icm®

16 W. Zelazko

[3] T. E. Mlunos, O pacwupenuw marcumamnne udeanos, Iowxn. AF CCCP
29 (1940), p. 83-85.

[4] W. Zelazko, Metric generalizations of Bamach algebras, Rozprawy Mate-
matyczne 47 (1965).

[8] — A4 mote on topological divisors of zevo in p-normed algebras, Coll. Math
(in print).
(6] — On generalized fopological divisors of zero in real m-convex algebras,

Studia Math. (to appear).

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES
INSTYTUT MATEMATYCZNY POLSKIES AKADEMII NAUK

Regu par lo Rédaction le 20. 11. 1965

STUDIA MATHEMATICA, T. XXVIII. (1966)

A generalized function calculus based on the Laplace transform*
by
CHARLES SWARTZ (New Mexico, U. 8. A.)

1. Introduction

In this paper the classical Laplace transform is extended in a very
natural way to a space of generalized functions. This extension is carried
out by utilizing a method for construeting generalized functions suggested
by Mikusitiski [5]. This method has been used to construct Schwartz’s
space D’ [8] and to extend the Fourier transform to a space of generaL
ized functions [4].

The usual operations of translation, addition, efe. are defined for
the g.£.’s (g. f. = generalized function), and the classical formulas per-
taining to such operations are extended to the g.f.’s. Differentiation,
integration, and convergence are defined and the usual limit interchanges
in distribution theory are justified. In particular, the convergence defi-
ned is the -“weak” sequential convergence suggested by Mikusinski, and
it is shown that the g. f. space is “complete” with respect to this sequential
convergence. Using this completeness property, it is shown that the
Laplace transform maps the g.f. space onto the class of all functions
which are analytic in some half plane Rz > a > 0. We also give several
characterizations of the g.f’s which are distributional derivatives
of continuous functions of exponential order, and an inversion formula
for such g.f.’s is presented.

Convolution is defined for the g. f.’s, and we give conditions under
which the convolution equation A*X = B has a solution X. Multipli-
cation of a g.f. by a suitably well-bebaved function is also defined. In
the final section, we consider g. f.’s depending on a parameter and estab-
lish some of the limit interchanges that have been used formally in the
operational calculus.

2. Preliminaries

We will denote by 4 the class of all functions f(2) which are analytic
in some half plane Rz > a > 0. The half plane may depend onthe function.
A sequence {f,(2)} of functions in 4 converges to f(z) in A if there exists

* This paper is based on my doctoral dissertation presented to the University
of Arizona.
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18 C. Swartz

a half plane in which the f,(2) and f(z) are analytic and f,(2) converges
to f(z) uniformly on compact subsets of this half plane. This convergence
will be denoted by limf,(z) = f(z).

The support of a continuous function g is the closure of the get
{t: g(t) # 0}. A complex valued funection p(¢) defined on (— oo, co) will
be called perfect if:

(i) p has support in [0, oo),

(ii) p is infinitely differentiable,

(i) p™(0) = 0 for all & > 0,

(iv) p® is of exponential order & 3= 0

Every perfect function p has a Laplace transform

fp(t)exp(—-zt)dt
0

which deftermines an element in A4 [9].

Definition 2.1. A sequence {p,} of perfect functions is fundamental
if the sequénce, {L{p,}(2)} converges in A4, where L{p,} denotes the La-
place transform of p,.

Two fundamental sequences {p,} and {g,} are equivalens if Lim L {p,} (2)
=1limL{g,}(2). It iy easy to see that this relation is an equiva-
lence relation and the equivalence clagses determined by it are called
generalized functions. The space of all generalized functions will be denoted
by @ If {p,} is a fundamental sequence, the generalized function deter-
mined by {p,} will be denoted by [p,(?)].

Throughout the remainder of this paper ordinary functions will be
denoted by small letters whereas, with the single exception of the Dirac
delta “function” 4(¢), elements of @ will be denoted by capital letters.

Finally if X (i) = [#,(?)] is an element of @, the Laplace transform
L{X ()} of X(t) is defined by
(i) L{X()} = limZ {z,}.

Clearly this definition is independent of the sequence representing

X(t). Note that L{X (1)} is an element in 4. We have used the same symbol
L to denote the classical Laplace transform and the transform defined

on &, but this should cause no difficulty consldermg our convention of
capital letters.

3. Elementary operations

Let X (2) = [@a(8)], ¥ (t)
number.

