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Proof. We have
L{D, X(c, t)}(2) = %imL{(X(b, =X (e, 1)) /(b—e)} ()

= lim (L{X (b, 1)} (2) —L{X (c, )} (2)) /(b —0)

baso

a
= o5 TIX (e, 1)} (2);
hence the result.

These limit interchanges have been used formally to solve partial
differential equations by Laplace transform methods.
Finally, we have the following

TeroREM 10.3. If Dy X(c,1) ewists, then for each Y (1) in @
Dy(X (e, )*Y (1)) = Y (8)<Dy(c, t).
Proof. Since
lbin:L{(X(b, )Y (1) —X (e, )« X (1)} /(b—0)
; L{Y ()} L{D; X (¢, t)} = L{Y(t)*D,X (¢, 1)},
Dy (X (c, t)*¥ (1)) exists and is equal to ¥ (1)*D, X (e, 1).

i

Bibliography

[1] G. Doetsch, Theorie und Anwendung der Laplace Transformation, Berlin 1937.

[2] E. Hille, Analytic function theory II, New York 1959.

[3] J. Korevaar, Distributions defined from the point of view of applied mathe-
matics, Proc.. Kon. Ned. Ak. Wet. Amsterdam A 58 (1955), p. 483-503.

[4] M. J. Lighthill, Introduction to Fourier analysis and gensralized funmctions,
Cambridge 1958.

(61 J. Mikusiniski, Sur lo méthode de généralisation de Lawrent-Schwartz et
sur la convergence faible, Fund. Math. 35 (1948), p. 235-239,

[6] — and C. Ryl-Nardzewski, Sur lo prodwit de composition, Studia
Math. 12 (1951), p. 51-57.

[7]1 L. Schwartzs, Théorie des distributions I et I, Paris 1950-1951,

[8] G. Temple, Generalized functions, J. London Math. Soo. 28 (1953),
p. 134-148.

[9] J. Weston, Operational caloulus and

generalized functions, Proe, Royal
Soe. Lond., Ser. A 250 (1959), p. 460. .

Regu par la Rédaction le 9. 1. 1966

©

STUDIA MATHEMATICA, T. XXVIIL. (1966)

A kernel associated with certain multiply connected domains
and its applications to factorization theorems

by
R, COILFMAN (Chicago, IlL) and GUIDO WEISS (St. Louis, Mo.)*

§ 1. Introduction. In this paper we introduce a natural extension
of the kernel
1 ¢+e
P2, 0) = PR

[ <1, |8 =1,
agsociated with the unit dise. It is well known that many propfe;?xes gOf
analytic functions on this domain can be derived by .mak{ng use o; : 1(: ,th)(;
whose real part is the Poisson kernel and Wthose moaglnaryf par s o
conjugate Poisson kernel. The theory of cla.smca,l H"’ spaces, for eei [111)]),
can be easily developed by making use 01‘“. its baS}c properties ésd ma,im;
We construct similar kernels associated with multiply Gomlec!?e (()1 nains
of conneetivity n. We shall show how they can be .used 113n ormmic?hl
obtain some basic conformal mappings of spch' domains on o.calf tend
“glit” domains. Our main result is a genemhz.atmn of the cla.sslcait a.dj%C
rization theorem for functions in the Nevanlinna class (?f 13hef un(:;i .Oin‘;

Let 2 be a bounded domain whose boundary I' ‘con.msts 01 tv;r isljl S
simple cloged analytic curves yy; ..., ¥s (we shall }ndlc/;:.te ;a i S
how to include more general domaing in .these cor-lsmerat;lons . .
always let y, denote the curve whose interior fmn’ﬁams 2 qucyl,I:().I.); r&;;
are contained in the interior of y,). The ex1ste?nce and bamsub.pct Y
of the kernel asgociated with such domains will be the subje

e we ghall prove the following theorem: . N
b T:‘V[EO:EM ]IE, Let 2,¢2 be fiwed, then ?herfz ewists o unique jointly
continuous function, P, defined on 9 % TI' satisfying

(1) for tel fimed P (2, () defines an analytio function of zeD;

i ience
* The research of the first-named author was supportecl(;)y tlnﬁofit;:nszlpizlr ey
Foundation, contract GP-3984. The research of the last-name :u o T 104,
in part, by the U.S. Army Research Office (Durham), Contra X
-ARO(D)-58.
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(2) [P(z,8)ds(L) is identically mero for k=1,2,...,n—1 and is 1
Vi
for & =n, where ds({) denotes the element of arc length on I';
(3) if F = u-+iv is a continuous function on 2 that is analytic on 9,
then

F(e) = [2(z, 8)u(0)ds(t)+in(z).
I

The original aspects of this paper consist mainly in theé uses of this
kernel. Though we have not encountered it in the literature, its existence,
even if not previously discovered, is not surprising. As we shall see in
§4, #(z, £) is easily expressed in terms of the conformal mappings B(z, a)
of @ outo the interior of the unit cirele with circular slits (centered at 0)
removed and such that B(a, a) = 0. Conversely, we also have the fol-
lowing formula:

(1.1) B3, a) = (z—a)exp{— [2(z, O)log|t—alds(0)}.
I

As o tends to a point, a’, on one of the components y; of I', the ex-
pression on the right is well-defined in the limit, and, thus, B(z, ) tends to

(1.2) B(e, ') = Byls, @) = (e—a')exp{— [2(s, {)loglt—a'|ds (&)} ().
I

We ghall show that By(z, ¢’) is a conformal mapping of 2 onto an
annular region about 0 whose outer boundary is the unit circle, having
n—2 concentric circular slits removed. When & < #», this mapping trans-
forms y, onto the outer boundary and y, onto the inner boundary of
this annulus. When k = n, B,(2, ¢’) is constant of modulus 1.

If 2 i restricted to a compact subset, ¢, of 2, then

[2(z, 0)log|t—alds(l) = log(z—a)/B(z, a)
I

has a harmonic extension as a function of a to a domain containing ) (%).
This domain depends on C.

(!) Despite the singularity at { = a’, the function log|t—a’| is integrable on I'
(*) This extension, however, is not given by the integral in (1.1) when ME,
oven thongh the latter is well defined. For example, when # (¢, {) iz the kernel

1 i+
2 {—=z
aggociated with the unit circle we have B(z, a) = (¢—a)/(1—Ge) for |a| < 1, while
: - (e—ajexp{— [2(z, {)log|t—alds (D)) = —a/]al
ro .

when |a,|.> 1. This also illugtrates the above described‘behavior of Bz, a) a8 o tends
to a point on the outer boundary.
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In § B we show that these kernels vary continuously with the domains;
in §6 we study more explicitly the case when 2 is an annular region.

Tn these six sections we assume ag known the existence of the Green
function for these domains. Otherwise the paper is self-contained. Some
of the facts proved are well known; however, since we shall need some
of the details in their proofs, it is more expedient to give them here than
to refer to several articles and books where the notation varies.

An analytic function, T, defined on 2 iy said to belong to the Nevan-
linna class N = N(P) if there exists a harmonic function, &, such that
log"| #(2)] < h(z) for all ze2 (where logta = max{logz, 0} for £ >0
and log™0 = 0). In the seventh section we shall establish the following
factorization theorem for such funcyions:

TarorEM II. Suppose FeN (D) and F is not identically 0. Then
F = B@, where

(1) @ is an ewponential function of the form

@(s) = exp{ [2(e, (D)}

where v is a finite Borel measure on I' determined by |Fl; -
(2) B is a bounded analytic function hawing the same zeros as F;
(8) The limits

G(0) = Lm@(2),

g—fel’

B({) = im B(z) and

2—>lel’
where = tends 1o the boundary point [ mon-tamgentially, ewist for almost
every Cel. Turthermore, there ewisi constants Ady ooy My1, depending on
| 7| and 2, such that |B (L) = ¢ for almost every Leype 'k =1,2,...,m,
where A, = 0.

By the term “almost everywhere” in part (3) of this theorem we
mean almost everywhere with respect to the measure on I' defined by
are length. We ghall also show that this factorization is unique.

It {a}, i =1,2,..., are the zeros of a function FeN(2) (counted
with their multiplicity) and o, satisties |a;—a;| = min ja;—C], we ghall
also show that ber

(=]
Dag—ai) < oo.

4=l

(1.3)

(We remark that a; exists and, except for at most a finite number of
indices 4, it is uniquely determined by a;.) -
In § 8 we use this result to give the following representation of the

function B:

Studia mathematica 28.1
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TuporEM IIL. There ewist imtegers ..., Mn_, and poinls bieyr,
k=1,2,...,n—1, such that

The infinite product on the right is absolutely and uniformly conver-
gent whenever z s restricted to a compact subset of P.

When 2 is the unit circle, the above product is the Blaschke product
([12], Chapter VII). Other authors have obtained related results. Tn
general, they restricted their attention to annular regions. In some cagoeg
multiple-valued factors were introduced in the place of the functions
B(z, ¢); moreover, in this connection’ use was made of the universal
covering surface of the domain (see [3], [8] and [10]). We shall discuss
in more detail the relation between these works and ours in § 9. There
we shall also indicate how to extend our results to other domains. In
particular, we shall discuss briefly the case when the boundary of @
contains isolated points.

