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Perron’s integral for derivatives in L”

by

L. GORDON (Chicago)

Introduciion. The notion of the classical Perron integral is by now
very familiar. It is based on the notions of major and minor functions
and of upper and lower Dini derivates and serves the purpose of showing
that an exact and finite classical derivative of a function is integrable
and the function itself is the indefinite integral of the derivative.

Since the time the Perron integral was initially introduced the notion
of derivative has developed and has undergone various generalizations.
Every generalization of the derivative can serve as a basis of generali-
zation of Perron’s integral. The idea is not new. As far back as 1932
(see [1]) Burkill developed a theory of Perron integration based on ap-
proximate derivatives. There also have been other generalizations.

Here we return to this topic but base the theory of the Perron in-
tegral on the notion of derivative — and derivates — in the metric L.
The notion of derivation in I has been introduced by Calderén and
Zygmund [4] and unlike the idea of the approximate derivative has
proved to be quite effective in applications (partial differential equa-
tions, area of surfaces, ete.). It seems likely that Perron’s integral based
on that notion deserves study. I would like to add that though the results
of this paper have points in common with earlier results, the extensidon
is not entirely routine.

The present paper consists of three parts. Tn the first part we define
the notion of Dini derivates in the metric I" (briefly, L'-derivates) and
prove a number of properties well known for the classical derivative
(and due primarily to Denjoy and Lusin). In the second pairt, using pre-
vious results, we develop the theory of Perron’s integral for derivates
in I’. In the third part we give applications to Fourier series.

The author gratefully acknowledges the help and guidance of Pro-
fessor A. Zygmund in the preparation of this paper.

PART I

1. Definitions and elementary properties of I - derivates. Let f(x)
be finite and real-valued in an interval (a, b). (In what follows, unless
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stated otherwise, we consider only measurable real-valued functions and
measurable sets.) The right-hand upper Dini derivate of f at o, F* ()
may be described as the lower bound of all a« such that ’
[ﬂmﬂi@

@

p —a]+ =0(1) ast—>+0 (}).

If no such o exists, then f*(#) = + oo. Instead of (1) we may write
(2) fla+t)—fl@)—at]l, = o(t) a8 t— + 0.

Suppose now that feL", 1 < < oo, near the poi
. : < N point x. We may then
define the right-hand upper Dini derivate of f at z in the metric I, de-

?ﬁtgd by /7 (x), 1 <7 < oco. It is equal to the lower bound of all a such
a

12
1 ; 1r
(3) {If]‘f(w—kt)—f(w)—at]:dt} =o(k) as k—>+0
0
or, what is the same,

b
(3) f[f(x+t) —f(@)—at], dt = o(A"™")  as b -+ 0.

;f no such o exists, then we set 7} (x) = + oo.
he classical case may be congsidered a imiti
s tl r =
of our definition. e Himiing case v = oo
b .It is obviqus what should be meant by j;(z), the left-hand upper
ini derivate in the L'-metric (more briefly, the left-hand upper L'-

derivate) and th "-deri . ifi
o ) an e two lower L'-derivates, f_,* (@), ]} (@). Specifically, we

(4) (@) =gt (—a),

there the funct%on g is defined as g(—x) = —f(z) for all z in the domain
0T hf. ]The (tvzo—slqed) upper L'-derivate f,(z)is equal to max [f (2), 7 (=)].

e lower L'-derivates of f at « are equal to the negatives of the cor-
responding upper derivates of —f at a.

. When /,“.Lr (z) = I,*’ (#), the common value, denoted by fi* (z) is the
pght-?land I —de‘nva.tlve of f at @. If it is finite, say equal to «, then it
18 uniquely defined by the condition 7

h
(5) [If@+t)—f@)—atfidt = o'+  as  h - 1o,

[

() By 4; and A_ we denote max (4, 0) and Max (-4, 0).
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A corresponding definition and formula holds for the left hand -
derivative, f,~ (x). When all four I"-derivates are equal, the common
value, denoted by fr(x) is the L'-derivative of f at x. If it is finite, say
equals «, it is uniquely defined by

h
(6) [Ifto+)—f@)—afdt = o) a5 7 —0.
—~h

In what follows we often consider IL’-derivates or derivatives at
each point of a set . Without loss of generality we may assume that
the function is in I" over some interval containing the set B (or even,
if need be, that it is defined and in I" over the whole real line).

The definition of fi () could also have been based on (1) instead
of (2) and we have the following

TuporEM 1. Bither 7 (z) = + oo or it eguals the lower bound of
all a such that

h f(m+t 0
(7 f[———)TfE@:g] dt =o(h) as h—+0.

+
In fact, (7) obviously implies (3'). Using integration by parts, it can
be easily shown that (3') implies (7).
2. Relation hetween ordinary, approximate and I'-derivates. We

recall the definition of approximate derivates. The approximate right-
hand upper derivate, 71, (%), is the lower bound of all B such that the set

(8) {t; t>0, 101 _,f"—(w)_m > 0}

has t = 0 as a point of dispersion. The relation of the other approximate
derivates to the upper right-hand derivate is the same as in the case
of the I’-derivates. It is not difficult to see that if condition (7) is satis-
fied for a, then condition (8) is satisfied for any B> a. It follows that
Fiop (@) < f(»). Noting that the left-hand side of (3) increases with r
and that (2) implies (3'), and utilizing the relations given in §1 of the
other Dini derivates to the right-hand upper derivate (?) we obtain
TarorEM 2. For 1 <7 < s < oo, wé have

9) f (@) < @) <F (@) <Fiow (0) < Tl (@) < ) <JF () <FH @)

Similar inequalities hold for left-hand and two-sided derivates.