Definition 3.1. The sum and scalar product are defined by X (¢)

Y (1) = [2n(t)+9n ()], X (1) = [omn(1)].

= [y, (t)] belong to &, and let ¢ be a complex

icm®
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Tt is clear that these definitions are independent of the sequences
{w,} and {y,}. Moreover,

L{X () + Y (1)} = L{X @} +L{Y (4)}
Proceeding via sequences as above, we obtain:

and  L{cX(t)} = cL{X(1)}.

L{X (et)}(2) = (1]e) flz[e), ¢#0,
L{X(t—d)}(2) = exp(—da)f(z), =0,
L{exp(et) X (1)} (2) = f(s—c),
L{(—t" X} (&) =f"(), n>0,

where L{X(t)} == f.
? 4. The delta function

Definition 4.1. A sequence {é,} of perfect functions will be called
a §-sequence if:

(i) 6a() 2 0
(ii) the support of 4, is in [0,1/n],

(i) [ Ou(t)dt = 1.
[]

Example 4.1. Let
onexp(~-1/t+1/(t—»1/n)), 0
Sall) = 0, t
where ¢, is such that .
[ nmyat =1.
0

Then {8,} is a d-sequence.

TIIEI’:)REM 4.1, If {8,} is a O-sequence, then limL{é,} = 1.

Proof. Let s> 0. Bach 8, is bounded so that L{6,} is analytic
in Rz > 0. Let K be a compact subset of Rz > 0, and let M = sup{l¢|:

% in K}. Then, N
lexp(—2t)—1] < D) [t [j! <
Fel

Since h(t) is continuous and h(0)
[h()| < &, whenever 0 < ¢ < d. Choose N
for n > N, # in K,

Ua (t) exp (—t) dt— 1}

(MY 51 = h(2).
j=1
= 0, there exists d >0 such that
> 0 such that 1/N << d. Then

1

JIENOLIGLIES . .

Thus limL{d,} = 1.
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From Theorem 4.1 it follows that all d-sequences are equivalent
and therefore determine a generalized function which will be: denoted
by 68(2). Also from Theorem 4.1, L{8(t)} =1, a property usually attrib-
uted to the Dirac delta function.
We will have need for the following:
THROREM 4.2. Let {d,} be a d0-sequence and f(1) a continvous function
on [0, co). Then
¢
limfs, (1) = lim [f(1—s)d,(s)ds = (1),
[

where the convergence is wuniform on compact subsels of [0, oo).

Proof. Let ¢>0 and b > 0. Since f iy uniformly continuous on
[0,D], there exists 4 > 0 such that |f(s—i)—f(s)] < e whenever |1 < d
and s, s—¢ are in [0,0]. Now choose N > 0 such that 1/N < d; then
for n 2N and 0 < s < b,

n

[f*0a(8)—=F ()] < [ () If(s—t)—f(s)|dt < e.

0

5. Derivatives, integrals, and convergence

Let the kth derivative or iterated integral of a function @ (t) be denoted
by 2®(t) and 2"M(1), respectively. '

TI-IEOREMk 5.1. If {2} is a fundamental sequence such that imL{a,}
=g, then (&%} s « fundamental sequence and HKm.I{aP}(z) = #g(z)
for £=0,41,... .

Proof. The functions «f? are perfect,
= & L{z,} (#), the conclusion follows.

.Dt.afinition 5.1, Let X (1) = [@,] belong to @. The distributional
derivative of -X (1), DX (1), is defined by DX (f) = [«(t)], and the in-
tegral, D™ X(t), is defined by D~ X (f) = [2 " (#)]. Higher order deri-
vatives and integrals are defined as usual.

FroAm Theorem 5.1 it follows that the derivative and integral are
well-defined and L{D*X (1)} (2) = FLIX (1)} (=), Furthermore,

TuroreM 5.2. Bvery element of G is infinitely differentiable.

Example 5.1. The identity L{D"§(t)}(z) = #* follows from Theorem
5.1 and Theorem 4.1.
] Convergence in ¢ is introduced as suggested by Mikusinigki [5], that
is, the convergence is defined as a “weak” convergence with respect to
the spaces involved.

