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Schauder bases in compatible topologies
by

E. DUBINSKY * (New Orleans, Louisiana)
and J. R. RETHERFORD ** (Baton Rouge, Louisiana)

1. Introduction. In a recent paper [5], Retherford raises the follow-
ing question:

(1) If B is a vector space, 7, I, are two compatible locally convex
topologies (that is, give the same dual) and (5% is a Schauder basis
for E[Z ], is (b*) a Schauder basis for E{J 21!

The answer to the question is, in general, no. A counterexample is
given in section 4 below. On the other hand, there are various conditions
under which the answer to the question is yes. Arsove and Edwards [1]
have shown that this is so if the Mackey topology of E is barrelled and
MecArthur [4] has shown it for the case in which ¥ is weakly sequen-
tially complete and the basis is unconditional. These results are stated
precisely as theorems 1, 2 below. Theorem 3 is a generalization of
theorem 2 (but mot theorem 1) and answers question (1) under
conditions which are not at all topological but rather are concerned with
the type of basis. We should mention that theorems 1 and 2 are stated
in a form slightly more general than the statement in the references
quoted. There it is only asserted that a weak Schauder basis is a Schauder
Dagis in the Mackey topology. However, the transition is quite straight-
forward and the argument is in faet contained in our proof of
theorem 3. .

Tt is interesting to note that Kothe’s theory of sequence spaces, gene-
rally used to obtain counfer-examples in the theory of locally convex
spaces, is used here also ag a means of obtaining a positive result about
bases. Our theorem 3 is an almost immediate application of Proposition
2 due to Kothe. Section 3 gives a preliminary discussion of the relationship
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between sequence spaces and locally convex spaces with Schauder
bases.

Finally, section 5 considers the relationship between the three theo-
rems. First an example is given to show that theorem 3 is a proper genera-
lization of theorem 2, and then examples are given to show that there ig
no relationship between theorems 1 and 3.

2.. Not'ations and remarks. The symbol B[] (or simply ¥ if no
confusmp is likely) will indicate a loecally convex space (always Haus-
dorff) with the topology, 7. A I -Schauder basis for E is a sequence (b%)

of elements such that for each weH there is a unique expangion & = g‘mbi
R (2

Wh.ere- the =; are scalars, the convergence is with respect to 7~ , 2;1;11 the
mappings & — ; are continuous.

If B, ¥ are two vector spaces (real or complex) and there is a bilinear
functional, (#,9) = <&,y> on EXF such that for each xe¢E there
is _yeF such that (@,y)> # 0 and vice versa, then we say that the
pair (B, F) is placed in duality by the relation {x, y>. The most prevalent
example is the case in which  is a locally convex space, F is the dual
E', and <z, y> = y (»). In general we have the two topologies, 7, (F. E),
jf »(¥, B) which are respectively the weak and Mackey topoli)gies 0’11 1/5
induced by F. The class of topologies fiher than the weak and coarser
than the Mackey are exactly those topologies I~ such that (B[Z]) = F
§uch a topology is said to be compatible with the duality. The readexh'
ig referred to Kothe [3] for details.

Iflisa .Vector space of sequences, & = (z;) of real or complex numbers
under coordinatewise arithmetic, we define

2= o= (w)

Zlmiuil < oo for all & = (mi)sl};
iz

¥ = {u = (u{)] Zm,-ui is convergent for all 4 — (mi)sl}.

i=1

IfI;]1 ig easy to see that if A contains every sequence which is non-zero for
only finitely many terms, then (1, *> and {1, 2> are placed in duality
by the relation (o, u) =4~21,miui‘ The symbols ¢, ¢” will refer respecti-

ve}iy to the seqtfence- for which every term is unity and the sequence
W) ose' nth terl_n 15 unity and the rest are zero. We shall make use of the
following particular veetor spaces of sequences: :

icm®

Schauder bases in compatible topologies 223

@ = the set of finitely non-zero sequences,

o = the set of all sequences,

I* = the set of all absolutely summable sequences,

1™ = the set of all bounded sequences,

¢, = the locally convex space of sequences which converge to zero
equipped with the sup topology.