We obtain immediately the following

(?) These relations hold, of course, not only for the L'-derivates but also for
approximate and classical derivates.
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COROLLARY. Suppose 1 <7 < 8 < oco. The existence of any one of
the first three derivatives in the sequence

f,+ (), f;+ (wo)y 7"+ (o), f;;-p (,)

1mplies the ewistence of the following derivative and the two are equal,
Similar results hold for left-hand and two-sided derivatives,

3. Further properties of I -derivates. We have
THEOREM 3. The L'-derivates and L'-derivatives are measurable,
Proof. As mentioned above, we may assume that feL'(— oo, o),
By Lusin’s theorem we need only prove that /() is measurable on
every closed set ' such that f restricted to 7 is continuous. Let a be any
real number and k, m, n positive integers. Let
h

(10) 9@, by @) = b [ [f(@+) —f(a) —at], dt

and let

(1) E(a, k, m,n) = {@weT; g(2, by, a) < k! when (m+n) <h <m ).
Clearly, for each @, in E(a, k, m, n) there exists a positive g < 1

such that g(z,, h, a) < gk~ for all hel(m=+n)""y m™']; and it is con-

sequently easy to show that for any zeT sufficiently close to a,, g(z, h, @)
<k for (m+a)*' <h < mt. Thus E(a, k,m,n) is open in T. Let

Blo) = {weT; ff(2) <a} = {meT; (o, b, o) = o(1), as b — + 0}.

Then E(a) = QUﬂE(a, k,m,n) is measurable and the theorem

"m o n
is established.

THEOREM 4. Suppose that Ji (z) < oo af each point of a (measurable)
set B. Thén a.e. in B we have — oo <fr (@) = f (@) < oo.

We shall use the following h
) Lemma 1. Suppose that F} () < co on a set B, |E| > 0. Then there
8 asubset T = B, |T| > 0 such that fo(m) (the derivative of f relative to T)
exists and is finite at each point of T.

In view of the fact that the hypothesis implies 7}, (z) < co on B
(see Theorem 2), this lemma is contained implicitly in the proof of Theo-
rem 10.1, in [8], Chap. 9.

Proof of Theorem 4. It ig sufficient to show that the conclusion
hqlds a.e. on a subset 4 of B, |4] > 0. Let B(a, k, m,n) be as in (11)
with T the subset of E given in the lemma, and let B (a, ky m)
= QE(a, k, m, n). Since f (1) < oo in T, we have T = | J (U E(a, k, m),

- a k m

where o takes on all integral values. Hence there exist q, k,, m, such
that |B(ay, k,, m)| >0,
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Let 4, |A] > 0, be a closed subset of E(a,, ky, m,). Let 2, be a point
of density of A. Since f., (2,) = fr(a,) is finite, our theorem will be estab-

lished when we prove that 77 (z,) = fli (@) = f7 (w).

We may assume z, = 0 andf(0) = f, (0) = 0. Consequently f,,,(0) = 0
and (by Theorem 2) fF(0) = 0, ff (0) < 0. It remains to be shown that
7F(0) <0, and f5 (0) >0, or which is the same that

h 0

(12) JUOT.a =0+, [T = o(h.

—h

Now .
[fOT.dt =147,
-

where I is the integral of [f(1)]| taken over the set 4 ~ [—h, 2] and
by
J = [UoLa,

the intervals [a;, b;] being the intersections of [—7, k] with the intervals
contiguous to 4 (3). Now

i

b,
J =D [ [flatLat

i i) —f (@) —apt ; , it follows by
and since [f(a;+1)], < [f (ai+8) —f(a) —aot], + |f (@) +]apt], 1t
applying Minlzowskz’s inequality twice that J'" < P 4@+ R where

bi—a;

P zguf [f (@ +8) —f (@) — ot T, G,

v

bi—a; b—a;
= a)dt, R= Y [ latf"dt.
Q Z! (@l at, 2]

Since a;ed = E(ay, Ky, m,), We have

bj—a; . _
[ [fla+t)—fla) —aptldt < (b—a) T kg < W (bi—ai) ky*

0

for 0 < h < my', and furthermore f(a;) = o(a;) = o(h). Also, since x,
is & point of density of 7, Z(bi——ai) = o(h). It follows that P,Q, R are
o(k+1) so that J = o(k™*"). Since the integrand of I is o(.t’), we also
have I = o(h"+!). Thus (12) holds and our theorem is established.

(%) Since x, is a point of density of 4, we may, if necessary, increase } slightly
8o that —hed.
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We have the following immediate

COROLLARY. a) If the two wupper [lower] L'-derivates are less than
+ oo [greater than — oo] on a set E, then a.e. on B the L'-derivative exists
and s finite.

b) If the two L -derivates on the right [left] are finite on a set B, then
a.e. on E the L -derivative exists and is finite.

For later application we need the following

THEOREM 5. Suppose that FeL'[a,b] and that F.(5) = 0 except pos-
sibly on a countable set B’ where, however F is L" continuous (4). Then F(x)
is non-decreasing on [a, b].

The proof will be based on the following three lemmas.

LemMA 2. Suppose that the interval [a, b] is the union of two disjoint
measurable sets L and R such that each point in R is a point of right-hand
density (%) of R and each point of L is a point of left-hand density of L.
Then every point of R lies to the right of every point of L.

Proof. Suppose, to the contrary, that w;eR, z,eL and a < 2y < o,
<b. Let )

9(@) = ([@—a)" [ Ox(n)at,

where d < z; and Cg(t) is the characteristic function of R. Since g(x,) < 1
for &, < @y < @y, it follows that when z,eR [#,¢L], g(2) increases as we
move away from x, slightly to the right [left]. On the other hand, since
g(z) is continuous on [z, z,] it must attain a maximum at some point
Ty Ty < X < . We thus obtain a contradiction.