We begin by obtaining a basic relation between harmonic functions
and real parts of analytic (single-valued) functions on 9.

§ 2. We fix a hounded multiply connected domain, 2, whose boun-
dary, I', consisty of n analytic Jordan arcs Yy, ¥ay ...y ¥n, a8 degcribed
in § 1. We recall that y, denotes the outer curve. Let A mhk=1,2,...,n,
be a doubly connected subdomain of 2 whose boundary consists of y,
and an analytie Jordan curve y lying in @. We can find such subdomaing
and an annulus # = {z; R < |2 < 1} such that (i) # is conformally
equivalent to 4, (%) and (ii) the domains 4y, 4,,
disjoint. In order to satisfy (i) we must select the doubly connected re-
gions #, 4,, 4,, ..., 4, so that they have thé same modulus (see [B],
D. 334). We can certainly do thig, obtaining property (i) at the same
time, if we choose R close to 1 and 7 cloge to Y, k=1,2,...,n

Pioperty (1) asserts that there exists a conformal map, ¢y, of %
onto A;; by composing this mapping with the correspondence z — Rz,
if necessary, we can assume that the circumference |¢| = 1 corresponds
to y,. Whenever R < ¢ < 1 the circumference 2| = o iy mapped by ¢
onto an analytie Jordan curve Ve (lying “between” 3, and i) We let
9, be the subdomain of 2 whoge boundary, I,, consists of the curves
Yier Y201+ 009 Ynge-

..y 4y are mutually

(*) By this we mean that there exists a conformal map of a domain containing
# onto a domain containing Az.
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‘We assume as known that there exists a Green’s function for the
domain Z; that is, there exists a funection ¢ of the form g(z, £) = h(z, C):
—log|#—¢], where, for (e, h(z, ) is the continuous function of z¢2
agreeing with log|e—¢| when z¢I" and harmonic for z¢2. It follows that,
for ¢e2 fixed, g(2, {) is harmonic when z is restricted to 2— {}. Fur-
thermore, we also have the relation g(z,{) = ¢(¢, 2).
Let )
; —1 dg
=——"(2
Pe,t) = 5 g (@ 0)
for 2¢2 and Cel', where 0/0n; denotes the derivative in the .direction
of the normal pointing towards the exterior of y; if eyr. If f is a con-
tinuous function on I', then

(2.1) u(2) = fl’(z, Of(e)ds(g),
r

for 2¢9, defines the harmonic function having l-)olunda,ry values f({)
(the solution of the Dirichlet problem); that is, deﬁmr.lg u by (2.1). when
2e2 and letting u(s) = f(2) for zel the fxinction « is then continuous
on 5, harmonic in 2 and equal to f on 2—2 =TI (sefx [51).

We denote by wy, ¥ =1,2,...,n—1, the harmomfz measure cpr—
responding to the component y; of I'; that is, wy is the continuous ful%ctlon
on .5, harmonic in £ and having values identically ZEIo OB 7y, ] ;é k,
and 1 on y,. Adopting the usual conventions concerning the positive
and negative directions of traversing the components of the boundary I

we have, symbolically, ot
[=]-2]

r n, 7=1 v;

and, thus, by (2.1)

ope) = — [Pz Ods(t) for 1<k<n—1,
(2.2) vk -
ou(e) = [P, Q)ds(f) =1— ) wil2).
Yn k=1
Suppose w is a harmonic function on 2. Let
0w , Ou
f = —5; ——-’b—a-:;/—.

Then f is analytic (in fact, if  were the real part of an anall'ytic functio‘n,
F, on 9 we would then have B’ = f). Let C be a differentiable cwrve in
9 parametrized by arc length. Then, for z(s) on C, 2(8) = x(s)+1y(s)
’ ou ou } _{Bu , ou | }

— —y P\ (8)— — &' (8)¢-
{am”(sH ayy(S) T 55 Y (s) 3y

Flz(s))#' (s)
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The last term is u(z(s))/dn, the derivative of w in the direction of the
normal to C at #(s). If € is a simple closed curve and is traversed iu the
positive (counter-clockwise) direction as s increases, then the normal
is directed towards the exterior of (; moreover,

f(()'u,
3 0w
o (0

ij(z) dy = %b[‘ '(‘)")T ds

for every simple cloged differentiable curve ¢ in 9.
Let

()+———-u (s >) -0

in case O iy cloged. Thus

(2.3)

be the harmonic function on 2 having real boundary values A, on yy,

k<mn, and 0 on y,. Let
dw . 0w Doy Ouy .
=—05—"r“57”' and i ""a*/"n“—' *B‘g—, ==1,2, ..,’)74--1.
Then from (2.3) we have
dw Devs
fW dz = f-—-ds and fW,(z)dz =i f—df"id&
07 v on
k 7k

for k =1,2,...,n If we define

f~———ds, 1<j, k<n—1,

then Green’s theorem and the fact that o is 0 on y, give us

fflvmzdwdq = fw“—*mds 2 f}?cu

-1 [ G |

__2 — fz,ll de ds = —-27‘:2’ Z Ay Oy

lees )

Thus, if there exist 4,,...,4,_, such that

1

Zakﬂf—o

F=1
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for k =1,2,...,n—1, then » must be constant (since, in this case,
Vo =0). Since  is 0 on y,, this would imply that w is identically zero
on @, which can only happen if 4, = ... = 4o, = 0. This shows that
the matrix (ay) is non-singular (we have actually shown that (—o5)
is positive definite).

The following result is an easy consequence of these considerations:

TEMMA (2.4). Suppose u is a real-valued harmonic function on D
then there exist constamts Ay, Ay, ..., Aq_y Such that

v—u~2}le

=1
is the real part of an analytic function on 2. The constants Ay Aoy eney dna
are unique.

Proof. Let
o . Ou

o0 oy
and ¥ = ypp, k =1,...,n—1, Jordan arcs of the type described at
the beginning of this section. Then, since W; is analytic on 2,

f W;(z)dz = f Wil
By (2.3) we have seen that this last integral equals

f@w,d

Ef”i ds.
an

while the former equals

Yk
Thus,
0&)]'
) “om
"k
Since the matrix (az;) is non-singular we can find Ay oen

ds.

21‘!070' ==

, An_y such that

N1

2lemk,— ff 2)dz =1 ——ds

g=1
Ic
,n—1 (the last equahty follows from (2.3)). Define

- 2 }“J'Wa'(z)y

i=1

(2.5)

for ¥k =1,2,...
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then, from (2.5) and the identities established immediately before (2.5),

fg(z)dz = fg(z)(lz =2 ()
Vi, ?;c
for R<po<1 and k=1,2,...,n—1. But thiy is equivalent to the

fact that
[o)dz =0

4]

for all simple closed curves € in 2. Thus, ¢ has a primitive ¢f = [J|-4V
in 2. Therefore,

-1 N 1

0u v dw; . [0u Oy
0 f:il O ‘4’(5&";3&")
U v av ., 8U
= =@ = e e e
7 o ow ay " dy

Comparing real and imaginary parts we obtain the fact that U and

N 1

U— Z Aj(l)]'
foml

d.iffer b}_f a constant. Since the former is the real part of an analytic func-
tion, this establishes the first part of our lemna.

Wta 1_10W need to show that the constants A,...,4,.; are unique.
But this is an easy consequence of the fact that the matrix (ayy) is non-
singular: For, if

e 1
V= Y E Ay
g1

is the .real part of an analytic function ¢, then, for each simple closed
and differentiable curve ¢ in 2, l

0= @@ = | (n,—i PN L
JG (2)dz (J (05 —1%0,) (2) dz = zdf o ds,

flhe last equality being a consequence of (2.3). Letting ¢ =y, we then
ave ‘ '

n~1

n-1
1 dw 1 i
5 Mty = — E , f Las = (%,
7=1 T 2757 1 h J on dS_Zn: 6;;6“7 ke=1,2,..,n-1.
= Yy ¥
. I
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Letting 9N = (m;,) denote the inverse to the matrix (ay), we then must
have, for j =1,2,...,n—1,

1w 9
%
A= — _S_ . f T s.
7 2n Tk an ds
k=1 y;c
This proves Lemma (2.4).

Letting 1 be the (column) vector with compomnents 4;, j =1,..., %,
and » = »(u) the (column) vector with components

(2.6)

1 ou
2—75“ '—6*;'; 8y k=l,...,n,
% :
(2.6) can then be written in the simple form
(2.6") A= My.

