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Exponentially convex functions on a cone in a Lie group™
by

8. LACHTERMAN (St. Louis)

1. Introduction. Necessary and sufficient conditions for a real
sequence {f(n);n =10,1,2,...} to be expressible as an integral

fn) = [ T da(y),

where da(t) i§ a bounded non-negative measure, are

@) Y eaf(+k) >0 and Y gaf(+k+l) >0
1,k=0 1,k=0

for any set {a,;n =0,1,...,m} of real numbers. This is known as the
Stieltjes moment problem. (Cf. [13; 15] and for a brief history [7].) For
a continuous real function f(z) on the real line the representation be-
comes

fl@) = fe-"da(t)
and (A) becomes -
(B) D) wouf(@s+m) >0,
1, k=0

where {2,;n = 0,1, ..., m} is any finite set of points on the line. Such
functions were called ewponeniially convex by Bernstein [3].
In the case of the Hausdorff moment problem
1

fln) = ["da(t),

0

where da(t) is & bounded non-negative measure, if and only if

(0) 0< > gaf(i+k+1) < Y gaf(i+h).
3,k=0 1,k=0
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G 10715,


GUEST


106 8. Lachterman

For a real funetion f(») defined for x > 0 the representation is re-
placed by

ol
@) = [ e=*da(t)
0
and (C) is replaced by

(D) 0< Y gaf@tocte) < Y gof(+o).

T k=0 1,k=0

This is the Hausdorif-Bernstein-Widder theorem. It was extended
to higher dimensions by Hildebrandt and Schoenberg [9] and to f(z)
defined on an open connected semi-group of a topological group by
Devinatz and Nussbaum ([8], § 5, Def. 4, Lemma 2, and Cor. 3, p. 231-
234). (D) remains a8 the necesgary and sufficient condition for this
general case. See algo Devinatz [6].

On the other hand, (A) or (B) alone appears to be inadequate for
such a general extension of the Stieltjes moment problem [16] although
Widder ([15], p. 273-275) and, more generally, Devinatz [6] have shown
(B) to be sufficient for continuous real functions in Euclidean space.

The purpose of the present paper is to give an extension to Lie groups
of the representation theorem for exponentially convex functions. (See [4]
for general properties of Lie groups.) The function f(x) will be defined
on a special type of semi-group which we ghall call a cone.

DEeFINITION 1. A subset © of a Lie group ¢ is called a cone if it
satisfies the following conditions:

1. S is open.

2. 2,ye© = ayeC.

8. 5e@ = ¢S for 0 <t <1, where X is in the Lie algebra.
(X is also called an infinitesimal mght translation.)

4. There exists an open neighborhood V of ¢ (the identity of ¢) such
that (a) every point of ¥ is of the form ¢* and (b) & = (J W", where

Nl
W =8~ V;ie., every element of S can be expressed in at least one

way a8 a finite product of elements of W.

Exampere. A cone can be constructed in the following fashion. For
sufficiently small ¢ > 0 there is a homeomorphism between a neighbor-
hood V of ¢ and a neighborhood of the origin in N-dimensional Eucli-
dean space B (N = dimension of &) such that every element of V is

of the form
N
exp (Z [ Xk)
k=1
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for —e<t<e where {X;;k=1,..., N} are linearly independent
elements of the Lie algebra.

Let
N
W= {exp(Zthk); 0 <ty < B}.
Then =
00
&=y w
) n=l
18 a cone.

SPEOIFIC EXAMPLE. Consider the 2-dimensional group of all matrices

of the form
ab
a=[37])
where a % 0 and b are real, det 4 = a # 0;

41 :[ 1(/)0, —I:)L/a ]

Let © be the semi-group of those matrices for which det 4 = a > 1.
S is a cone.