Lemuma 3. Let E' be a countable subset of [a,b] and E the complement
of E'.‘Supposa (i) F(x) is approvimately continuous at each point of E',
and (i) each point m, of T is a point of right-hand density of the .set
{z; F(x) > F(x,)} and a point of left-hand density of the set {x; F(x) < F (1)}
Then F(z) is non-decreasing on [a, b].

Proof. Suppose that «,, z,e[a, b] and F(x;) < F(x,). We shall show
that @, < ®,. Choose ¢>0 so that F(z,) < F(®y)—e and such that
F(z) # F(x,)—e for any zeF'. Let R = {06 <2 <b, F(a) = F(x,)—e}
and L = {z;a <& <b, F(z) < F(s,) —¢}. Then clearly, R and I satisfy
;he<hypothesis of Lemma 2, and since x,¢L and a,eR it follows that
Ty << Ly.

() A function feL"[a, b] is said to be L™-continuous i i i
s B at a point x, in [a, b] if
L[lf(évr)—f(zn)ﬁ*dx = o(h), where H = [a, b] ~ [xo—h, m+h]. ’ !

‘o (%) For convenience, when the point # = b [ = a] belongs to a given subset
8§ of [a, b], we consider 2 =) [x =a] a point of right-hand [left-hand] density of S.

icm®

Perron’s integral 301

LEMMA 4. Let B' be a countable subset of [a, b] and E the complement
of B'. Suppose that Fopp(®) =0 for all x<B and F is approzimately con~
tinuwous at each point of B'. Then F(x) is non-decreasing on [a, bl

Proof. Replacing F(x) by F(z)+ex, >0, we may assume thab
Fapp(®) > 0 for all zell. But then F and E' satisfy the hypothesis of
Temma 3 and consequently F(z) is non-decreasing on [a, b].

Proof of Theorem 5. By Theorem 2, F,,,(#) > 0 for all zeB. At
each point of B, F is L'-continuous and a fortiori approximately con-
tinuous. The conclusion now follows from Lemma 4.

Remarks. 1) In the proof of Lemma 3 it is clear that the hypo-
thesis on I’ could be replaced by the weaker hypothesis that F(E') does
not contain an interval. Consequently, this can be done in Lemma 4 and
Theorem 5. :

2) The proof of Lemma 3 goes through if each point z,eF is merely
a point of right-hand density of the set {x; F(x) = F(n,)}, provided
F () is approximately continuous at each point of [a, b]. Consequently,
the hypothesis in Lemma 4 could be changed to require that Fj,.(z) > 0
for weE and F(x) is approximately continuous on [a, b]. Theorem 5 will
then hold under the hypothesis that Fj (x) > 0 for each xeE and F(z)
is I™-continuous on [a, b].

3) Furthermore, the hypothesis of approximate continuity in Lem-
mas 3 and 4 may be replaced by the weaker requirement that F be ap-
proximately lower semi-continuous on the right and approximately upper
semi-continuous on the left. The requirement of L'-continuity in Theorem
5 may be weakened in a similar manner.

PART I

4. The Perron integral in the L -sense.

Definition 1. Given a function f(x) on [a, b]. A finite-valued func-
tion y(z)eL [a,b], 1 <7 < oo, is said to be an I"-magjor fumction of
) if (i) pla) =0, (i) p(z) is I’-continuous on [a, b] and (iii) except
for an at most denumerable subset of [a, b] we have — oo 7 v, (®) = f(z).
A function ¢(x) is an L'-ménor function of f(x) if —g(x) is an L'-major
funetion of —f(x). ’

THROREM 6. Suppose that y(w) ond @(z) are, respectively, L -major
and I -minor functions of f(@) on [a, b]. Then u(x) = p(x)—@(®) is non-
decreasing on [a, bl.

Proof. Except for an at most denumerable set we have  — oo
# p,(8) = f(x) > gr () # co. We shall show that «,(z) > 0. For £>.0
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there exist a, 8, a < f+¢ such that
h h
JI8@ O at = o),  [[T(@, )] dt = o(A™)
[ 0

where

S(z, 1) = plw+t)—yp(@)—pft, T(,1) = p(e+t)—¢(x)—at.

Let U(a,t) = u{e+t)—u (@) — (f—a)t = 8 (z,t) —T(x,1). Then [U (x,1)]_
< [8(m, )] +[T (=, 1)], and so, by Minkowski's inequality,

h
[[U@ ) @t =o(d™") and u(2) > fp—a> —e.

Since ¢ is arbitrary, u,; (z) > 0. Similarly Uy (x) > 0. Since u(z) is
I’-continuous, our conclusion now follows from Theorem 5.

Definition 2. Let f(x) be defined on [a,b]. If infy(b) for all I'-
major functions y of f(x) equals supp(b) for all minor functions o of
f(z), then the common value, denoted by

b
(P)) [ f(2)dee

is called the L™-Perron integral of f on [a, b], and fis said to be P,-inte-
grable on [a, b].

Remark 1. The P,-integrability of a function f and the value of
the integral are not affected when we extend the class {9} of L"-major
functions and the class {p} of L'-minor functions of f(x) by allowing the
inequality (@) Zf(2) 2 @-(®) to fail on a set of measure zero. (However,
the condition E,.(m) > — oo and g,(¢) < co is required to hold nearly
everywhere (°). A function f(z) may, therefore, be P,-integrable even if
it is not defined on a set of measure zero. The proof is the same as for
the classical Perron integral [5]. It is not difficult to see that Theorem
6 will hold ‘also for these extended families of L'-major and L’-minor
functions.