§ 3. We now pass to the proof of Theorem I. For (eI fixed let us
consider P(z, {) as a function of z¢%. By Lemma (2.4) we can find (in
a unique way) 4; = 4;(¢), j =1,2,...,n—1, such that

n—1

p(2,0) =Pz, 0)— ) 4;(Da;(2)

j=1
is the real part of an analytic function of . Using (2.6) we can easily
deduce that the coefficients 4;(¢), as functions of {eI', are uniformly
continuous. Moreover, P(z, ) and its derivatives with respect to #z are
jointly continuous in #xI. Thus, it follows that dp |0z = p, and
dp|dy = p, (z = w+iy) are jointly continuous in @ xI' and so is

% .
P(2,0) = [{palw, O)—ipy(w, O} A0+ (20, 1)
]

This integral is independent of the path joining 2, to # since p(2, )
is the real part of an analytic function of z. Thus, we have shown pro-
perty (1) of Theorem I. We remark that the imaginary part of £ (2, {)
is zero and that Re{#(z, ()} = p(z, {).

Tet % be a real-valued continuous function on I' and define, for ze2,

n—1

v(z) = [p(s, OBOBE) = [{Ple, D)= D 4(5) as(2)a(L)ds(8).
I r

=
j=1
Since p (2, ¢) is the real part of an analytic function (of 2), 80 is v (2).
Applying the uniqueness part of Lemma (2.4) to

u(z) = [Pz, 0)m(2)ds(2)
I

'
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and, then, formula (2.6) we obbain

1 du
A0 () ds(8) = Ny = —— Y my, | ——ds.
rf ! A7 % * f on

From (2.1) we thus have o(2) —>7%(y) when

(3.1)

g ->ney, and v(z) >

—%(n)—% when ney;, j=1,2,...,0~1.
In particular, when
. 1 for ey
(3.2) T(L) = _ Vies
) 0 for iy,
k=1,...,n—1,

v(2) = Re{ [ 2(2, () ds (8)} = wi(9)—1- (s) = 0
;

(for 1-wy is clearly the (unique) linear combina{aion of wyy ..y @, that,
upon subtraction from ey, yields the real part of an analytic function
in 2). Similarly, when % is defined as in (3.2) with % = n, then

[
= Re{ [2(2, DT(2)ds (1)} = wu(e)— 3 (~1)opla) = 1.
I
Property (2) now follows since the analytic functions

leeal
o, 0ase

ke

ta)

having constant real values, must have constant imaginary values. The
latter, however, must be zero since they clearly are so at 2,.

Now suppose I' = u--9 is continuous on 2 and analytic in 2.
Since w is already the real part of an analytic function 2 =0,
1<j<n—1, and

= [p(e, Hu(0)ds(2)
r
Henece, the analytic function
P - [20 s (2)

has real part zero and must, therefore, be a pure imaginary constant
ie = {op. Evaluating at 2z, we obtain oy = v(z,) and we thus obfain
property (3).

If 2,(2, {) is a kernel satisfying the three properties of Theorem I,
it is clear that the third property holds for an F analytic in 2 having
a real part that is the Testriction of a continuous function on 9 (for we
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can approximate F uniformly on compact subsets of 2 by rational func-
tions whose poles are outside 2). In order to show that such a kernel
is Qqual to P(z, () it suffices to show that for each z2¢Z

(3.3) {{@ (2, £)— P4 (2, O} (0)ds () =

for all continuous functions w, on I. By Lemma (2.4) there exist coeffi-
cients Ay,..., Ay_; and an analytic function ¥ on 2 whose real part is

By property (3)
0 = F(z)—F(2)

= [ {#(2, )P (2, O} uo(0) ds c>—21k f{m(z ) —24(z, O}as(C
I =
But the last term is 0, by property (2). Thus, we obtain (3.3) and
the uniqueness of our kernel is established.

§4. We shall now show that the conformal mappings deseribed in
the introduction are given by formulae (1.1) and (1.2). More precisely wo
shall show:

TarorEM IV. The function defined, for ac@, by

B(z,a) = (¢—a) exp{ fﬂ” Olog|l— a[(ls(g“}
is a conformal mapping of @ onto the unit disc {w; jw| < 1} with n—1
cireular slits removed. These slits are located on circles about the origin of
radii

0 = gi(a) = eXP{Z ﬂikwk(a)}, j=1,2,...,n—1.
k=1

-Furthermore, B(a, a) = 0.
If &' ey < Ty the function defined by

Blz, ) = (z—a)exp | [, Dloglt—w]ds(0)}

is @ conformal mapping of @ onto the annular region {w; expmy, < |w| < 1}
with n—2 circular slits removed. These slits are located on circles about

the origin of radii o; = exp {my}-
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In the course of this proof we will show that the coefficients of the
matriz M = (nﬂu satisﬂ/ T < 7 < O for jok=1,...,m—=1, js£k (4.

We fix ae¢2 and y; = Vi © == 1,...,n—1, the Jordan ares in-
troduced in the proof of Lemma (2.4). We choose o close enough to 1
50 that @ is exterior to each 'y;a = yy,o- Thus, log|z—al i3 the real part
of an analytic function inside and on y;. Hence, by (2.3) and Cauchy’s
theorem,

0
(‘J:l) fb',“" 10g]é‘~-(l[d¢( )

Recall that h(z, () = g(#, {)-}-log|z—¢| denoted the solution of the
Dirichlet problem having boundary value log|z~—¢|. Thus, by (4.1) and
(8.1), with % () = log|{~a| and u(2) = k(z, a),

fAf (¢)log|¢ —alds (¢) =—Znﬁ,f‘9h 59 a50)

371/;

Ni—1
1 89(¢, a)
= Tgge 8 ().
2m ; o y{ Bnc (&)

Because of the symmetry of the Green funection, the integrals in the
last expression tend to

—2n [P(a, £)ds(2) = 2ray(a)
ke

.2)). Thus,

a8 o tends to 1 (see (2

N1
D monla)

k=1

(4.2) [ 45(0)10g |t ~alds(2) =
Let i}
Liz,a) = [2(s, )log|c—alds(2).
Then, by (4.2), ’

N1

(43)  Re{L(z,a)} = [{P(s,0)— ¥ 4 £)o;(2) ) log|¢—al ds (£)
r j=1
e 1 N 1
= h(z, a)— Z wy (% 2 s 01 (@ @z, a).
I=1 Kol

(*) We remark that I is a symmetric matrix. This follows from the fact that
the same is true for its inverse ¥ = (ajk)- This last fact is an immediate consequence
of the symmetry of the Green function and the definition of the coefficients

1

=L [ 2en2) _
ok = 5= yjf W@ == y/f wf—%—éw ds(2)ds(2) (see (2.2)).
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We now claim that, if 2 is restricted to a compact subset € = 9, L(z, a)
has @ harmonic emtension, as a function of a, to a domain Dy > . Because
of the analyticity of the boundary curves y,, y,, ..., v, and the fact that
g2, a) =g(a,?) =0 when ael’, we can apply the Schwarz reflection
principle to obtain such a harmonie extension of g(#, ¢) as a function
of a; the same is true for the harmonic measures w,(a),..., w,_;(a).
Thus, our claim is established for the function (2, a) = Re{L(z, a)}
since it i3 a linear combination of %(z, a) = g(z, a)+logle—a] and
@y (@), oery p_1(@) (s€€ (4.3)). By the Cauchy-Riemann equations,

0 7 .0
L'(z,a) = a—zI/(z, a) = (E —z—al—qf)cp(z, a).

Thus, I’ (2, a) also has an extension (as a function of a) that is har-
monic on such a domain Py o> £. The same, therefore, can be said of
(s, a) (9).

Let B(z,a) = (z—a)e TE,
h(z,a) = log|z—a| and (see (4.3))

Then, for zey;, j=1,2,...,2—1,

(4.4) IB(2,a)] = exp{ > mpeon(a)} = /()
k=1

while, for zey,,

(44" |B(z,a)| = 1.

Thus, the images of the curves y; are contained in circles C; centered af
zero with radii g;(a),j =1, ..., n. Moreover g, =1.

Suppose that w is a complex number not on any such circle; we
show that

(B 1 i jw <1,
(4.5) f =
2ri ¥ Bla, a) —w 0 if |wi>1.
Thus, B(2, «) assumes each such value, w, of modulus less than 1, pre-

cisely once and maps 2 into the unit dise. This clearly implies that B(z a)
is a conformal mapping of @ onto the unit dise with slits on the circles
¢,,j=1,2,...,n—1, removed.

(*) Recall that (2,
Hence,

£) has imaginary part 0; thus, the same is true of I (2, ).

z
Iz,a) = [L'(w,a)dwtel, o).
%0
It we assume that the path of integration joining 2, to 2 can always be chosen
in 0, our agsertion about L(z, a) is obviously true. If this is not the case, we may
include (J in a larger, arcwise connected, eompaot subset of @ in which such paths
can be found.
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Let Agarg F denote the increment of the argument of the funetion

¥ along the curve €. It is well known that

1 f‘(B(z ) ~w)

Dri Bz, a)—w

(4.6) -
2mi

1
ds = -—— A, ag{B (e, a)—w}.
2 F

We recall that the increment of the argument, along a closed curve ¢,
of the sum of two continuous functions, one of which hag modulug strictly
larger than the other on ¢, equals the inerement of the argument of the
former. Thus, if |w| > |B(z, a)| for zey;, then

Ay arg Bz, o) —w} = A, argw == 0.
On the other hand, if |w| < |B(=

4, 8rg{B(z, a)—w} = 4

, @)} for ey, then

B {B (2, a)}.

