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Let g(t) be a given real valued function which vanishes identically
for ¢ < 0, is continuous for 0 << oo and does not vanish identically
in any right neighbourhood 0 < ¢ < § of the origine. We consider finite
sums of the form '

m

(1) ot) = D' higlt—t),

i=0

where 2; and ¢; are real numbers and m is an integer. We shall show that
the set of all sums o(#) is dense in the space C[a, b] of continuous fune-
tions. More exactly, we shall prove the following

THEOREM. Given any function f(t), continuous in a bounded and closed
interval a <t < b, and a positive number e, there is an integer m and real
numbers 1;, t; such that |o(t)—f(t)| < e for a <t < b. Moreover, if f(a) = 0,
then all the numbers t; can be chosen mon less than a.

Before we give the proof, we are going to show some applications
of the above theorem.

First application. We are in a position to obtain easily the Titeh-
marsh theorem on convolution:

Let f and g be continuous in [0, T, and let g do not vanish identically
an any right neighbourhood of the origin. If

[fla—ng@at = o

in [0, T], then f(x) =0 in [0, T].

In fact, we complete first the definition of g to the whole real
axis of ¢ so as to have g continuous for 0 < < oo and vanishing for
— oo < t < 0. By Theorem, given any e > 0, there is a function of the
form (1) with ¢; > 0 such that |o(t)—1 < e in [0, T]. Thus, we have
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for 0 <o <7,

(2) |[fo—yuit] < e [Ifa—nldi+|[fle—t)otaf
0 0 0

T m x
<e[If@)ldi+ \l| [f@—1)g(t—1)at.
[] 0

1=0

If 0 <@ <1, then the integral
x
[fla—t)g(—t)as
. 0
equals to 0, for the integrand is null. If #; < » < 7T, then the last integral
equals to

z a—t

[flo—tgt—tyat = [ flo—t—w)gw)au = o,

£ 0

in view of the hypothesis. Thus the sum on the right side of (2) vanighes

identically for 0 <2 < 7. Since ¢ can be chosen arbitrarily, it follows
that

[floa—tidt=0 for 0<a<T.
0
This can also be written
x
J o—nf@at = o,
[]

which implies, when differentiating twice, that f(») =0 for 0 <2 < T.
And this was our assertion.

Second application. Let ¢ be the ring of continuous funetions in
0 <t < oo with convolution as multiplication. It follows from the Titch-
marsh theorem that O has no divisors of zero. It can be therefore completed
to a quotient field M. The elements of this field are called operators.
One says that a sequence of operators ane M converges to ae M, if there
is & function ¢<C such that ga,<C, gaeC and ga, converges to ga almost
uniformly, i.e., uniformly in each finite interval [0, T']. Now, Foiag [2]
has proved that C is dense in M. We shall show that a slightly stronger
statement follows from our Theorem. In fact, let a be a given operator.
This operator can be represented in the form flg, where f, g<C, f(0) = 0,
and g does not vanish identically in any neighbourhood of the origin.
The sum (1) can be written in the form .

m
o= Satig =g,

1=0
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where h is the shift-operator [3]. It follows from our Theorem that there
is a sequence of sums o, with #; > 0 which converges to f almost uni-
formly in {0, oc). This means that %, — flg, where k, and o, are related
a8 k and o. Thus we have proved that the set of polynomials

= Nans
at

(with non negative t;) is dense in M. Hence the theorem of Foiag follows
immediately, on remarking that any given operator a can also be repre-
sented in the form 12f/g, where f and g satisfy the same requirement as
before, and 1* = {t}. Then %, — f/g implies 12k, — a, where 12k, are evi-
dently continuous functions.

It is worth mentionning that Boehme [1] deduced from the theorem
of Foiag the following interesting property of operators:

Bwery sequence of operators a,, a,, ... can be represented in the form

P2
PR
with & common denominator q.
The proof of our Theorem will be based on a lemma which is a modi-
fication of a lemma of Foiag. In the sequel, the convolution

(Pns q<0)

13
[fi—ng(n)ax

will be denoted by f+g. .

Levma, Let f and g be continuous functions in [0, T such thai (0)
=g(0) = 0, g non vanishing identically in the neighbourhood of 0. Then
there exist a sequence of fumctions k,, absolutely continuous in [0, T], such
that %,(0) = 0 and gk, converges to f uniformly in [0, T].

Proof of lemma. We consider the set of conftinuous functions in
[0,T] as a Banach space C[0,T] with the norm

Il = .éa‘ffn IF@l.

Asgsume that there is no sequence k, with the required property.
Then the distance of f from the set of all funections g*% with absolutely
continuous % and %(0) = 0 is positive. By the Banach-Hahn theorem,
there exists a linear functional F on ([0, 7] such that F(f) =1 and
F(g*k) = 0 for every absolutely continuous function % such that k(0) = 0.
It follows from a known representation theorem of F. Riesz that every
functional F on O[0, T] is of the form

T
P(f) = [fH)anT—1),
0
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where } is a function of bounded variation in [0, 7'] such that (0) = 0,
Therefore, this function can be chosen so that

7 T
(3) ff(t)dh(T~t) =1, and f(g*k)(t)dh(T——t) =0
0 []

for every absolutely continuous & with k(0) = 0. The last integral can
also be written in the form
r

SREI—0alg*k) Q) = H(T—1)(g*F) (D) dt = (h*(g*E")(T)

o

r
= (B (g*W)(T) = [¥(T—1)(g*h) (t)dt.

Since the derivative %’ can be any integrable function, it follows
that g*h = 0 in [0, T'] and, by Titchmarsh’s theorem, & = 0 in [0, T'].
This contradicts (3) and, therefore, proves Lemma.

Proof of theorem. Assume first that f(0) = 0 and « =0, b = T.
By Lemma, there is a continuous (even absolutely) function % with
k(0) = 0 such that |gxk—f| < &/2 in [0, T]. By the mean value theorem
we have, for ¢; = iT[n,

=1ty 1 =l
gk =Y [gl—nk(x)dc == glt—7)k(z)
i=0 L=

for properly chosen 7; satisfying #; < 7 < #;,,. Hence, for 0 <i < T,
n-1

1
N PR (G

1 n—1
< ;g{:[lg(t—n)-—g(t—ti)l k() + 19 (t— )| - [k (w) — Ko (t:)]].

Since the functions g and % are continuous, the expression in the
brackets becomes less that &2 for n sufficiently large, say for n > u,.
Consequently, the whole expression (4) becomes less than £/2 for n> n,
and, therefore,

1 n—1
= Y gt—tkw—f@<e @ o<t<r
1=0

for # > m,. This proves Theorem in cage when f(0) =0 and a = 0. If
f(0) # 0, we take a point ¢, at which g(t)#0 and apply the preceding
result to the function

C o f(0)
1{t) = — =gt
flE) =1@) N g+1,)

Approvimation theorem 145

which evidently has the property f,(0) = 0. Also the restriction to a = 0
is eagy to be removed by a proper translation. Thus the proof is complete.

Remark. In fact, our Theorem is very elementary, since its formu-
lation need even mnot the notion of an integral. Nevertheless, it implies,
as we $aw, important theorems of Analysis. Therefore it would be very
interesting to find an elementary proof of it. To this end, the proof pro-
duced above could yield perhaps some help, for it gives some more in-
formation on the numbers 4; and # than Theorem in our preceding
formulation.
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