Remark 2. Asin the case of the classical Perron integral, it follows
from Theorem 6 that (b) > ¢(b) and consequently, f is P,-integrable
on [a, b] if and only if there exists a sequence {y,} of I'-major functions

and a sequence {,} of I'-minor functions such that lim [¥a(b)—@n(b)] = 0,
and then »

b
limy, (b) = limg, (b) = (P,) [ f da.

() By “nearly everywhere” we mean everywhere except for at most a countable
set of points.
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In particular, if F' is both an L'-major and L’-minor function of f,
b

then P(b) = (P,) [ f de.

a
5. Elementary properties of the P,-integral. As an immediate con-
sequence of Remark 1 following definition 2 we have
THREOREM 7. Suppose f(x) = g(z) a.e. and f is P-integrable on [a, B].
Then g is also P,-intégrable and
b

b
(Br) [ fdo = (Py) [ g do.

a

From Theorem 6, we obtain immediately the following two theorems.

THEOREM 8. If f is P.-integrable on [a,b], then f is P,-integrable
on any subinterval of [a,b].

THEOREM 9. Let

F(x) = (P, ffdz, a<ae<b.

Then for any L'-magjor function p and any L'-minor function ¢ of f,
y—F and F—q are non-decreasing on [a, b].

We also have

TaEOREM 10. If f is P-integrable on [a, D] and [b, ¢], then it is also
P,-integrable on [a, ¢] and we have

¢ b [
(P,) [fdo = (Py) [fdo+(Py) [fdz.
a a b

TeroreM 11. If F(x) is L -continuous on [a,b] and — oo < Fy
gfﬁr < oo nearly everywhere, then F,(x) ewists a.e. on (a,b] and

F(e)—F(a) = (P,) [ Fr(t)t.

In fact, by the corollary to Theorem 4, F, exists and is finite a.e.
and sinee F () — F(a) is both an I'-major and L'-minor function of P (z),
it is the indefinite P,-integral of Fy(v). (See Remarks 1 and 2 following
definition 2.)

THEOREM 12. Suppose that f is P.-integrable on [a, b] and let

F(a) = (P, [fdt, a<z<D.

Then (1) F(x) is L -continuous on [a, b, (ii) F,(2) exists and is finite
a.e. on [a,b] and (i) F,(2) = f(z) a.e. on [a,)].
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Proof of (i). Given &> 0. Choose an L'-minor function ®(w) of f
8o that for the non-decreasing function w(x) = F(z)—¢p(z) we have
0<u(x) <e and consequently |[F(x-+1) —F ()| <<J(p(m+t)—~(p(w)[+
+&(z, w+tefa, bl). Since ¢ is L'-continuous we see that, for sufficiently
small,

h
Qih f [F(z+t)—F (@) d < .

—h

The proof of (ii) and (iii) is carried out exactly as in the classical case.
From Theorems 12 and 3 we obtain immediately the following

COROLLARY. Hvery P,-integrable function f om an interval [a, b] is
measureble and finite a.e. on [a, b].

THREOREM 13. Suppose that f is P.-integrable on every interval [a, z],
@& <<x<b, and let

B(z) = (P,) [fat.

'Suppose also that it is possible to define F(b) so that F(z) is I-
continuous at @ = b. Then f is P-integrable on [a, b] and

b
F(b) = (P,) [fat.

Proof. Since F is I'-continuous at b, given & > 0 we have
b
[1F®)—F(2)] < &'
bZh ’

for b sufficiently small and, consequently, |F(b) —F(x,)] < & for some
Ly, b—.h < @y << b. It follows that we can construct an increasing sequence
;’f(blz;m—lf;’({bb;}, 7 =0,1,2,...,0n [a,b] such that a = by, by = b and

Given & > 0, we shoose for each interval [b
tion yy(x) of f so that wi(bi_1) = 0 and

by by
[ fan<piny) < [ fartep2.
b

-1 i~1

-1y b;] an I'-major func-

Let
D wilb), @=b,
=1
@) ={ .,
D) b tye(@), b, <z < by

=1
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It follows that
[y (®) —p(@)] < |F(b)—F(2)]+5/2",
Suppose now that b,_, <b—h < b,. Then
lp () —y(@)] < |F(b)—F(2)|+e/2™,
and by Minkowski’s inequality and the L'-continuity of F at b, we obtain

bpy <o < by.

b—h < <b,

b
1 1fr
{7[ flw(b)—w(w)!'JW} <o()+ef2"' =0(1), as h—>+0,
b—n
so that y is L'-continuous at & = b. It is now easy to see that ¢ is an
L'-major function of f on [e,b] and that F(b) < y(b) < F(b)+e.
Similarly, we can construct a minor function ¢ of f on [a, b] so that
F(b)—e < ¢(b) < F(b). Since e is arbitrary, f is P,-integrable on [a, b]

and
b

F(@) = (Py) [fat.

a

Remark. We do not attempt to construet » so that y,(b) > — oo.
As a matter of fact, there are cases (see Example 1, § 7) where it is impos-
gible to fulfill this requirement, and it is exactly for this reason that excep-
tional points in the definition are unavoidable.

THEOREM 14. Suppose 1 <r < g < co. Then any function which 18
either Pg-integrable or Perron integrable is also P,-integrable and the values
of the integrals are equal.

Proof. By Theorem 2, every major function in the classical sense
and every L%major function is also an L™-major function. Similarly for
minor functions. R

Remark 1. There are cases (see Example 2, § 7) of a continuous
function F(z), ¢ <2 < b, which has a finite I'-derivative at each point
of [a, b]forallr, 1 < r < oo, and at the same time there is a set 0, |C] > 0,
such, that at each z¢C, F' () fails to exist. By the corollary to Theorem 2,
for a < @ < b we have F,(#) = f(z) where f(z) is the same for all r. By
Theorem. 11,

B(@) =(P) [fat, 1<r<oo.