But B(z, a) is the product of an exponential, whose contribution to
increment is clea,rly 0, and 2—a. Thus, in this case,

this

1
""_;:" Ay/c( '—'a’) = Cslm

(the Kronecker 6) since @ €2 implies that it iy interior to y,, but exterior
t0 ¥1y.-ey Pun1. This, together with (4.6), implies (4.5).
We remark that we have shown that g;(a) <1, j=1,...,

that is,
n—1
%
Z 747 g {

k=1

n—1;

a) <0 for all ae2.

Letting & tend to omne of the boundary curves y; (1 <k < n) we
obtain 7 < 0. The sharper result announced immediately following
Theorem IV will be apparent at the end of our study of the function

B(z,a') = (s—a’)exp{— fg! O)loglt—a'|ds(2)},

where a'ey, < I'. Thig study is very similar to the one just completed;
consequently, we can omit some of the details.
From (4.3), by taking the limit as « >/, we obtain

P 1
(4.7) 1Bz, )] = exp{ 3" mpey()}.
Fel
Thus, for zey;, j =1,2,...,n—1,

(4.8) Bz, ') = ¢k = g; = gff
while, for zey,,
(4.8) |B(z, a')| = 1.
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Thus the images of the curves y; are contained in ecircles C; centered
at zero with radii ¢; = o, j =1,..., %, with g, = 1. As in the preced-
ing case, the fact that B(z, a’) is a conformal mapping follows from an
evaluation of the integrals of the logarithmic derivatives of B(z, a')—w
along the boundary curve I. In order to obtain these evalunations we
firgt show that

1 i
0 if

(9) 1 Bz, 0)
' 9% J Bz, a')
i

j=kmn,
jEk,n.

= ()"

1
dz = o 4,argB(z, a')y =

(log|B(z, a'}|) ds ()

B(z, a') 2n J Omy,

n—1 -1

\ | Bl
o f > ﬂmk wm(z) ds(z) = Z Tk Bjm == Ojk -
a7

m=1 Ml

On the other hand, since B’(z, a')/B(z, ') is analytic in £ (the

denominator is never zero)
2mi . B(z,a)
¥n j=1 5

1 fB’(z,a’)d _
" 2mi ) Bz, ) "

1 a 610g|Bz a')l
- ds(z).
[ watat = 51 [ PG e

Thus,
1 B'(z,a")
2mi B(z,a')

and (4.9) is established.

Since —M is a positive definite matrix (%), it follows that Topr < 0
(k =1,2,...,n—1). Thus, the ring {w;e™* < |w| <1} is non- -empty.
If w ig in thlq ring, but is not on any of the circles C;, then from (4.9)
and an argument similar to the previous one we obtain

Aparg{B 2,0 )y—w} =1.

2\:

(*) See the discussion immediately preceding Lemma (2.4), where we show
that —IM-1 = — A is positive definite.
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On the other hand, for |w]>1 or |w]| <™ (w¢() we have (again .

using (4.9))
1
—- Aparg{B (s, a')—w} = 0.
o
We thus obtain the analog to (4.5) (see (4.6))

1 [ (B a)—w) Lot

4 ¢kl < I‘ll)| <z 1’
S A I,
2nt Bz, 6')—w 0 if

h [w] << €% or |w| > 1
ag long as w¢C;,j==1,2,...,n, and the second part of Theorem 1V
is established.
It is now easy to show Dby similar arguments, using the identities
(4.4), (4.4), (4.8) and (4.8'), that the following result is algo true:
TuEOREM. Let aeD and o' ey, < I'; then the function Bz, a)/B(z, a')
is a conformal mapping of 2D onto the interior of the disc
n—1 )
- ;
{w; [w] < OXI)(‘\_J Wy w:i(a)“‘”klc) =Ty = Tln(a‘)}
J=1

with concentric circular slits (centered at 0) removed. The curve y,, is mapped
into the circle about 0 of radius vy(a) and the point a is mapped onto 0.

‘We omit the proof, as well as the caleulation of the radii of the circles
containing these slits. It i3 obvious, however, that y, corresponds to
a slit on |w| = 1. ) .

We can characterize the analytic functions on 2 with the help of
the conformal mappings of Theorem IV. We first prove the following
result concerning non-zero analytic functions:

THEOREM- (4.10). Suppose I is analytic and never zero on .55; then
there ewist integers oy, Mo, ..., My_y Such that for any n—1 points a,;ey,-,
Jj=1,...,n—1,

n—1
P(e) =y [ Bz, apy"-exp{ [2(s, &)log|F(2)|ds(2)},
Faul I

where y s a constant of absolute value 1.
Proof. Let (see (2.3))

1 dlog| 7| . 1
Tom T 2w
Py i
Since B’ /}11 iy aJn,alytic in 9, myy ..., my,_; arve integers. Chooge any
n—1 points ay,...,a,_; on the curves 7, ..., y,_;. From (4.7) and the
fact that A = (ay) = (my,)~' = M~ we have

A’
i F'(2)

N

0(8) = ) amlog|B(z, ap,)|.

M=)

(4.11)

icm
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Thus, from (3.1) with » = log|F| and (4.11),
n—1

Re{ [2(3, 0)log|F(¢)|ds(0)} = log|F ()|~ 3 2j05(2)
I §=1

= log|P (=) — 2 (2 ) | 2 amlog|B(z, )}
j=1 k=1 m=1

-1

=log|F(z)i— D Simlog|B(z, a)™
k,m=

1

fn—1
= log|F ()| — D log|B(z, ap)|™.
F=1

This shows that the analytic functions F(z) and
n—1
[] B, a)y-expf [2(z, Hlog|F(D)lds(0)
j=1 I

have the same absolute value. Thus one must be a constant multiple
of absolute value 1 times the other; this, however, is the assertion in
our theorem.

In this proof we can replace log|F| by a function « that is harmonic
on 2. We then obtain numbers Myy ...y My_, (ROt necessarily integers)
such that

(412)  w() =Re] [2(, c)u(c)dg(g)}+210g,3(z’a;);m7.,

for ze9. .
If F is a general analytic function on 2, then it has at most a finite

" number of zeros, {a;}, in 2 (we assume F is not identically zero and that

it is not zero on I'). Thus
@) = F(2)] [[ B @)
%9
satisfies the hypotheses of Theorem (4.10). Applying this theorem to G
we obtain

) =7 [] Bl - exp| [ 2(e, Ologlé(2)]ds (0))-
j=1 r
But
[2(2, O)logla(2)|ds(¢)

r

= [2@, OlogiF@)ast)— [ X 2z, O)log B, a))lds(£).
r r

a;e
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Since [B((, a})l is constant on each of the curves v, ..., yn_y and is
1 on y, it follows from (2) of Theorem I that the last Lcrm i8 0. Thus

n—1

y[I{Bz ag)}" HB 2, a,)exp{f./’

" We remark that if we take for F(z) the function z—a, with a2,
(4.13) gives us the formula for B(s, @) of Theorem IV.
Formula (4.13) shows how such an analytic fanction can be obtained
from its zeros and its absolute value on [ Theorems IT and IIT give us
guch a result when F iy considerably more general.

(4.13) Elog| T ()] ds (L)}

§5. We shall now show that the kernel we have introduced varies
continuously with the domain. In order to make this statement precise
we need to introduce some notation. Consider the domains Z,, B < ¢ < 1
introduced in §2 (2y= 2) by means of the conformal maps ¢ (k=
2,..,n). I ¢=qg)ey,cT, we let £, = qi(oe™) for 1?<9<1
Let 2D, for R < o< o<1 and #,(2,¢,) the kernel of Theorem I
associated with the domain £, and the point 2,. 'We shall derive the fol-
lowing result:

THBOREM (5.1). 2,(2, ¢,) tends to #(2,() as g <1 tends to 1, ﬂ:o
convergence being umform in 0, as [, = oil0e™)  approaches q)k( %)
= Ley, < I, and in 2, if the laiter is wstrwwd to o compact subset of D,
0> Q-

‘We prove this theorem by establishing a sequence of lemmas. In
the sequel we let g,(z, {) denote the Green function associated with the
domain Z,. Thus, g1( ) -—g(z ).