Definitic?n 52 Let X,(i) belong to & The sequence {X,()} con-
verges to X (1) in G if Hm L{X, (1)} = L{X(#)}. We write lim X7, (1) = X (1)

and since L {a{} ()

icm®
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Terorem 5.3, If lim X, (1) = X (¢), im Y, (¢) = Y (t), and ¢ is a com-
X()+Y ().
The following theorem plays a central role in distribution theory:
TrRorEM 5.4 If lmX,(1) = X(t), then UmDFX,(t) = D*X(t) for
=0, &1,...
Proof. HmIL{D"X,(t)} = #HmL{X,(t)} = & L{X(®)} = L{D"X (W}
TarorEM 5.5. If the X, (8) in G are such that lim X, (t) ewists in A,
then there exists X (1) in G such that im X, (1) = X (1).
Proof. Tiet X, (1) == [@n(?)]. Then

Hm L {wy) = L{X.()}-
m

By hypothesis the sequence L{X,(t)} converges to a funection g
whicl. is analytic in. a half plane Rz > a > 0. The double sequence {I/{wn,m}}
has a subseqence which converges to g, uniformly on compact subsets
of Be > a, Let this subsequence be denoted by {I{y}}. Then X (1) = [yx]
is such that L{X (1)} = g.

This Theorem could be interpreted as a “completeness” theorem.
Using this vesult we characterize L{G}, the image of @ under L.

TupormM 5.6. Let f(2) be analytic in some half plane Rz>a>0.
Then there is am element X (1) in G such that L{X@)} =1

Proof. Firgt note that any polynomial is the transform of an ele-
ment of @ so that from Theorem 5.5 it is enough to show that f is.the
limit (in the sense of convergence in A) of a sequence of polynomials.

Tet D, be an expanding sequence of cloged, bounded rectangles
such that the union of the D, is the half plane Rs> a. Using a result
in 2], p. 303, Th. 16.6.4, for every n > 0 there is a sequence {pu(2)} of
polynomials such that

lim max |pr{#) —f(2)] = 0-
Kk Dy .

Thus for every » there exists k(n) guch that
:m-alx[pnla(n)(z) “f(z)| < 1/%
Dy,

The fequence {Pum} is then such that
Hmpnlﬂ(n) =f.
k3

Finally using the convergence defined, another interpretation of the

distributional derivative may be given.
TusoreM b.7. Let h >0 and X (1) belong to G. Then

1im(X(t——h)——X(t)) [(—h) = DX(1).

h—0
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Proof. We have
L{(X (t—h)—X () [(—h)—DX (1)} (=)
= L{X (1)} (2) ((—1/h) {exp(—2h) —1} —)

2)
— LEW}@) Y (=)W
M=l
and the geries in the lagt term converges to 0 in A. i
This formula might be interpreted as a left-hand derivative in the
classical sense.

6. Ordinary functions

We now show that the usual caleulus of functions having Laplace
transforms can be imbedded in G. Let E denote the set of functions
defined on [0, co) which are locally integrable and of exponential order.
If x(t) is in B and {é,} is a d-sequence, the function

t
@ (1) = o (t) = [ (t—s)d,(s)ds

is a perfect function (cf. [6]) provided it is agreed that ,(f) = 0 if ¢ < 0.
Moreover, L{z,} = L{z}-L{8,} so that limL{x,} = L{z}. Thus, {x} is
a fundamental sequence with L{[x,]} = L{z}.

THEOREM 6.1. The correspondence x — [,] defines a mapping from
& into G which preserves sums, soalar products, and the Laplace transforms
in the two spaces agree. '

The element [#,] in G will be denoted by z*.

It  belongs to ¥ is such that " belongs to #, then eclassically
L{zM (2) = 2L{x} (2) —x(0). However, in the case of generalized functions

(1) L{Dz*} =limL{#}} = 2L {x}

and

(2) L{@®)*} = L{a} = 2L {@" —a(0).
From (1), (2) and Theorem 4.1,

(3) D = (a¥)*4-2(0)- 8,

the usual formula connecting the classical and distributional derivati-
ves [3].