Note that, once one ¥ has been found meeting requirement (4) of
the definition of a cone, any open neighborhood V, of ¢ with V, = V
will also serve the same purpose. For, there is an open neighborhood U
of ¢, U = V,, such that U is homeomorphic to a neighborhood .# of 0
in BV, 8¢t W, =V,~nS<cV~S=W. Any point in W is of the
form ¢*. For sufficiently small n >0, XU~ G c W, for 0 <it<7g
since this interval corresponds to a set in .#. Thus eX can be expressed
as an n-fold product of é¥™Xc W, where n is an integer > 1/y. Hence

S = wy.
In fact -t
S=U (U~S)"
also. w1
It is also worth noticing that a cone is connected. For let p and ¢
be any two points in S,

k L
=[[emX) and g= [] exp(X;)
J=k+1

F=1

for some set {exp(X;);j=1,...,L} = W. Form

k L
F(t) = [[exptX) [] expl1—0)X;] for 0<t<1.
7=1 J=k+1
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P(t) is a continuous function of ¢ by the continuity of products in .
F(0) = ¢, (1) =p. F(t) is thus a path in & joining p and ¢. Therefore &
is arc-wise connected and hence connected.

It would be jnteresting to discover whether or not connectedness
is an intringic property of a cone. That is, does a connected set § in ¥
satisfying conditions (1), (2), and (3) of the above definition also satisfy
condition (4)?

Next let us denote by S/ the set of all non-zero continuous homo-
morphisms (real characters) y on the cone & into the multiplicative semi-
group of real numbers, S* possessing the topology of uniform conver-
gence on compact sets of . (See § 2 for more detailed definitions.)

ExamrrE. Consider the 2-dimensional Lie group of matrices given
earlier. Let y(4) = |detA|. y(4) is actually a character on %. y(4)
= detA > 1 on &. There are infinitely many characters as may be seen
by considering [y(4)]*, where A rung through the real numbers.

The main result of this paper can now be stated.

TeEOREM 1. Lot © be a cone in a Lie group 9. Let f be a continuous
real-valued function defined on & satisfying

. m
(1) D waf(@zm) >0
Fik=1
for all sets {aj;j =1,...,m} ‘of complew numbers and oll sets {x;;j =
=1,...,m} S and weS, where m takes on all positive integral-values.

Then there exists a unique non-negative regular Borel measure u (on
the Borel field generated by the closed sets in SM) such that

2) fl@) = [x(@dp(z)

SA

for all xS,

ExAmprE. Refer to the preceding example. Let » be a measure such
that

g@) = [ () < oo

at least for > 0. Let f(4) = g(logx(4)) for 4<S. Then

f ,,2 o auf (A4; Ay) = O [ 2(A y(4)fy(4n)'d (1) > 0.
k=1 [y fo=m1 —o0

Thus f(A) satisfies (1).
The proof of Theorem 1 will be given in §4. §3 will be devoted to

a new proof of a lemma of Nelson ([11], p. 583) and §2 to preliminary
information essential to the proof of the theorem.

icm
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At first glance it might seem that this problem can be reduced to
the corresponding problem for functions defined on cones in Ruclidean
space by dividing out the commutator subgroup @ of ¢ and restricting
the function to the corresponding cone in #/Q. However this leads to
serious difficulties, and it is not clear that such a procedure will work.

2. Preliminaries. We now give a few known concepts and results
that will be needed later. (Cf. [1; 2; 5; 8; 12; 14].)

i DEFINITION A. A sémi-group © is a get in which an operation
(multiplication) is defined with the property that ,yeS = ayeS.

DEFINITION B. An open semi-group S is an open set in a topological
group ¢ which is a semi-group under the operation (multiplication) in %,

Levma A (Devinatz and Nussbaum [8], Prop. 1, p. 223). Let &
be an open semi-group, e<[S] (closure of ©), and y a homomorphism of S
into the multiplicative semi-group of real numbers. Then S, = {z; y(x) = 0}
and S, = {w; y(2) # 0} are open and e<[S,] if S, # O. Hence, if S is
connected, y camnot take on the value zero unless it vanishes identically.