LeMMA (5.2). Suppose Ce@e ; then there exists @ number o, 0o < @ < 1,
and o domain D* o D such that g,(2,8), 0, < @ <1, has a harmonic
extension, as a function of &, to the domain J*—{C}

Proof. We first observe that if «, is continuous in the ring
{#; R; < |2| < R,}, harmonic in its interior and identically zero on the
boundary circle {z; || = R,}, then #, has a harmonic extension to a har-
monic function, 1, on the ring {#; R, < [2| < Ri/R.}. In fact, the har-
monic extension, #, can be defined by letting

R2
u(z)={—uo(~;—) for R, < |¢| < BYRy,
for

U (%) Ry < |3 < Ry

The function % go defined is clearly continuous in the larger ring
and is, locally, the imaginary part of an analytic function that is real-
valued when |2| = R, (to see this, we can uge the fact that in a simply
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connected subset of {z; R, < |¢| < R,}, whose boundary contains an arc
of 2] = R,, a harmonic conjugate, v, of %, converges uniformly as we
tend to the points of a compact subset of this are. This reduces our prob-
lem to the well known Schwarz reflection principle for analytic functions).

Now let u,(¢) = g,(pe(2), {). Thus, %, is harmonic in the ring
{z; 0, < |2] < ¢}, is continuous on {z; g < |2} < ¢} and zero when |z = 0.
Let o} > g, be such that the ring %, = {&; g, < |2| < 0}/0o} is contained
in the domain of ¢ (reczﬁl_l that the @,’s, introduced in § 2, were defined
on a domain containing #). Thus, for ¢; < ¢ << 1, %,(2) has a harmonic
extension to {#; gy < |2 < 0*/ge} » #,. Letting u, also denote this ex-
tension to #,; we obtain the desired extensmn by putting g,(2,{)
= 1,(pr " () f01 # in the images of %, under ¢, (k =1,2,...,n). This
certainly agrees with g,(2,{) for 2¢2, and we obtain an extension of
g, to the domain 2* bounded by the curves that are the images, under
ox, of the circles {z; |2| = o3/os}-

An immediate consequence is the following corollary:

CoROLLARY (5.3). The functions 2, £) = g,(2, {)+loglz—¢| have
harmonic emtensions, as functions of 2, to D*, provided ¢, << o < 1.

We let %, also denote this extension.

LeMMA (5.4). Lm hy,(z, () = h(z, {), the convergence being uniform
__es1-0

in 2eD* and (e,
Proof. h,(z, {) is a harmonic function of # having boundary values

log|s—{| for zel,. Thus, from the maximum principle and the joint
continuity of A, :

ke (2, £)—h(z, 0)|

uniformly in ¢e9,,. _

Since the values k, assumes in *—2, are obtained by “reflecting”
the values of g, in 9,—2,, (see the proof of (5.2)), the lemma follows
immediately from the relation k,(z, {) = g,(¢, {)-+logls—{].

This lemma implies that the derivatives of (2, {), with respect
to z and y, where x4y = z, converge uniformly when 2 is restricted to
a compact subset of 2* and (<2, . Since the functions %, and % are
symmetric, if we let 2z = g(¢”) and 2, = p(ec™), we thus have, for

gm¢x]log1w—§|—h(*w,§)]—>0 as po—1
wer, .

k=1,2,...,,n—-1,
5.5) Ohy(£,2,) _ Oh(¢,2)
Bn,g on,
a8 ¢ = 1—0, uniformly in 6 and 55590. Letting
. —1 ag(g ze)
Py(Ly2) = "2"_;%

Studia mathematica 28.1 . T4
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be the Poisson kernel of the domain 2,, (5.5) clearly implies (changing
the notation in (5.6) so that it is consistent with that used in the an-

nouncement of Theorem (5.1))
(5.6) P,(2,L,) - Pz, ()

as ¢ — 1—0, uniformly in 6 and za@ao. Hence (see discussion immediately
preceding (3.1)), since the imaginary part of all the 2, (2, ¢) is 0,
Pole, L) = [Pz, w)Py(w, £,)ds(w)
o
— [Pz, w)P(w, c)ds(w) =P, L), a8
Fgo
uniformly in 6 and » restricted to a compact subset of %, . Since g, could
have been chosen go close to 1 that a given compaet subset of 2 is con-

tained in 2, , Theorem (5.1) is proved.

§ 6. We now consider the example obtained when 2 is the annular
region {#¢C; B, < [¢| < R,}, whose boundary congists of the circle
y1 = {#eC; |#| = R,} and the circle y, = {z¢C; || = R,}.

Let '

- sl Sl (E ()]
P {c—z s Ré’uRi’“[ 3 e It
» 0) = o2, &) —iIm{p(z,, )} satisfies
£)e2 x T, then, letting

¢ —>1-0,

lﬁié_iﬂ;l"_g_l?z}
log R, —log R,

It is not hard to show that #(z
proper’mes (1), (2), (3) of Theorem I. Indeed, if (z,

JENENAE NN N
)

RZA
RZk. RZk
_ RI/RZ) ( r )" 4 (BB
1—(B:/R)" \RB, —(Ry/Ry)*
from which we obtain that the series occurring in the expression for
@(#, {) is absolutely convergent; when z is restricted to a compact subset
of 2 it is uniformly convergent. Thus, property (1) holds.
If we let ¢ = g6, we have

3 2 __p2
(61) (e, ee“")=——*{ — +
2m o lo*—2prcos (6 —P)4-r2
0 -ng ,rzlc_gzk log Q——lOng }
k(0 —@) 4 v
PO ot MO g, ogrl T

i 20r8in (0 —®) SR g }
amg — k(60—
+ 2mp {@ 2—20r co8 (6 —P) 72 Z 2k__R2k o) sin (
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Since
1 F 0% —r2
e o—Boreos(o—a) s 0

is 1 when o = R, and equals —1 when 0= R, (
of the Poisson kernel for the interior and exterio.

that
1 {0
fou

But the first integral is

[oes, 0)ds(0) =

for this is the integral
T of a circle), it follows

s Ryb®) Ryddd =1

and f

*, R6°)R AP = 0,

while the second is
Jol, 0ds(z) = o.
Y1

Clearly, the same is true for 9’ (2, £). Thus, property (2) is satisfied.

In order to see that property (3) holds we note that it follows imme-
diately from (6.1) that Re{?(R,e”, B ")} = o, while, if F = u-iv is
a continuous function on Z that is analytm in 2,

fRe{-@(z,:)}u(cms(C)ﬂ:T %}Jﬁﬁumdumoa)

as 2->9 = Ry6% ¢y,. But the last mtegra,l (the Poisson integral of u) defines
the solution of the Dirichlet problem for the interior of the circle yz
(see [127). Thus, :
JRe(#(e, ¢ (s (0) = (f = [) Ret2 (s, ORpuit)as(2)  u(n)
Y2 Y1 .
ad z~>17-.R50 €Yy, )
On the other hand, aga;m using (6. 1), we see that

0 1
Re{ﬁ"(Rlef", Ry} = onR,’

while

fm{@(z,c)}u(ods(t)

"1

1 sl 1
- l%:__z‘f’ w(Ods(2) 5= [uas0)+o(1)
1 1 . 1


GUEST


52 - R. Coifman and G. Weiss

as 2> = R,¢®ey,. Consequently, as in the case just considered,

62)  [Re(@le, Yu(@ds(t) = ([ = [|Re{?(& O}u(t)ds(2)

g Y1

1 (L) % ()
- ([

2 "

a§ 2> 7 = R, ey,, since u is the real part of an analytic function I
Since

Re f{ﬂ(z, &)} u(g)ds(£)
I

is & harmonic funetion, it follows from the above considerations and the
uniqueness of solutions of the Dirichlet problem that

Re [P (s, {)u(l)ds(0) = u(2).
r

Moreover, the function

Pe)—iv(e)— [ 22, Hu(Q)ds(l)
I

is an analytic function having real part zero, and imaginary part 0 at #;
it follows that it is identically 0, which proves property (3).

Another simple consequence of the above considerations is the fol-
lowing result:

LeMmA (6.3). Suppose w is harmonic in the annular region {z;7ry <
o] <rop. If 1, < By <7 < Ry <1y, then
an
f w(Ra6™) A0+

L)

27

. log R, —1o
f w(re)df = 08 1y — 087
[

log R,—log B,

logr —log’R,

27
— = Ryé")as;
logR,—log R, f%( 167) b3

[]

that is, the means
2

f w(re®)do

0
depend linearly on log r. In particular, when u =0,

bad
sup [ u(reé”)@6 < oo.
TI<r<m0
Proof. By Lemma (2.4) we know that there exists a number A
such that u(z)—A,o.(2) = v(2) is the real part of an analytic function.
Thus, by Cauchy’s theorem,

2n
f v(reé)do

0
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is independent of ». In the special case when 2 = {z; R, < |2| < Ry}
we have seen that (see (6.2) and the fact, stated after (3.1), that
v(2) = () —4)

1 w9 log|s/R,
Ay = — d d = .
1 5 J Wl $({) . an oy (2) Tog Ba/R,s
Thus,
. 1 u(Z) log 2| ~log R,
o(s) = u(z)+( = Ff o ds(c)\) TeF o ®
Since

2
f v(re®yds
0
is independent of », -

2 2n 2
fu(Rze“)de =f 0(Rq6®) @ ::f'u(re“)dﬂ
(1] 0 0
i logr—logR, ([ s ‘
_ iy 76 ogr—log z{f 5 _ i }
Dfu('re L J w(Rqe™)db ofu(Rle yae

But this clearly reduces to the relation of our lemma.