Locally integrable functions which are not in ¥ but which do have
Laplace transforms can also be imbedded in ¢. That iy, the imbedding
a.bove. will be extended to include these functions. A locally integrable
function » such that L{w} converges in B¢ 3> & has the property that
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o=D(1) = 0(exp(at)) (cf. [1]). (#")* iy therefore well defined from the
above considerations, and also I {(a™)*}(s) = (1/2) L{z} (2). .
The imbedding may be extended by defining w—»D(alc(‘ ) since
i wis of exponential order, we have D(a"V)* = ¢* 421 (0)- 8 =a
from (3). This extended correspondence will again be denoted by @ —a"-
and the extension is easily seen to preserve Sums and scalar products.
The Laplace trangforms in the two spaces coinc.lde. Thug tl}e usual eal'l-
culus of functions having Laplace transforms in the clagsical sense is

included in @G- _ o
n this context Definition 2.1 can be given the following interpre-

tation.:
TuroreM 6.2. If X = [@,], then limay = X. .
Concerning convergence in B and @, we have the followmg.
TrmoRrEM 6.3. Let f,(t) be defined for t 20 and suppose there i8 some
integer v = 0 such that
() f5 48 continuous,
@) 1f5" )] < M exp (o), ¢ >0,
(iii) f§ converges wniformly on compact subsets to h(1).
hen Bm L {f;") = L{h}
i”;i)%o;. Leéf:>}0. Lei}ff be a compact subset of Rz >0 and set
b = inf{w: ¢ = w--dy is in K}. Then ¢ <b and for 2= x4y in K,

1) |L{r—f5M ) < Tlh(t) —fi7"(t)| exp(—bt)dt
0

B o0
</ Bt~ () exp( b -2 [ exple—b)td

in (1) is < &/2 and

large that the last term
Now B can be chosen so large b i of ()

then with such a B fixed the first term can be made < ¢
Thus, Um L{f;" = L{h}. .
éOROLLA;,Y 6.1. If the f, are perfect and are asrm Theorem 6.3, then
{f.} is fundamental, h* = [f", and L{ful}(2) = 2 .L{h} (z).. s o
CoROLLARY 6.2. If the fn are in B .and are as in Theorem 6.3, )
f4= D", .
Proof. From Theorem 6.1, Tim.(
vields the result.

(=" = B* Differentiating r times

7. Generalized functions of finite order

Definition 7.1. An element X of @ is of finite order if lg?;?:ef;i
a continuous function A of expon'enbial order such t}:;a.th X =
some # > 0. The smallest such 7 18 called the order of X.
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We give a characterization of clements of finite order by means of
their transforms.
TuROREM 7.1. If f is analytic in Re =z a 2 0 and f(z) = O("), then
f is the Laplace transform of an element of @G of order < n--2.
Proof. Let g(z) =« " *f(2). Then since ¢{(z) = 0(z~?),
o0

h(t) = (1/2=)exp(at) [ g(a--iy)expliyt)dy

is continuous, exponential order, and L{h} = ¢ (see[1]). Thus L{D"**4*}
k2 o
="y (2) = f(2).
THEOREM 7.2, If X in G is of finite order n, then L{X} () = O ("),

Proof. If X =D"h* then L{X}{z)=2"L{h} which implies
L{X}(z) = O(z"").

The following example shows that not all elements of G are of finite
order.

Example 7.1. The series
00
D D" s/n
0

converges in @, and its Laplace transform is exp (). Thus from Theorem
7.2, this element cannot be of finite order.

Remark. Notice that this series fails to converge in Sehwartz’s
D' [7).

TuporEM 7.3. Let X = D'h*, where h is continuous and |h(1)]
< Mexp(ct). Let L{h} = f. Then the sequence

falt) = (1/2=)exp(et) [ f(o-+iy)-exp (iyt)dy

s such that imD'f} = X.
Proof. The integral

@«
(/2m)exp(et) [ fle-iy)exp (iyt)dy
-0
converges absolutely and uniformly on compact subintervals of 43 0

to A(f) (cf. [1]). Thus the sequence f, converges to h, uniformly on com-
pact subsets. Also,

[Fal®)] < (1/2)exp (ef) flf(c—l—iy)[dy = I exp(ot).
Thus, from Theorem 6.3, LmL{f,} = L{k} so that limf* = h*.

Differentiating » times gives LimD'f* = X.
Theorem 7.3 gives an inversion formula for X.

e ©
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mimoruM T4, Let g be analytic in Re>a and g(2) = 0(&").

If v = n+2, the funciion
¢iioo )
FU) = (Ljzei) [ & Tg()esp(et)ds (o> a)
o loo

is such that L{D"f*} = g. .

Proof. f is continuous, exponential order, and L{f}(2) = 27"g(2).
Therefore, L{D"f*} = ¢. o

We ir,mludo here some results of Korevar [3], with slight restatements,
which we will use in a later section. - '

Deofinition 7.2.. A fundamental soquence {fa} is of exponential
wype (N) it [f5 ()] < Mexp(et) for all #, some ¢>0. An element X
of ¢ is of ewponential type (N) it X = [f,], where {f} is of exponential
type (N). N .