3. Bases and sequence spaces. If F is a locally convex space with
a Schauder basis, then there is a natural correspondence between E and
a vector space of sequences 1. In order to apply the Kothe theory of
sequence spaces, however, one must consider the connection between the
topological dual, B’, and the Kothe a-dual, A”. As we shall see below there
is a natural correspondence between E’ and a subset of the Kothe 4-dual,
8. Unfortunately this subset is, in general, proper and can remain so
even if 1X = 5. In the case in which this subset is all of 1%, the connection
between types of bases and sequence space concepts is quite interesting
and will be discussed in a forthcoming paper. For our present purposes,
we shall only require that 1% = %

Suppose, then, that the sequence (%) is a Schauder basis for B. We
shall say that (bi) is an unconditional basis if the convergence of each
expansion is unconditional. We shall say that (b') is a bounded multiplier
basis if

x;b'eE and |y < |a;| for all i  implies Z?IibieE

i=1

e

i

(cf. Day [2], . 58). )
Let f'e B’ be defined by fi(¥) =
spaces of sequences:

r={z= (mi)ljwib’:eE},
=1

]
-

8;. We define the following vector

po= o= )| Y uf B 1741, B}
i=1
We say, following Kothe ([3], p. 409), that a sequence space 2 is normal

if &= (2;)el and |y < |2, for all ¢ implies ¥ = (y;)€A. Finally, we con-
sider the mappings 7: 4 —> B, ¥': B’ — p defined by

(%) = Smibi, n'(j’uifi) = ().

Connecting these concepts, we have
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PROPOSITION 1.
(i) (%) is @ bounded multiplier basis if and only if % is mormal.
(i)  If A is normal, then 2f = 2%,
(i) u < A8
(iv)  The maps n, v’ are Unear homeomorphisms onto when A, u, B, B

are equipped with their weak topologies from u, A, B', T, respec-
tively.

Proof. The first and third follow immediately from the definitions
and the last is easily proved with the observations that (z(z), u) =
= (@, n'(u)) for all wel, uek'.

For the second assertion, we note that in any case A* = 4%, On the
other hand, if 2 is normal and u = (u;) €A%, @ = (z;) 1. Let y be defined by

Uy ?50,
'M:,;—‘—‘O.

]mi%il /’Mi if
o 0 it
Then |y;] < |z 80 yeA. Hence

2 Jas %05] = 5}%’%
i=1

1=l
and since uel?, the two series are convergent. Thus ueli*.
In addition to the above considerations, we shall make use of the
following rather deep result of Kothe ([3], p. 417):
PROPOSITION 2. If A is mormal, ed, & = (®y,...,3,,0,0,...), then
the sequence (o) converges to ® in the topology, T7 (1%, A).

4. Bases in compatible topologies. TFirst we show that the answer
to (1) is, in general, negative.

Let 2 = {z = (#;)| () is eventually constant} = {ae-1-x|a is a sealar,
zep}. Clearly A* =1' and the sequence (¢") is a Schauder basis for 2 in
the topology, 7,(1%,2). We show that (¢") is not a I (1%, 1)-Schauder
basis for 4. Let 4" = ¢"—e"** be considered as an element of A*. Then,
although for each m, lim,{e", u™) = (e, w™>, the convergence is not
uniform with respect to m. In fact, (¢", u™>— (e, u™) = 1 for all n. Hence

. we need only show that the convex circled hull 4 of the set {w"} is 7, (4, %)
-relatively compact. Let § be the closed unit ball in It. Then by the defi-
nition of econvex circled hull we have

4 ={“ = (“i)la =j§ﬁiﬂjy B=(B)e8 ~ ‘P}-

Henee 4 is a coordinatewise bounded subset of » and since o is a Montel
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space in the topology 7 (g, w) (the Tychonov theorem), 4 is.7 (¢, w)-rela-
tively compact. Furthermore, if ae-xel and aed, then

(2)  <aetm, @y = ale, adH(x, 6> = a ) file, > +<w, a) = (&, a).
F=1

Therefore, if (¢”) is a net in 4, there is a cofinal subnet (call it again (a”))
and an element a’c¢w such that if ae+xed, then, in view of (2),
lim,<{ae -+, o> = lim, {x, ) = {z, a’).