An almost immediate corollary of Lemma (6.3) is the following
version of Jensen’s formula:

LEMMA (6.4). Suppose F is analytic in the ring {; B < |4] <1} = %
and is nmot zero in the closed subring {z; R < |2| < R, < 1}. If {as} are the
zeros of B (counted with their multiplicity), then for B, <o <1

logo/R

2 -
19
———-—IOgRI/RafloglF(Rle ) @64

an
¢ i0
™ E log T ~0f10g|1(@e )

Ry<lagl<e

logo/Ry

2
log | F'(Re™)| df.
logRl/Rf og |7 (Re")

0

In particular, we see that the mean

| 1og P (g0 d0

is a convex fumction of logo.
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Proof. Using the fact that
2m
1 i0
—flog]a~ge |0
27 §

equals log|a| if |a| > ¢ and equals logp if |a| < ¢, Lemma (6.3) applied
to the function

u(z) = log|F (2)/ (r—aj)|
. . ) Ry <lagl<e
implies
an
f log | F(Ryé™)|d6— log ||
[ Ri<|a;l<e

log R, ~log R { j‘n .
— e s log|F(pe™)| @6 —2n log @} +
log 0 —10g‘.R b Ry <lagl<e
logo—log &, rf‘ '
220 [ og | F(Re™)| 40 —2n logla ’}
logo—logR l.o Ry <lagl<e ek

but this clearly"reduces to the equality in the lemma.
From the last part of Lemma (6.4) we obtain
CoROLLARY (6.5). Suppose I' is an analytic function in the ring
{2: By < |2| < R,} satisfying
2m
M= sup | log™|P(re)|do
S [ log" [P(re)]d0 < oo,
then
an

sup filog[F(rei")HdG < oo,

By<r<By
Proof. Since

llog| ' (r6®)|| = 21og™ | F'(ré")| —log | I (re™)|
an :

o

log| F(re)||d6 < 2M + & - (e
Of[ 1 +R1<E£RZ{ 0f1og|1« (re") 6}
On the other hand, the fact that

by

[ log|F(ré) af
0

is a convex function of logr implies that it is bounded from below on
the interval (R,, R,) and the result follows.
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§7. We now pass to the proof of Theorem II. Suppose F eN(2)
and I is not identically 0. Thus, there exists a harmonic function, h,
such that log"|F(2)] < h(z) for all zeD. Letting w(C) = h{pe(Z)} and
f1(8) = F{pp(C)) for {e, we therefore have

log™ |fi (D) < we()
for & =1,2,...,n But, if 4 >0 is harmonic in £, then
an .
sup [ u(ge”)db < oo
R<p<ly

(see (6.3)). Consequently, there exists a constant K < oo, independent
of b =1,2,...,n such that
(7.1) [ log*| F{pi(ee™) a0 < K
0
for R < ¢ <1 (7). On the other hand, this condition on F is equivalent
(vee (6.3)) to the following apparently stronger one:

2

f \1og1F(qak(ge“))Hd6 < M < oo,

0
This inequality asserts that the I,-norms of the family of functions
{0,(0)} = {log|F(p:(ee™))l} are bounded. Thus, by Helly’s theorem,
we can find a sequence g, -1 such that {0, (0)} comVerges weakly to
a bounded Borel measure u; o1 [0, 2=]. This can clearly be done in such
a way that F(qyl(gmew)) is mever 0. Applying Helly’s theorem and (7.2)
for k =2 and ¢ = on (M =1,2,3, ...), we can extract a subsequence
from {log{F(qaz(gmeW)m that converges weakly to a similar measure i
on [0, 2x]. Continuing this process we obtain bounded Borel measures
Uyy fhay ooy iy aDd & Sequence {os}, tending to 1, such that for each con-
tinuous function f

(7.2)

. 2

(7.8) nmff(@)log!F(q)k(Qjeia))]de = ff(a)d#k(e)a
j-»00 0

k=1,2,...,n

Tt » be the measure on I', the boundary of 2, obtained by letti-ng
av(0) = |(p,'¢(e"°)[dﬂ,,(0) on the component yz. Thgn, from (7.3) with
F(0) = 2 (5, pile?) g ()], for ze2 fixed, we obtain

2w .
(14) tim [ 2 (e, pu(e®) gkl og|F (pules a0 = [ 2 DA,
4 k

—»00

E=1,2,...,1n

(") It is not hard to show that (7.1) is equivalent to the condition that F
belong to R(2).
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‘We shall say that a sequence of functions, defined on a domain 2,
converges almost wniformly to a function on 2 if it converges uniformly
to this function on each compact subset of 9. By taking an appropriate
subsequence and relabeling, if necessary, we can assume that the con-
vergence (7.4) is almost uniform (for it follows from (7.2) and the boun-
dedness of #(z, (), when #z is restricted to a compact subset of 2 and
¢ eI, that the functions of # defined by the integrals in (7.4) are uniformly
bounded on compact subsets of 2).

We now let ds; be the element of arc length on [ = I, , the boundary
of 2 =9,; that is, ds; = ds;(0) = o lon(¢™)|d6 on the component
Yii = Vhe Of Ij. We now claim that it follows easily from (7.4) that if
we put Z(z, §j) = Py, (2, {;), where Lyely, then

(7.5) lim [ 2z, &) log|F(5)ds; = [2(z, Hdv(0),
I

o0 Iy
the convergence being almost uniform in 2.
In order to see this it suffices to show that

[ 242, tlog | F (&)l ds; — [Pla, O)dn(0) a8 o> oo,
Yk

Vie,f

for ¥ =1,2,...,n, the convergence being almost uniform. Bub

[ 252, t)log |F ()] ds;
Vied

b1
= f P; (2, i 0:6™)){log | Fpr (056™))|} o1 1wk (0s6™)| A0
=of {22, 91 06™)) 01l Pl 016™)] —2 (2, i (€)) Ik (6) ) Log | P (o (0 €))| 6 +

n
+ [ 2 (2, r(e”)) i ()| log | F (i (05 €)| 6.
[
By Theorem (5.1) and (7.2) we see that the firgt term. of this sum

tends to 0 almost uniformly in # as j tends to oo, while (7.4) asserts that
the last term tends to

[26 0w
Yk

almost uniformly. Thus, (7.5) is established.
We define, for j =1,2,3,...,

G(#) = exp{ [ #1(s, L)) log|F (&) ds;}
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Then, by the convergence described affer equality (3.1),
16;(0)] = Lim |6;(2)|

2—>Lely
2eD;

exists and satisfies
(7.6) G (0] = IF(C)lefA"”',

for Ceyp;. The constants i; bk =1,2,..., n—1, are agsociated with
the domain @; as well as the function |F| and are given by (3.1); we
also have A,; = 0. Moreover A, ; — A a8 j — oo since &#; — & and P; -~ P
(see Theorem (5.1) and (5.6)). N

From (7.5) we see that the sequence {G;} converges almost uniformly
to the exponential function

G (2) = exp [ 2 (3, $)dv(0).

Let B;(2) = F(2)]G;(2) for ze9; and B(z) =YF(z)/G(z) = }imB,-(z).

By (7.6), |B;(2)| is defined and equals ¢'%7 when zeyy ;. Since the num-
bers Ay, are uniformly bounded, it follows from the maximum modulus
principle that so are the functions By; consequently B is bounded in 2.
Tt thus follows from Fatouw’s theorem that for almost every (%) (eI’

lim B(z) = B({)
27

exists if 2z tends to ¢ non-tangentially. We shall now show that

(7.7) |B(2)] =%  for a.e. Ceyg.

Toward this end we first show that

Lim |B(2)| < €’*.

E—leyy
Let wy; be the harmonic measure corresponding to the component yg;
of I; and put h;(z) = |B;(2)|+M (1 —ox;(2)). We can always choose M s0
that h;(2) <O for zeyy;, I+ k (for the B’s are uniformly bounded; thus
an appropriate negative constant M will have this property). When
zeye; We have h;(2) = ¢, Thus h;(2) < ¢ei for ze%;. Sinee wpy(z) —
— wy(#) (= the harmonic measure corresponding to the component
of I') and A ;> A a8 j — oo (see (5.6)), we therefore obtain, for ze¢Z;,

R(2) = |B(2)| +M (1 — o (2)) < €.