Remark. If {f} is of exponential type (), then it i of exponential
type (N -+p) for all p = 0. . ”

THBOREM T.5. If {fa} is of exponential type (X), then f§ N 2 com{mge’s
uniformly on compact subsets of 1 =0 to & continuous function h(t) in E.

Proof. See [3] . '

COROLLARY 7.1 If {f.} 48 of enponential type (), then [fa] is of
finite order < N-+1. . ey

Proof. From Theorem 7.5 and Theorem %vi’x EmL{f(n N-1} = L{n}
g0 that HmI{f,} = " " L{k}. Hence ful =D 'h . .

Tumortm 7.6. If X is of finite order 7, then X is of exponential type ‘(v).

100! s X =D Mexp(et). Then [h*dn(0)] <

Proof. Suppose X =D B ()] < , [ '

M exp(ct). Therefore, since X = DR = [(h*0,)"], X is of exponential

t e 7’ § - n as - " N .
= 'l‘(h)eorems 7.5 and 7.6 thus characterize g. .y of finite order. This

. characterization will be used in a later gection.

8. Convolution

Definition 8.1. Let X = [a,], ¥ = [¥,] belong to G The convolu-
tion of X and ¥, XY, is defined by )

t
[ gn] = [ [an(t—8)yn(9)25].

Since each @y, is perfect and Yim L {@n Y} = lim§ {.:cln_l}{- ;}{yﬂ}
= L{X} L{Y}, {@nxyn} i8 fundamental and L{f * Y}o?tii O}mwomi;ion
i . o ‘
Trom Definition 8.1 and the us‘ua.l properties
of functions, it is easily seen that @ ig a commutative algebra over the
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complex field with identity (8) and no zero divisors. Even such formula
as D¥(X+*Y) = D*X*Y hold for arbitrary X, ¥ in G

Concerning convergence, the following result holds:

TueorEM 8.1. If limX, = X, imY, = Y, then imX,«Y, = X*Y.

Proof. Since LmIL{X,*Y,} = limL{X,} - L{Y,} = L{X}L{Y} =
L{X*Y}, the conclusion follows.

Some applications of the convolution product will now be considered.
‘We congider the convolution equation

(1) A+X = B,

where 4 and B are arbitrary elements of G. We show that (1) has a solu-
tion X under appropriate conditions.

TueorEM 8.2. If 1/L{A} is analytic in some half plane Rz > a,
then (1) has a unique solution.

- Pro of. The function f = L{B}/L{A} is analytic in some half plane.
Fron§ Theorem 5.6, there iy X in & such that L{X} = f. This is the degired
solution of (1). That X is unique follows from the fact that ¢ has no
zero-divisors.

Now let P be a linear differential operator with constant coefficients.
The equation

(2) P{X} =B
can be interpreted as a convolution equation of the form (1) by setting
n n
A = Za,-D’é where P(x) = Za,mf.
=0 j=0

Thus, since 1/L{A} is a rational function, it follows from Theorem 8.2
that (2) always has a solution for any B in @. In particular, any such
differential operator has an elementary solution, that is, the equation
P{X} = 6 always has a solution. We also note that if B is of order m
from Theorem 7.2 L{B}(z) = 0(z""). Hence L{B}/L{4} = O(é’"‘"“‘;
and from Theorem 7.1, X is of order < (m—n--1).

_ Using this same idea we can consider differential operators of “infi-
nite order”,

P = Za,Df.
. 7=
That is, the equation '
(3) P{X} =B
would correspond to the convolution equation (1) with
4= DaDs,
=0

icm
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provided this series converges. We note that from Theorem 8.1, equation (1)
actually has meaning in this cage, and from Theorem 8.2, (3) will have
a solution X if 1/L{A} is analytic in some half plane. In particular, we
note that (3) has a solution if @; = 1/j!. This operator would correspond
to the differential operator exp (D) which often appears in the Heaviside
operational calculus.

9. Multiplication by a smooth function

In this section multiplication of a g. f. of finite order by & suitably
well-behaved function will be defined. This multiplication corresponds
roughly to the convolution of two Schwartz distributions since the Laplace
transform of the produet of two functions is given by 2 complex con-
volution formula [1]. For this reason no attempt at a general definition
of such a product will be made and only g. £.’s of finite order will be
congidered. The functions considered will be infinitely differentiable and
such that every derivative is of exponential order. Any such function
will be called a smooth function.