On the other hand, if f(z) were Perron integrable in the classical
sense we would have, by Theorem 14

(P) [fai = (P,) [fdt = F(a)

Studia Mathematica, t. XXVIII, z. 3 [
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and consequently F'(z) = f(x) a.e. contradicting the fact that B (x)
does not exist for # in O.

We see thus that a function f(x) may be P,-integrable for all 7,1
<7 < oo, yet fail to be Perron integrable.

Similarly (see Example 3, § 7) for any 7,1 <7 < oo, it iy possible
to construct a continuous function F(x) on [a, ] such that F, exists
and is finite’ everywhere, and at the same time there is a set ¢, |0] > 0,
such that F,_,(x) does not exist for any » in ¢ and any & > 0. It follows
that Fy(z) = f(x) is P,-integrable on fa, b] but is not P, -integrable for
any £ > 0.

Remark 2. Tt can be easily verified that any L™-major function
is a O)-major function (see [2]), and similarly for minor functions. Tt
follows that any function which is L’-integrable is also C;-integrable
and the values of the integraly are equal. Thus our scale of integration
is intermediate between the classical Perron integral and the seale of
integration of Burkill [3]. :

TaeoREM 15. If f(2) and g(x) are P,-integrable on [a, 0] and o and B

are real numbers then the function h = of +Bg is also P,-integrable and
we have

b b b
(P) [hde = a:(P,) [ fdw+p-(P,) [ gdo.

The proof is the same as in the case of the classical Perron integral.

THEOREM 16. 1) If f 4s P.-integrable on [a, b] and f > 0 a.e., then f
8 also Lebesgue integrable on [a, B].

?) If fa(®) is a non-decreasing sequence of P-integrable functions and
(Py) [ fa 48 bounded, then

fl@) = Himf(z)

18 also P,-integrable and we have

b b
(Py) [ faw =lim [ f,de.

8) If f and g are P,-integrable on [a,b] and f =g a.e., then

b b
(P,) [faz > (P,) [ gdu.

a

The proof, making use of Theorems 5 and 15, is the same ag for the
classical case.
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6. Integration by parts.

THEOREM 17. Suppose that, on the interval [a, bl, f is P.-integrable,
G is absolutely continuous and &' (z) = g(z) is in L”, where 1 <r < oo,

r’ = r[(r—1). Then fG is P,-integrable on [a, b] and if F(x) = C+ ffdt,

then
b b

(1) (P)) [ G = FGY,— [ Fgdn,

where the integral on the right exists as o Lebesgue integral.

(If » =1, the condition on G becomes GeLip 1).

It is well known that in the classical case » = oo (r' = 1) it is enough
to assume that & iz of bounded variation. Ibn that case the integral on

the right is the Riemann-Stieltjes integral [F dG.

Proof. Since (1) iz obvious when either F or ¢ is constant, and
since g = gt —g~, we may assume without loss of generality that F(a) = 0
and G is non-negative and non-decreasing.

Let w(x) and ¢(xz) be a major and a minor function for f. We con-
gider the function

(2) M (@) = p(a)G@)— [ @(u)gu)du

and we will show that it is a major function for the product fG.
Clearly, M(a) = 0 and M(») is L'-continuous on [a, b]. We shall
show that M,.(z) > v.(#)@(z) nearly everywhere and it will follow that
M,(z) > — oo nearly everywhere and M, (x) 2]’({0)(_}(97) a.e. on [a,b].
Let # be any point such that f,(ar) > — 00, @) < oo, and let
a, B be finite numbers such that o < (@), # > ¢r(2). Then, for t>0,

M (1) — M () —al (2)t

t

= @@+ pla+1) —6 (@) p (1) —ab (@)t — [p(a+s)g(@+s)ds

= @ (e+t)p(@+1)—yp (@) —at] +at[G (@ +1) —6 (@) ]+ p(e) —g (@)] 6z +1) —
t i
—G(w)]-f[«p(m—}—s)«qo(w)—ﬂs]g(m+s)ds—fﬂsg(m+s)ds

=4, +A2+A3+A4+-A5 .

Clearly, 4, = o(t) as ¢ -0, and by Theorem 6, 4, > 0. Also, using
H¢lder’s inequality in case 7 >1 and the essential boundedness of g


GUEST


308 L. Goxdon

in case r = 1, we see that A; = o(t). We thus obtain

[ M (w-+)— M () —aG () 1]

i
<G4t [p(@+)—p@) —atl_+ [ [p(@-+8)—¢@) —psl.g(@+s)ds+o()

= P+Q+o(t).

Again, using Hplder's inequality for r>1 and the essential bound-
edness of g in case r =1 we gee that @ = o(f). We now have

(M (z+1)— M () —aG () 1] < G (0) [y (0+1)—p(®) —al]_ +o(t).