(8) “Almost every” means almost every with respect to the arc length
measure on I'
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Since wg(s) -1 as 2z —> Leyy, it follows that

lim [B(2)] < .
r—devy

Consequently, |B(¢)| < ¢* for a.e. Leyy. In order to show that equality
holds almost everywhere on y; it is, therefore, sufficient to show that

(7.8) %—f B

‘We note that

(e))| a0 > e

_NPEY a1 GG
[B(&)] = @yl = ol G‘(;‘,)!
when Ceyg;. Let Hy(s) = Gy(pr(2))/G (pi(2)) for R < |e| < 1. Then

pid

[ H;(o6")d0
0

is independent of g, R < ¢ <1 (this follows from the Cauchy integral
theorem). Fixing p strictly between R and 1, we thus have

om 2r
gik,f{f H,.(ge"”)day < [ |B{prlese™)]ao.
0 0

But H;(g¢) — 1 (uniformly in 6) and B (ps(g;6”)) — B(pi(e) as j — oo.
Hence, by the last inequality,

Fagd ar
2n et = ]imelka'} f Hf(gew)dﬂ’ < lim [ 1B (@x(e16™)| a0
0 —>00 g

J—c0

= T\B(%(e“’))wo.

This establishes (7.8) and Theorem II is thus proved.

§ 8. We now study the structure of the function B. Our main result
will be Theorem III. Tts proof will be based on inequality (1.3) which
we now restate in the form of a theorem:

THEOREM (8.1). Let FeN (D), F not identically zero, and a,, s, wa,
the zeros of F. If a; satisfies

|ai—a;| = min|{—ay,
ter

then

00
2 di—ai| < oo
=1
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Proof. In case F is analytic in the ring {¢; B-< < [#] < 1} this theorem
is an easy consequence of Lemma (6.4). In fact, we can assume that R
is 80 chosen that no zero lies on the circumference |2| = R and we order
the zeros {a;} so that R < |ay| < |ag| < |as] < ... < 1; then Lemma (6.4)
and (7.1) (we take for ¢, the identity mapping) imply that there exists

A > 0 such that
4
log— < log——
2T <2

whenever ¢ is close enough to 1 so that the first n of these zeros satisfy
la;| < o. Letting ¢ — 1 we obtain

- Zloglail

for all n =1,2,3,... If we let o = a;/|a;] denote the point on the
outer circumference, |2| = 1, that is closest to «;, then lai—ay] = 1—|ay
< —log|a;|. Thus,

A < oo,

<A < oo

(8.2) D 1—lal = 3lsi—a] <4 < oo
=1 i=1

The general case can be reduced to this one. We do this by consid-
ering separately the zeros belonging to the subdomains A, (k=1,2,...
.., m—1) introduced in the beginning of the second section. Let g, be the
conformal map of Z = {¢; R < || <1} onto A, that was introduced
at that time. We order these zeros so that the moduli of their inverse
images a; = ¢;'(a;) tend monotonically to 1 (provided there are infi-
nitely many such zeros; if not, there is nothing to prove). There exists
a constant M such that |pg( wl) —or(w,)| < M |w, —w,] whenever 2, and
w, belong to Z. T]ms, using the notation of (8.2) we obtain, by that in-
equality applied to the zeros of the function F (tpk(w))

Mlai—al < D lpelai) —ad < ﬂf2|al—a,}<oo

4, i=1
L‘Alc ey n

The theorem now follows since the number of zerog in .@—kU Ay
=1

must be finite.
COROLLARY (8.3). Suppose F satisfies the conditions of Theorem (8.1);
then the product
B(z, a;)
B (2, as)

converges absolutely and umformly wn 2z when the latter is restricted to
a compact subset C <= 9.
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Proof. In the fourth section we showed that, when z is restricted
to a compact subset ¢ = 2, L(z,a) = ~—log B(#, @)/(#—a) has a har-
monic extension, as a function of a, to a domain Py > 2 (see discussion
immediately following (4.3)). Thus, B(z, a) is real-analytic in o and it
follows easily that there exists a congtant My such that for all z¢C

|B(2, a')—B(z, a)| < Mgla'—al,

for a, ' € 2. Moreover, in the course of the proof of Theorem IV (see § 4)
we have shown that |B(z, a’)| > exp {my}. Thus, if

m = min ¢k,
1chgn—1
we have )
B B ) —
y_Bea)| BB ol Mo,
Bz, a) m m
Consequently,

S B(z,a)| Mg >
12\ He -
;l B, a)| >~ m i;l“ ;< oo

which implies the absolute and uniform convergence of the product B,(z)
announced above.

In case £ is the unit disc, the function B, is the clagsical Blaschke
product. It is well known that such products are characterized by the
property

) 2
lim [ [log|B,(ge*)||@d = 0
e—>1— 3

(see [12], Chapter VII). The following lemma is an extension of this
property:
LeMMA (8.4). Let

o -1

o = 2 (Z njk(wj(ai)_wj(a';!)))!
i=1 f=1
Jor k=1,2,...,n—1 and ¢, = 0; then.

2n
tim [ [log|Bypu(e”)| —od 0 = 0.

Proof. It follows from (4.3) and (4.7) that

Bz, a;) s ,
0 IB(z,a,;) =iZm‘”m(“’y(“i)—wf(“i))wm(z)~g(z, ).
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Since each harmonic measure «; has an extension to a domain that
includes 9@ (see discussion following (4.3)), it follows that there exists
a constant M such that 1w,.(ai)-—co7~(a§)1 < M|a;—a;]. Thus, from The-
orem (8.1) we can conclude that the series

o n-1
2(2 nj,n(a:j(ai)—wj(a,f)})
i=1 7=1
converge to finite sums ¢, (m =1,...,n—1). Since g(z, a;) = g%, a;)—

—g(#, a;), we can conclude, from the same reasoning, that the series

00

D) 9(z, @)

i1
converges uniformly when z is restricted to a compact subset of & not
containing any of the o;'s. Hence,

n—1 )
log|By(2)} = D tmeom(®)— D 9(5, 0:).
Mm=1 =1
Since g(z, a;) > 0, it follows that the lemma is established if we can
show that

n s
(8.5) lim [ Y'g(pi(ee); addb =0
erlp =1
for each k =1,2,...,n—1. Toward this end, we fix &k and let
or (@) when  ayedy,
“= 1 when  a;¢dg.

Then, from (8.2), we have > (1—|af) < oo.
We define a sequence {u,} of harmonic functions on the ring

A = {#; R < || <1} by letting
F—a; }
1—az ||

(Note that, for a;¢Ay, o, =1 and, thus, the logarithmic term is zero
while g(px(2), a;) is harmonic. On the other hand, when a;edy,

k2

U (2) = Z{g (pr(2), ai) +log

q=1

1

= h{py(2), a;)—log —log|1—w2l

@ (?) —r ()
B—a;

9(pu(2), a))+log

ig a sum of harmonic functions on the ring Z).
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Sinece
2—a
lo =0
g 1—az

when |af =1, the convergence of the series 3 (1—|a) = e —ay| im-
plies, by the same reasoning as that employed at the beginning of this
proof, the uniform convergence of the series i

(8.6) u(2) =2{0(¢k() @) +log fgz”: Hm w, (z)

for z in a compact subset of #.
Let E < By < Ky < 1. If v is any harmonic function on %, it follows
from Lemma (6.3) that

2

(8.7) lim f v(06)d0

1
e=>ly

logR, F .
%80 -fw(Rle“’)dO.

an
------ v(Rye)d0 — —=—2
of (Eye™) logR, /R, §

Since, for = fixed,
2w
lim [ u,(06®)db =0,
el g ‘
equality (8.7) implies

21 3 2r |
log By [ un(Ry6™) @0 —log Ry [ w, (R, 6™) d0
(] [}

8.8 =
(8:8) log R, ~log R, 0.

Now, because of the uniform convergence (8.6) on the compact set
{zeﬂ |2l = Ry or |2] = R,}, (8.7) and (8 8) imply

o ‘ " logR, f (R.6®)d6 —log R, fu(l?l 6% do
(8.9) lim | u(ge®)do = S
o1y log R, —log R,
Since
w(@) = ) g(pe(a), @) + ¥ log|
; g 1-aiz

(8.5) and, therefore, the lemma will be established if we show

in | St 255

(8.10)

d6=0.
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But this is easily shown: Since (s—a)/(1—02) (Ja| < 1) maps the

unit circle (conformally) into itself each of the terms of the series being
integrated is non-positive; furthermore,

2 e £

‘We know that

a0 = —logmax{|al, o} = logmin{|«|™?, ¢~ %}.

-iloglml < oo

i=1

(see the proof of (8.1)).-Thus, given ¢ > 0, let N be such that

0
— Zlog[ail <e.

i=N

‘We then have

fZl ‘ _a — 6<Zlog

independently of ¢ < 1. Since it is clear that

(8.10) and theé lemma are proved.