The proof of this lemma actually shows that, if S, =@, there is
an open neighborhood U of ¢ such that the homomorphism y differs from
0 everywhere in U ~ & (hence ¢¢[&,]). In the case where S is a cone
this result shows that ; cannot be 0 anywhere in & unless y = 0 on S.
For we may suppose that U also satisfies condition (4) of Definition 1
(since, if V' satisfies this condition, then U ~ ¥ does also, and we may
replace U by U ~ V).

&= (U~

so that each element of & is a finite product of elements in U. This proves
the statement. (Alternately we may use the fact that the cone & is con-
nected.)

DEFINITION C. A real character y of an open semi-group & is a con-
tinuous homomorphism of & into the multiplicative semi-group of real
numbers.

The set of all real characters of an open semi-group S is itself a semi-
group with respect to point-wise multiplication ((y; g.)(®) = ; (@) za(w)
for each zeG).

We denote by K this set of real characters, excluding the zero cha-
racter. In cage & is connected, K is actually a group.

For each yeK the sets {w; y(z) >0} and {; y(x) < 0} are open
since y is continnous. If © is connected (in particular if S is a cone), the
union of these, two sets is & and hence each y can have only one sign
on &. But (2% = [y(2)]*> 0 for any x<S. Hence y(x) >0 for every
2K and every x¢S if S is connected.
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DrrINiTIoN D. This set K together with the topology of uniform
convergence on compact sets of & iy denoted by S”, the real character
gemi-group of &.

That is, a neighborhood basis is the collection of all sets of the form

N (105 Oy &) = {13 (@) — 20(0)| < &,e>0, C compact, all z<C}.

Since multiplication of real characters is continuous in this topology,
SA is a topological semi-group. If & is connected, S* is actually a topo-
logical group since the zero character is omitted and since by continuity
each y is bounded below and above on any compact set ¢ = & by positive

numbers (dependent on y and C).

Nussbaum [12], p. 133, gives the following definition:

DerFINITION E. A semi-group & is a locally compact full semi-group if:

(a) © can be embedded in a locally compact group 4.

(b) © is locally compact in the relative topology of .

(¢) Every non-empty bounded open set in © has non-zero measure
with respect to the left (or right) Haar measure of 4.

DeriNITION F. Furthermore Nussbaum [12], p. 134, considers a set

{T;; z¢S (a locally compact full semi-group)}
which is a weakly continuous semi-group of self-adjoint operators acting
in a Hilbert space s. That is:

(1) T, is a self-adjoint operator acting in a Hilbert space s# for
every zeS.

(2) Ty = T, T, for all x, yS.

(8) (Tzu | v) is continuous in » for all ves# and all u e {#(Ts); 2},
where #(T,) = domain of T,.

In case the operators T, are unbounded he enunciates the following
additional condition for & ([12], p. 136):

(d) There exists a denumerable set D = {m,} in © such that for
each element « in @ there are an element v in & and an element =, in D
satisfying @, = oy or @, = yx. That is, for every #¢S, 26 ~ D # @
or Sz~ D £ Q.

His important result is the following:

THEOREM B (Nussbaum [12], Th. 6, p. 137). Let S be a locally
compact full semi-group and {I,} a weakly continuous semi-group of self-
adjoint operators over ©. If the operators T, are wnbounded, we assume
that ©. satisfies condition (d). Then there ewists a spectral measure {H(o)}
relative to the Borel subsets of S* such that

To = [ (@) B(dy).
SA

icm
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If Q 4s a bounded operator which commutes with every Ty, x<S, then Q
commutes with every H(o).

(Note: Nussbaum does not exclude the zero character from the set K. .)

(Cf. also Tuleea [14], Th. 3, p. 107.)

