 dt
with ’
F(o) =700 [ h(pyrg) £ ac.
lé[=1

Si » |
]emm;ngs heL(E") and 8> 0, FeL(6, o0). The lemma follows from

. To prove theorem 2, we may assume ¥ is a bounded measurable
ss and consider (lemma 4) the cages (i) f=g, B =P, and (ii) f =
I = P. By Bochner’s theorem, ' ’

DHEL I D, (elyl)dy = Efn [D"91" (y) 6=V b, (elyl)dy

tends everywhere to D°g(2), and i g ]
i , 80 in P to a.(®),|a] =% > 1.
In case (ii), we will show that for la| =% 1el -

D° [h(y)e eV, (s|y))dy
ETI-
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tends to zero for meP. In absolute value, the expression above is

| [h@+p o, it ay| <| [ |+] [|=4.+B.

an [vj<s wj>s

By lemma 6,

By lemma 4 (iv) we may choose 6 > 0 so small that 4, is small for
all ¢ and a given z<P. With § fixed, B, is small with ¢ by lemma 8.

Before proving theorem O, we restate lemma 8 in the form of a lo-
calization theorem. Since

D* [f)e @, (elydy =i [flo+y) [y @, (elyDT "y,

B ot

we obtain the non-periodic version of theorem D:
THEOREM 3. If feL(E") wanishes in the neighborhood of wx, then

[faneeay
En

is Bochner-Riesz a-summable of order yy =k-+(n—1)/2 at z to =ero,
la| =%k = 0.

For k¥ = 0 this theorem is well-known. It is clear from theorem 1
(b) that the result remains true if we increase the order of summability
to y > yp-

2) To prove theorem C, only a few words are necessary. We may
assume X c Q. Since lemma 4 holds for functions defined only on an
interval, an application of Bochner’s theorem in ifs periodic form shows
we may consider only the case f = h, B = P. Formula (7) holds for y = ,,
which can be seen by replacing lemma 2 by lemma 6 where necessary
in proving (7). Moreover, lemma 8 holds for periodic heL(Q) with the
restriction & > 1. For then

fh(wﬂ/)

Ntk Y

wise 11
converges absolutely for all # and § >0, and therefore the function ¥
of lemma 8 belongs to L(8, co). The proof of theorem C is now the same

as that of theorem 2. Finally, from (7) with » =y, and the periodic
version of lemma 8 (k>1) we obtain theorem D.
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Introduction

Important in the study of partial differential equations of parabolic
type ave classes of mingular integrals of the form

i—z
(1) lim [ wa t; 0y, t—8)f(y, 9)dyds
e
and
t—g
(2) lim [~ [E(y, 82—y, t—s)f(y, 8) dyds.
&0 3 §o)
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