We are now .in a position to prove Theorem III. We first observe
that by Theorem (5.1) and Lemma (8.4) (we again use the notation in-
troduced in §5)

b

lim [ 2,(z, g (06™)) g 0¢™)| olog |Bo (s 06™))] d6

e—>1j

= [ (3, pu(e®)) Igi(6”) | xd0 = [P (2, 0)

0 Yk

cds(f) =0,

the convei"gence being uniform for z restricted to a compaet subset of
2 (the last equality is a consequence of property (2) of Theorem I, when
1 <k < n—1, and the fact that ¢, = 0 — see Lemma (8.4)). Consequently,
7 (o) log|B,(L,) ] ds(L,) =

(8.11) lim f 2,

e—~1 T,
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Let us now define G, by letting Gy(z) = F (2)/B,(2). Since B, has
the same zeros as F-(and with the same multiplicity) the function @,
is never zero. Hence, by Theorem (4.10) applied to the domain 2,,
there exist integers my, Mo, ..., My_y (°) such that for any n—1 points
broevie (B =1,...,n=1),

n—1

(812)  Gy(2) = o [ | [By(e, big) ™ exp] J 2 toglt0lds @),

J=1

where |a,| = 1. In this expression we have (see Theorem IV)
By (3 bie) = (e—b)exp{— [ 2, (e, {,)log|L,—by,lds (2}
Lo

We can clearly choose the numbers by, so that the limits

bk = iim bk,q
e-+1
exist. It then will follow from (5.1) that
(8.13) hnllB (8 big) = B2, by),
8

the convergence being uniform for z in a compact subset of 2. With
these choices of by,, equality (8.12) implies that the limit

lima, =a
e—>1
exists.

In order to obtain the relation between B and B, recall that (see § 7)
6 () = exp { [ #1(s, &)log| (5] ds(2)}.
2
Thus, gince F = GB,, it follows from (8.12) that .
& (#) = exp { { Z;(a, £;)log |@o(5;) ds (&)} exp { JE £ log | By (gl ds (3}
7

-1

=60(2) @ [ | [By (2, bug) 1™ exp{ [ 2)(2, ¢)log By (4)| ds (55)).
Ty

(%) Note that these integers are egual to the integrals

1
5 | @@
ke
(see the proof of (4.10)) and, thus, are independent of p.
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From (8.11), (8.13), recalling that @;(2) - G(2) and o; — a, we thus
obtain

G(z) = Gole)a™" [ [ [B(z, bu)I™.
k=1
Consequently,
B(2) = F(2)[6(2) = By(#)Go(2)[G(2) = & n[B s b)T™Bs (2)

and Theorem III is proved.

The following theorem completes the result announced in Lemma
(8.4) and extends the characterization of the classical Blaschke product
discussed immediately before this lemma.

THEOREM (8.14). A necessary and sufficient condition for a function,
B, analytic in D to be represented as a product of the form

B(r, &
B(#) =a H [B(z, b ™ H ?fz%

=1
where ay, Gy, ... are the zeros of B,
o
1
2 Ja—a;| < oo,
f==1

breyy, my 18 an integer, k =1,2,...,n—1 and |a| =1, is that there exist
CONSIANIS €1,y Coy orey Cp_1y Ony With ¢, = O such that

2r
(8.15) lim | llog]B(tpk(ge""))]-—ck|d0 =0,

k=1,2,...,n—1.
Proof The necessity was proved in (8.4), Where we based our
argument on the faet that

0
ZI lag—as] < oo
=1

Conversely, we first remark that an easy consequence of (8.15) is
that B belongs to N(2). Thus, by Theorems IT and III, B = B;G where
B, is a product of the type considered and

G(e) =lim exp ]| [ #(2, {)log | B(E)ds(5)) =
J—>00 I .

(see the argument used in order o establish (8.11)).

Studia mathematica 28.1
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§9. In this final section we shall make several observations in con-
nection with this material and compare it with existing results of the
same general nature.

We have excluded, in our discusgion, domains having a finite number
of isolated boundary points. We shall sketch how this can be reduced to
the one considered here.

Let 2, = {#; 0 < |¢| <1} and, as before, we say that an analytic
function, I, on 2, belongs to the Nevanlinna class N (%) if there exists
2 harmonic function % on 9, such that log™|F(2)] < h(z).

LEMMA (9.1). If FeN(D,), then the singularity of 'F ai O is « pole.

Proof. If follows from Lemma (2.4) that there exists a constant
A and an analytic function f on 2, whose real part is h(z) —Alog|z|. Since
B> 0, exp{—f(2)}| = ¢ " |e|* < |2|*. Thus, 0 is a pole of ¢™/®; theve-
fore, there exists an integer N such that |¢/Ve™™® tends to a positive
number, @, as z—0. Thus, for |z| small,

Nlogle| —h(2) > A = log g

Consequently, log |7 (2)| <log" |F(2)| < h(2) < Nlog|z|—A. This shows
that |F(2)] < e™|2|"; therefore, 0 must be a pole of J.

From this lemma we can easily deduce the fact if 2 is the unit disc
and FeN(2;), then there exists an integer % such that G(z) = *F(z)
can be defined for z = 0 in such a way that GeN(2).

More generally, let 2, be a bounded domain whose boundary con-
sists of n analytic disjoint Jordan arcs and m isolated points by, ..., b;m
and let 2 = 9, u {b,, ..., by}. We then have the following result:

THEOREM (9.2). Let FeN(D,); then there exist integers Ky, ..., kn

such that
m

G(2) = [ [ [B(z,b)1%F (2)
i=1
can be defined for z = by, ..., b, in such a way that GeN(D). That is,
N(2,) consists of the restrictions to @, of functions of the form

m
, F(e) =@(=) [ [(B(z, b))%
. =1
with GeN(D).
It is well known (see [2]; p. 169) that bounded domains of finite
eonnectivity having no isolated boundary points can be mapped onto
bounded domains whose. boundary curves .are circles. Using these map-

pings we obtain the following factorization for Fs“JZ(.@), where 2 is
such a domain of connectivity n: F = BG, where
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(1) G 4s an exponential function belonging to N(2),
(2) B is bounded and has the form

n—1

B(z) = [ | (Be@)T" [ | Ax(s, &)
k=1 i=1

where By, is a conformal mapping of 2 onto a “slit ring” domain of the type

_ introduced earlier, my, ..., m,_, are integers, {a;} is the sequence of zeros

of B, Ar(z, a;) is a conformal mapping of 2 onto a “slit disc” centered at 0
such that Ay(a;, a;) = 0 and such that as 2 approaches the k-th boundary
component Ap(2, a;) approaches the unit circle.

It is clear that we can generalize this factorization still further by
uging Theorem (9.2). We shall not, however, develop this subject further.

We now comment briefly on the connection between this work and
that of Sarason [8] and Voichick [10]. The former has considered similar
problems when the domain is an annulus and has introduced a type
of Blagchke product. The latter has not developed such a product but
has considered more general multiply connected regions. Both authors
defined an interior function on 2 to be a bounded, possibly multiple-
valued, analytic function having single-valued and continuous absolute
value on 2 with constant (a.e.) boundary values on the components of I".
‘We first observe that if {a;} are the zeros of such a function, F, the
product, By, of Corollary (8.3) converges absolutely and uniformly when 2
is restricted to a compact subset of 2 (the proof is the same). Applying
(4.12) to the harmonic function % =logF /B, we see that there exist
numbers My, ..., My,_, Such that

’ n—-1
(9:3) ] B, )™ F )

is a (single-valued) analytic function on 2. In fact it is the produet of
B, and an exponential function (the factorization of Theorem II) and
is bounded with non-tangential boundary values (a.e.) that are constant
on the components of I'. This identifies the interior functions introduced
by the above authors in terms of the functions introduced here. In
particular, we see that it is not necessary to consider multiple-valued
interior functions; if we substitute them by these single-valued functions
of the form of (9.3) the results in [10] remain valid.

‘We close with the remark that very little was said about (non-tan-
gential) boundary values in this paper. Most of the classical results on
H? spaces, however, extend to these domains and can be derived easily
from the results concerning the class M (2) obtained here.
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Derivatives of Fourier series and integrals
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RICHARD L. WHEEDEN (Chicago, Illinois)

I. Notation and definitions. Throughout this paper we shall be
dealing with n-dimensional Euclidean space E", n > 2. If » = (®yyevey ®n)
and y = (%1, ..., Y¥n) denote points of F", we use the standard notation
Ty = (B 4+Y1, -1 BntYn)y A8 = (A1, ..., Ay) for A real, (z-y) =29+
oo+ BaYn, |2] = (#-2)"", a=/(ay,..., @) Where the ¢; are non-nega-
tive integers, a! = a;!...a,!, lal =a+...Fan, 2® = al... T, l?“
= (8)0m)* =(]0m,) ... (8/0my)™", = 1{py, .., pn) Where the p; are posi-
tive or negative integers, @ ={z| —w <z <w,j =1, cea ), Q. =@
translated by 2mu. A real-valued function f on E" will be called periodic
if it is periodic 2= in each variable. If feL(Q),

i)” a{ fl@) e ¢ e,

where ¢, =

ST = 3,60

If feL(E" is any integrable function,

(2

1

s _ —i(z-y)
fo) = o [T .

B"

We say S[f] is Bochner-Riesz a-summable of order y at » to sum s if

0,6 (1 —2" |uf*)’
elul<1

0 a
- O'g’)(%, E) = (%‘)

tends 0 s as & — 0. We say S[f] is Abel a-summable at x to sum s if

9\ i) o

tends to s as ¢ - 0. Alternately, we say

[P e=ray
En
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