Several lemmas will be needed for the definition.

LemyA 9.1. Let f, be continuous and |f,(1)| < Mexp(at) for t =0 and
suppose that f, converges uniformly on compact subsets of ¢ =0 to f. Let
g be continuous and |g(t)] < Mexp(bt). Then lim L{f,g} = L{fg}-

Prootf. Sinee |f,(t)g(t) < M*exp((a-+b)7) and f,g converges to fa,
uniformly on compact subsets, the lemma follows from Theorem 6.3.

Levma 9.2. If {f,} is of exponential type (N) and a(t) is & smooth
function, {a-f.} is fundamental. ,

Proof. The proof goes by induction on N. For N = 0, from Theo-
rem 7.5, i converges to a function f, uniformly on compact subsets.
Since
(1) afy = (a'fsn_l))l_”'lfv(;l)y
it follows from Lemma 9.1 that {a-f,} is fundamental.

Suppose the lemma holds for N < k and let {f,} be of exponential
tiype (k). f7 is then of exponential type (k—1.) From the induction hy-
pothesis {af§ !} and {a'fS"} are fundamental, so that from (1) it follows
that {a‘f,} is fundamental.

LeMmmA 9.8. if X = [2] = [Yn]y where {wn} and {y,} are of ewponen-
tial type, and if a(t) is smooth, then lim L{ax) =.]imL{ayn}.

Proof. By the remark following Detinition 7.2, it may be assumed
that {w,} and {y,} are both of exponential type (N). The proof again

goes by induetion on N.
Let f, = @—1Yn. For N = 0, from Theorem 7.5, f& converges to 0


GUEST


28 C. Swarts
uniformly on compact subsets and |f{ " (1)] < M exp (bt). From Lemma 9.1,
lim L{afY} = 0 and lim L{a'fV} = 0. Hence from (1), imL{a-f,} = 0.

Suppose the result holds for N < k and assume {f,} is of exponential
type (k). Then fiV is of exponential type (k—1). From the induction
hypothesis, im L{afi "} = 0 and ImIL{a*f{"} =0, so that from (1)
lim L{af,} = 0.

The following definition can now be made:

Definition 9.1. Let X = [x,] belong to ¢, where {w,} is of expo-
nential type (N), and let a(f) be smooth. The product a-X is defined as
aX = [ax,]. '

From Lemma 9.2, the sequence {ax,} iy fundamental and from
Lemma 9.3 the product is independent of the particular exponential type
sequence representing X.

Remark. If X = 1% where b is continnous and exponential order,
the classical Laplace transform of a-h coincides with the generalized
Laplace transform L {-X}..Indeed, #* = [h*d,] and h+4, converges to h
uniformly on bounded intervals. Therefore a-(h*d,) converges to a-h
in the same manner. From Theorem 6.3, im L{a(h*4,)} = L{ah} = L{ah*}.

Some of the usual identities will now be establighed.

THEOREM 9.1. Let o be smooth and X of finite order. Then D(aX)
=a'X+aDX.

Proof. Let X = [#,], where {»,} it of exponential type. Then
D(aX) = [(aa,)!] = [a'@,]+[awt] = o' X +aDX.

A generalization of this formula is

* I
¥ ;
(2) aD*X = (~—1)f(,)1)’“"(a’X.
g e
ToeoREM 9.2. If a is smooth, then a0 = a(0)- 4.

Proof. Let {6,} be a é-sequence. Then Lm Z{(a (1) —a(0)) 8, ()} (z) = 0
since

IL{((%(t)—a(O)) (0} (2)| < [ |a(t)—a(0)|exp (—at) 5, (1) dt

< max |a(t)—a(0)|.
] oi1/n
) In a similar fashion it can be shown that a(t)-0(t—n) = a(n). This
identity ean be used to illustrate that general limit interchanges are
not possible with respect to multiplication. For limé(t—mn) = 0, but if

a(l) =1t the sequence a(t)d(i—n) = n will not converge. The following
does hold however:

icm
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TurornM 9.3. Let X, = D¥AY for n >0 and let

lim hy, (8) = hy(t),
00
where the convergence is uniform on compact subsets, and b, (t)] < Mexp (at).
Let o, be smooth and such that for 0 <§ <k, limaj, = a}, where the con-
vergence 18 uniform on compact subsets, and |al(t) < Mexp(at). Then
limay, X, = ayXy.
Proof. From (2), for n =0

k
k .
Xy = D(—1f ( ;)D’*~7<a£hx).