It follows, by Minkowski’s inequality, that
3
(3) [ 1M (@+1)— M (@) — o (a)t]_dt = o(W™*?).
0

Similarly, using the equality

M (@) — M (z—1)—aG (%)t = G{z—1)[p(e) —p(2—1) —al]+
t

Fat[f(o—1)—G(@)]+ [ [p(2) —p (0 —s)—as]g(a—s)ds+

1 } ! ]
+ [ [p(@—s)—p(@—s)1g (v—s)ds+ [ asg(w—s)ds

we can show that
h
(4) [ [M(@)— M (@—t)—aG (@)t]. dt = o('+Y).
0
It follows from (3) and (4) that M; (), M, (»), and consequently
M,(x), are nearly everywhere, > a@(z).
Since o is any finite number less than y,(x), it follows that

M. () > %(m)G(m) nearly everywhere.

Thus M (2) is a major function of f(z)G ().
Similarly,
m(@) = ¢ @)G (@)~ [ p(s)g(s)ds
iy a minor function of f@.
Since

M (@)—m(2) = [p(2)—p(@)]16 @)+ [ [p(s)—p(s)g(s)ds
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is uniformly small together with y—g, it follows that fG is P,-integrable
on [a, b]. Making yp — F and ¢ — F we obtain from (2) the formula

b b
[ @ ds = F(b)G(b)— [ Fgdo

and the theorem is established.

As a corollary, we obtain the following second mean value theorem
for the P,-integral.

THEOREM 18. Suppose that f is P.integrable and G a non-decréasing
absolutely continuous function on [a,b] such that & () = g(x) is in L
[a, D], ' = »[(r—1). Then there ewists & a < & << b, such that

b & b
(P, [f6dn = G(a) [ fdz+G (D) [ fda.
21 a E

The proof proceeds as in the classical case and is based upon the
following (well known)

LeEMMA. Suppose that F is L'-continuous (or even merely approwi-
mately continuous) on an interval [a, b]; then F has the Darbouw property
on this interval.

Proof of Lemma. Suppose that F fails to have the Darboux prop-
erty on [a,b]. Then there exists a constant % and a subinterval I of
[@,b] such that I is the union of the two disjoint non-empty sets
A={mel; F(z) <k}, B={wel; Fz)> k}. By the approximate con-
tinuity of F, every point of A is both a point of right-hand density of
A and a point of left-hand density of 4, and similarly for B. It now fol-
lows from Lemma 2 that every point of 4 is to the right and to the left
of every point of B which is absurd.

To complete the proof of the theorem, we observe that gince the

theorem is obvious when G is constant, we may assume that f gdr +#0.
By Theorem 17, “

b b
(P,) [ fodn = 76|, — [ Fgao.

Now,
b

b

fIf’gda: = Icfgdx

a a
for some constant %, and clearly we cannot have % > F(z) a.e. or kb < F(x)
a.e. Hence there exist «’, 2/ in the interior of [a, b] such that F(z')
<k < F(z"). By the Darboux property for F, &k = F(§) for some &
in [2', 2] and our theorem is established.
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7. Examples.
Example 1 (See Remark following Theorem 13).
For n = 2, 3, ..., let I, and J,, denote intervals with center at 1—1/n

and of length equal to #~® and 2 'n~° respectively. Let ¥, (z) be
a differentiable non-negative function such that (i) Fy(z) < 20°™, s(n)
= (logn)~*?, (ii) the support of F, () is contained in I, and (iii) for o
in Jp, Fn(@) =a"™,

Let

Then, for 0 <o < 1, F'(x) exists and is finite; and for 1 < < oo,
F(x) is L'-continuous at » = 1. Defining f() = F'(2), 0 <o <1, f(z)
=0, # =1, it follows from Theorems 2, 11 and 13 that f(z) is P,-inte-
grable on [0,1] and

x
Flo)=(P)[fd, 0<2<1,1<r<oo.
0

Let now y be any major function of f on [0,1]. Since » > F, we
have for 1—teJ, and n sufficiently large, and whatever the value of
(1) and of 8 may be,

P(L—1)—p (L) +pt = '™,
It follows that
h
J W) —p(@—t) il dt # o (W),

0
Hence y.(1) = — oc.

Example 2 (See Remark following Theorem 14).

On the interval {0,1] we construet a Cantor set ¢ of measure u > 0
by the standard process of removing open intervals in successive stages.
At the n™ stage, n =1,2,3,..., we start with 2"! cloged intervals of
equal length and remove from the center of each one an open interval
By (k=1,2,3,...,2"") of length |B, x| = n~22""+!, where A satisfies
the equality ’

A 2%"2 =1l—u.
N=1

This leaves 2" closed intervals W,; (I =1,2,3,..., 2% of
length. The desired set ' is the complemef;ft (of the, u17:|io’n o% a].{ 1319 521: jl

For each B, let I.x and J, ; be subintervals in the center of B; %
of length 27"~ B, ,| and 27"|B, s respectively. For each B, ; We con-
struct a non-negative differentiable funection F, » such that (f) the sup-
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port of Fy, 1 is contained in Jy g, (ii) Fy zx(®) > 2" when  is in I, and

(ifi) Fp n(®) < 27" Let :
0, zeC,

Fn,k(m)y

Clearly, F(z) is continuous. Moreover, F'(x) exists and is finite for
z¢C. It can also be shown that for any z<C and any r, 1 <7 < oo, We
have F.(z) = 0, and F'(z) # 0. It follows from the Corollary to Theo-
rem 2 that Fy(x) exists for all r,1 <7 < oo, and all 2,0 <=z <1, and
that F'(x) does not exist for any « in C.

Example 3 (See Remark following Theorem 14).

Let the intervals B, , and the set ¢ be as in Example 2. Given 7,
1 < r < oo, we construct on each By ; & differentiable function F, ; such
that (1) The support of F, y is contained in a subinterval in the center
of B, 5 of length 27" 0™} | By &, (i) Fux (@) > amM-1ig, .| on a subinterval
in the center of B, j of length n™*27""*| Byl and (iii) Fyp () < 2™" | By, x.
Let

F(z) =
( ) meBn,k.

0, zeC,

Fn,k(m);

Again, F(z) is continuous and F,.(x) = F'(z) exists and is finite

for z¢0. It can also be shown that for any zeC, Fi(x) = 0and F,,(z) % 0,

for any &> 0. It follows as in example 2 that F, . (x) does nobt exist
for zeC.