We are finished then if we can show that a®eA™ =I' and that (2)
remains valid if a is replaced by a®, for this means that ais a 7, (4, 2*)-limit
point of the orginal net. Now by the above characterization of A, it follows
that A < 28 so ¢”28 for all ». Since a° is the coordinatewise limit of the
net (a’), we may conclude that a®e2S <1, = 1*. Furthermore, by the
same characterization, we may write,

@ =D, =S np.
j=1
Hence, a} = f;—p;_, (B = 0) 50 f; = a;- ... +a and since (@) is coordi-
natewise convergent to (a®), we may define g} = lim,f; = al+ ... + al.
Therefore, (#) is & net in § which is coordinatewise convergent to 8° = (8})
50 f%eS < I*. Henee, liur;f} = 0. Therefore,

Cae+a, a¥y = ale, A% +(x, %) = a Y al+<{w, a®>
t=1

= alim g}-+<{z, a®) = (=, a®>.
Hence o satisfies (2) and the counterexample is established.

We now give three theorems which answer question (1) positively
under various restrictions. Let E be a locally convex space with dual
F' and let 7, 7, be two topologies which are compatible with the duality.

THEOREM 1 ([1], Theorem 11, p. 109). If E[T(E', B)] is barrelled,
then every J ,-Schauder basis is a 7 ,- Schauder basis.

THEOREM 2 .([4], cor. 2). If B[T (&', E)] is sequentially complete,
then every unconditional 7 ,-basis is an uncondttional T ,-basis.

THEOREM 3. Every 7 ,-bounded wmultiplier basis is a T ,-bounded
multiplier basis. .

"Proof. Let (b°) be a 7,-bounded multiplier basis. Clearly, since
7, is compatible, (b’) is a weak Schauder basis. Suppose that the weak

n
limit of Za;ibi is an element z of E, and |y;| < |z;|. Then 2 is the 7, -limit
=1 [

of some series Yw;b’ and since the linear functionals are the same, z; = ;.
: i=1

bid .
Henee |y;| < |i], so Yy;b* is 7, - convergent and hence weakly convergent
i=1
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to an element of K. Thus (b%) is a weak bounded multiplier bagis and we
can apply the definitions and results of section 3 to this casé. In parti-
cular, we note that from proposition 2, if # = (#;)el and 2" = (@, ..., @,
0,0, ..}), then the sequence (z,) is 7(2*, 2)-convergent to =. But u < 1°
= 2 80 every convex (4, u)-compact set i3 7,(1, 1*)-compact. Hence
Fx(2%,2) is finer than J4(u, 4) so the sequence (m‘”)‘is T i (py A) conver-
gent to x. n )

Now suppose that ze¥, ¢ is the 7,(F’, E) limit of 2 x;¢; and A4 is

N - T =1
a convex J,(#, E')-compact subset of E'. Sinee ' is weakly continuous,
7'(4) is a convex J (4, u)-compact set. Also 5~1(z) = (w;) is in 2y 80
n
& i convergent' to z~!(z), uniformly on #'(4). Hence, n(z") = > bt
o i=1
is uniformly convergent to # on 4. This shows that (4" is a T4 (B, B)-
Schauder basis, and since 7 (E’, B) is finer than 7,, (b%) is a.7,- Schauder
basis. Finally, by an argument similar to one given at the beginning of
this proof, it follows that (b*) is a7 ,-bounded multiplier basis.

5. Comparison of results. In the first place, we see that theorem 2
follows immediately from theorem 3. In fact, it follows from the defini-
tions and a remark of Day ([2], p. 59) that if B[T +(X'y B)]is sequentially
complete, then every unconditional basis is a bounded multiplier basis.

On the other hand, the sequences (¢") form a bounded multiplier
basis for ¢,, but this space is not weakly sequentially complete.

Finally we note that theorems 1, 3 are not comparable. The sequence
(¢") form a bounded multiplier basis for I* with the topology, 7 (I, 1),
but the Mackey topology is not barrelled; and, the space I* is a Banach
space and thus barrelled and (u"), where 4! = ¢/, 4" = ¢ '—¢", n > 2,
forms a conditional basis for I* and hence is not a bounded multiplier basis.
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