7=0

(3)

From Theorem 6.3, limalh} = ajh? for 0<j <k Therefore, the
result follows from (3). i

10. Generalized functions depending on a parameter

We now consider g.f.s depending upon a parameter and establish
some of the limit interchanges which have been used in the operational
calculus. Throughout this section, we let § he a subset of the complgx
numbers with ¢ a limit point of 8. Suppose that for each b in S there is
associated a g.f., denoted by X (b, ). We denote the distrib.utional deri-
vative of X (b,t) by D, X (b,?). We say im X (b, t)= X (e, ) if })HI:L{X(D, 1)}
= L{X(c, 1)}. bt -

Definition 10.1. The derivative of X (b, t) with respect to the para-
meter b at ¢ =b is defined by

Lim (X (D, t)—X (¢, 1)) /(b—e) = D, X (e, ),
b
provided the limit exists. ‘

TuroreM 101, If D, X(c,t) ewists, then DyX(e,t) exists and
Dy X (e, 1) = Dy X(c, 1)

Proof. Since

lim L {(D, X (b, ) — Dy X(e, 1)/(b—0)} (2)
. — ¢L{D, X (¢, 0} () = DDy X (e, D} (2),

the result follows.
TuEoREM 10.2. If D, X (c,t) exists, then

2 Lx (e, 1h(0) = LD (e, 0} ) -
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Proof. We have
L{D, X(c, t)}(2) = %imL{(X(b, =X (e, 1)) /(b—e)} ()

= lim (L{X (b, 1)} (2) —L{X (c, )} (2)) /(b —0)

baso

a
= o5 TIX (e, 1)} (2);
hence the result.

These limit interchanges have been used formally to solve partial
differential equations by Laplace transform methods.
Finally, we have the following

TeroREM 10.3. If Dy X(c,1) ewists, then for each Y (1) in @
Dy(X (e, )*Y (1)) = Y (8)<Dy(c, t).
Proof. Since
lbin:L{(X(b, )Y (1) —X (e, )« X (1)} /(b—0)
; L{Y ()} L{D; X (¢, t)} = L{Y(t)*D,X (¢, 1)},
Dy (X (c, t)*¥ (1)) exists and is equal to ¥ (1)*D, X (e, 1).

i
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A kernel associated with certain multiply connected domains
and its applications to factorization theorems

by
R, COILFMAN (Chicago, IlL) and GUIDO WEISS (St. Louis, Mo.)*

§ 1. Introduction. In this paper we introduce a natural extension
of the kernel
1 ¢+e
P2, 0) = PR

[ <1, |8 =1,
agsociated with the unit dise. It is well known that many propfe;?xes gOf
analytic functions on this domain can be derived by .mak{ng use o; : 1(: ,th)(;
whose real part is the Poisson kernel and Wthose moaglnaryf par s o
conjugate Poisson kernel. The theory of cla.smca,l H"’ spaces, for eei [111)]),
can be easily developed by making use 01‘“. its baS}c properties ésd ma,im;
We construct similar kernels associated with multiply Gomlec!?e (()1 nains
of conneetivity n. We shall show how they can be .used 113n ormmic?hl
obtain some basic conformal mappings of spch' domains on o.calf tend
“glit” domains. Our main result is a genemhz.atmn of the cla.sslcait a.dj%C
rization theorem for functions in the Nevanlinna class (?f 13hef un(:;i .Oin‘;

Let 2 be a bounded domain whose boundary I' ‘con.msts 01 tv;r isljl S
simple cloged analytic curves yy; ..., ¥s (we shall }ndlc/;:.te ;a i S
how to include more general domaing in .these cor-lsmerat;lons . .
always let y, denote the curve whose interior fmn’ﬁams 2 qucyl,I:().I.); r&;;
are contained in the interior of y,). The ex1ste?nce and bamsub.pct Y
of the kernel asgociated with such domains will be the subje

e we ghall prove the following theorem: . N
b T:‘V[EO:EM ]IE, Let 2,¢2 be fiwed, then ?herfz ewists o unique jointly
continuous function, P, defined on 9 % TI' satisfying

(1) for tel fimed P (2, () defines an analytio function of zeD;
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