F(z) =

.’ﬂEBn,k.

PART III

8. Application to Fourier series. In the final section of this paper
we apply previously obtained results to the theory of Fourier series.
Suppose f(x) is real valued, periodic of period 2z and P-integrable,
1 <r < oo, over any interval [a, a+2x]. Clearly,
a4-2n

(P) [ faa
is independent of «. In view of Theorem 17, the Fourier coefficients

o an
. 1 .
= = (P,) f f(tycosntdt, bn = W(Pr)f f(t)sinnt dé
o g 2m ¢

exist (n = 0,1,2,...). We are iuterested in the behavior of the Fourier
series

o
$ao+ Z y, COS 1T by, SID N
N=1
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of f. If we suppose for simplicity that @, = 0, then the indefinite integral
&
F(z) = (P,) [ f(t)at
0

is also a periodic function, and as integration by parts shows, its Fourier
series is obtained by a termwise integration of the Fourier series of f, i.e.
oy Si 90— b, CO8 N

Flz)~C+ 2 Sn S0 T — On COSNY

T

The function F belongs to L', and in particular to L, so that itg
Fourier coefficients tend to zero. It follows that if f 18 periodic and P,-
integrable, 1 < r < oo, over a period, then the Fourier coefficients y,y by
of f are o(n) (as in the case of the classical Perron integral; [9], Vol II,
D. 85), and so the method (C, 1) seems to be appropriate to apply here,

Before stating the next theorem, let us also observe that at each
point where F, exists, the function F satisfies the Dini condition (this
is easily seen by integration by parts) so that the Fourier series of F
converges a.e. to F.

ZMMmmlakaquMandﬂmmWMMI

<7 < oo, over
a period, then the Fourier series of f

$a,+ Zj(a,1 CO8 n@ by, 8in na)
1

18 almost everywhere (0, 1)-summable to f(x). Likewise, the conjugate series
Z(a,.sinnm—b,,cosm)
1

8 almost everywhere (O, 1)-summable to the Sfunction

o) — Tl — L o [ @40 —F(w—1)
fl@) = 1'31;1[‘— ;_(Pr);f T Sangt dt],

ey

where the limit is taken in the L -sense ).

In the classical Perron case this result has been obtained by Mar-

cinkiewicz (see [9], Vol. II, p. 85) and his argument is easily adaptable
%0 our case. For this reason we can be brief.

(") i.e. denoting the expression in brackets on the right-hand side of (1) by
9=, £), we have

13
of [f@)~g @ 8)fds = o(h) as Bho»o.
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We begin with the first part of the Theorem. In view of the fact
that under our hypothesis f = F, almost everywhere, the result follows
from . . . - . *
THEOREM 20. Suppose F is periodic of period 2= and is in I/ (0,_27:),
1 <r < oco. Then if F, exists and is finite on a set B, the differentiated
Fourier series of F 4s (O, 1)-summable to F, almost everywhere in E.
For r = oo, this is the result of Marcinkiewicz. In the proof which
follows we assume, as we may, that » = 1. ) )
We denote the Fourier series of ' by S[F] and the te1~1nw1se. dif-
ferentiated series by S’[F]. For the conjugate series we correspondingly
use the notation S[F] and S'[F]. o ) . )
The hypothesis that F; exists and is finite in F implies that given
e >0 we can find a closed subset E; of H, ]El! > |B|—e, such tl.m,t Fy
exists uniformly in E, and F(x), Fi(x) are uniformly bounded in E,.
By a decomposition theorem of Calderén and Zygmund ([4], Theorem 9)
we may write

(2)

where @ is in ¢’ (and of period 2xn) and G = F on El: It £0110w§ that
H =0 on E,. In particular, since H;pp = 0 at each point of denmzyEof
E,, H; = 0 almost everywhere on H,. ]"Jet Ez be 2 closed subset;q 9 1 (1),
|By| > |E|—e and such that on H,, H, exists umformlsf, and = 7.
If we set f = Fi, h = Hy, g =&, then by (2) we have in B, f =g-+h
and kb = 0. Also by (2) .

§'[F] = 8'[G]+8'[H] = 8{g]+8'[H].

i i ifor: - le to g, and ¢ =f in E,,
Since S[g] is (uniformly) (C, 1)-summab to g,
the proof will be completed if we show that S'[H] is (e, 1)—summablef
to 0 at almost every point of E,. Denote bly zr,,:(m) the (C, 1)-means ot
§'[H] and consider a point z,eE,. Since H; exists and equals zero a
%y, We have

3)

F=@0G+H

11
[ 1H (@+8)|ds = o(t2).
0

If K,(s) is the Fejér kernel
1 (:sin%(n—l—l)s)2
b

2(n+1) gins
then
4 , 1 L = Ppt-Qn,
on(2) = -= fH(wo—}—s)K"(s)ds =—— e n
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say. Since K, = 0(n?),

i :
[Pl <02 [ |H(sy+8)ds = 0(n?)-0(n?) = o(1),
—1m
by (3), and it remains to estimate @,.
It is clear that for 1/n <s < m,
|En(s)] < A(n 8|3 457%) < Afs?
80 that

ds
(4) [0n] < A [H (25 +8) —
yn<lsi<n $
We shall now use the fact that if 6(x) is the function equal to 0 on
E, and equal to (b;—ay;) on any interval (a;, b;) contiguous to F,, then
the integral ‘
4 t
(w+1) at
12

(8)
i<n

is finite for a.e. 4 in B, ([9], Vol. I, p. 130). In view of the hypothesis
that H;(x) exists umformly in %, and equals zero there, we have

f |H(#)| &t < A(by—ay)

& ‘
for all intervals (a;, b;) contiguous to H,. It is not difficult to prove (see
e.g. the argument in [9], Vol I, p. 131) that at every point of density
of B, the integral in (4) is majorized by some multiple of the integral (5)
and therefore @, = O(1) almost everywhere in ¥,. We refine here the
0 to o in a routine way, observing that the behavior of on(2,) depends
only on the behavior of H in the immediate neighbourhood of »,. Hence
00 (%) < [Pp| +1@n| = 0(1) almost everywhere in E,, and so almost every-
where in H. This completes the proof of Theorem 20 and so also of the
first part of Theorem 19.

We now use a well known result (see [6] or [7]) stating that if any
trigonometric series is (€, 1)-summable in a set E, then the conjugate
series is (0, 1)-summable almost everywhere in E. Hence under the hypo-
thesis of Theorem 20, g [F1is (0, 1)-summable almost everywhere in E.
In particular, under the hypothesis of Theorem 19, S[f] is (0, 1)-summable
almost everywhere and it remains only to show that the (C, 1)-sum of
§ [f1is given by formula (1).

This can be proved e.g. as follows. (C, 1)- -summability of 8 [fl1(= =g [F])
implies 4 (Abel) sum.mabmty 80 that o

(6) —

g1l T

F(%—H) Fendl

icm
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exists almost everywhere, where
psint
B =
e, ) 1—2cos8t4p?
i the conjugate Poisson kernel.
In the case where F (x,-+t)+F (1,—1) —2F (%) = o(t), as ¢ — 0, it is

known (see [9], Vol. I, p. 103) that the limit in (6) equals

() Tim [— = —2F (“30)]

and with some slight modifications, the proof goes through also for the
case where

F (1) -+ F (my—1)
(2 sin §)2

h
(8) [ 1P (@ +0)+F (@—t)—2F (@)t = o(h?) as  F—>0.
0
Since F exists a.e., F' satisfies (8) a.e. and so S[F]is almost every-
where (C,1)-summable to (7). Integrating by parts, the expression
inside the brackets in (7) is seen to equal

1 Fay+e) +F (2, —e) —2F (a0)
®) = 2tanie

- f By +1) —f (= dt
N f otan} ’

At each point z, where F, exists we have (see Theorem 1)

f

Thus the integrated térm in (9) approaches zero in the I'-sense as
e — 0 and so for almost every z,
dt].

—2F () "

—F (3, —¢)
2tanie

F(mo+e) de = o(h).

, flo+0—fe
§tf) = tim(z [ f =T

Theorem 19 is thus established.

References

[1] J. C. Burkill, The approwimately continuous Perron integral, Math. Zeitsch.

34 (1931), p. 270-278.
[2] — The Oesaro-Perron integral, Proc. Lond. Math. §

p. 314-322.
[8]1 — The Cesaro-Perron seale of integration, ibidem (2) 39 (1935),

oc. (2) 34 (1932),

. 541-552.


GUEST


316 1. Gordon

[4] A. P. Calderén and A. Zygmund, Local properties of solutions of partial
differential equations, Studia Math. 20 (1961), p. 171-225.

[5] R. L. Jeffery, Non-absolutely convergent integrals, Proc. Second Canadian
Math. Congress, Toronto 1949, D. 93-145.

(6] J. Marcinkiewicz and A. Zygmund, On the behavior of trigonometric
series and power series, T.A. M. 8. 50 (1941), p. 407-453.

[7] A. Plessnex, On conjugate trigonometric series, Doklady 4 (1935), p. 235-238.

[81 8. Saks, Theory of the integral, New York 1937.

[9] A. Zygmund, Trigonometric series, Cambridge 1959.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ILLINOIS IN CHICAGO
CHICAGO CIRCLE CAMPUS

Regu par la Rédaction le 12. 9. 1966

icm®

STUDIA MATHEMATICA, T. XXVIIL. (1967)

Hypoelliptic and entire elliptic convolution equations
in subspaces of the space of distributions (I)

by

7. ZIELEZNY (Wroctaw)

The definition of hypoelliptic and entire elliptic convolution equa-
tions can be formulated in a general manner as follows. Let #' be a space
of digtributions.in R", which may be the space 2' of all distributions
or one of its subspaces with a topology stronger than that induced in
#' by 2'. We assume that:

(h,) # containg the space &' of distributions of compact support
as a dense subset.

(h,) #' is a module over the space &' under convolution, that is,
for each T'e #' and Sed&’,8*Te .

(b,) The mapping (8, T) - 8*T of & % #' into ' is separately
continuous.

Furthermore, let 0,(#': ) be the space of convolution operators
in ', i.e. the space of continuous linear mappings of # into #”, which
are convolution operators on & < #. 0.(#': #') can be identified with
a subspace of s’ (see section 1).

We introduce two classes of functions.

(I) &s#' is the set of all ¢>-functions fe #' such that, for any
SeO.(#': #'), the convolution S+f is a C™-function and 8§ — S*f is
a continuous mapping of 0 (#': #') into & — the space of ail ¢*°-func-
tions on R". We show in section 1 that, in fact, S*f is again in &3¢

(II) o' is a subset of £#7'. A function fe &' is in ", if, for
every Se0,(#': #'), the convolution kb = Q+*f can be continued analy-
tically in the complex n-space ¢" and the growth of the resulting entire
function is restricted in the following way. In any horizontal strip Vs
in O" around R" of width b, |h(2)| < |g(R#)|, where ¢ is a function of
#¢' depending on b and Rz is the real part of 2.

Consider now the convolution equation

(1) §+U =F,
where Se0,(#':#') and U, Fe .
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