A cone © in a Lie group ¢ satisfies the conditions (a), (b), (e), (d).
The first three of these are readily met since & is already locally compact
and & is open. (Haar measure with condition (c) exists for &).

With regard to (d) consider an open neighborhood U of e which is
homeomorphic to a neighborhood .# of 0 in BY and which satisfies con-
dition (4) of Definition 1. (See the discussion following that definition
and the examples.) Let W = U ~ S.

S = W
n=1

U contains a countable dense set since .# does (points with rational
coordinates). Since W is open, it also contains & countable dense set D,.
Any element of ze W2 i3 of the form z = 2y with z,ye W. Any neigh-
borhood of # contains a neighborhood U, U,, where U, and U, are neigh-
borhoods of # and y respectively and lie in W. There are points o’ U,
and y' e U, where ', y’ e D,. Thus Dj is dense in W2 Furthermore, D? < W2
and Dj is countable. By induction W™ contains the countable dense set
D} and hence

S=U W
n=1
contains the countable dense set
-l
D= D}
n=1

For any x¢S, #S is an open neighborhood of any of its points and
hence & ~ D # @. S satisfies (d).

Condition (2) of Theorem B (see Definition ¥) implies that 7', =
=TT, = T,T, = Ty, along with E.(1)B,(v) = B, () E,(2) for allz, yeS
and real numbers 1, » where {¥,(1)} is the canonical resolution of the
identity for T, ([12], p. 134). In his proof of Theorem B Nussbaum in-
troduces a family of projection operators {H,} on # where each o is
a certain clopen set in the space .# of all maximal ideals in the closure
(strong operator topology) of the set of all complex polynomials in

{By(1); 2e©, —oc0 < 4 < oo}

{T'.E,} is a semi-group of bounded self-adjoint operators on +# ([12],
p. 136, Th. 5, proof; see also p. 137, Th. 6, proof). In place of condition
(2) and Tpy = T, Ty = T, Tr = Ty, he actually needs and uses throughout

2" (I:B)(TyB,) = ToyBe = T B, = (TyB,) (ToEo)
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and
2" By () By(v) = By (»)Bx(2).

But (2') is implied by (2"). (2"') also implies [T, T)] = Tpy =T, =
= [T,T,], where [ ] signifies closure; this follows from the 2-parameter
integral representations of T, and T),.

Furthermore in place of the weak continuity condition of Theorem
B one can use the condition
(3" (T B,y | v) is continuous in o for all ypes.

In this connection the following result will be required. We quote
only part of the theorem. ,

LemmA C (Devinatz and Nussbaum [8], p. 229, Cor 2.) Let & be
an open semi-group in a locally compact group ¥ and let e<[S]. If {T,;
2eG} is a weakly measurable semi-group of self-adjoint operators on a Hil-
bert space , then |T,0| is locally bounded for every Oe (M) {O(Ty); eS).
If each operator Ty, is bounded, then (Tl is locally bounded.

We apply this lemma below to {LH,; #eS} in place of {T,}.

‘When (2') holds, then for the class of sets ¢ needed in the proof of
Theorem B, condition (3') iz implied by condition
(3"") For each ypei# there existy a sequence {hw} such that h,,—»y

in norm and (Ty&|h,) is continuous in # for every h, and all & in
M {H(Tw); S}
For, since #(T.B,) = +# by (2') ([12], p. 136, Th. 5, proof; see also
p. 137, Th. 6, proof), let 6 # and take & = F,0. Thus (T,H,0 | hy)
is continuous in # and hence (T,X,0|v) is measurable in x. (T, B, is
weakly measurable. In fact so is T),.) Select any v «S. | T, K, 6]| is bounded
in a compact neighborhood C of y by a number M = M(6, C)>0
(Lemma O)
(T2B,0 | p)— (T, B, 6 | )|
S |(LoBo0 | 9)— (Lo B8 | in)| + |(To B, 0 | hy) — (T By 0 | om)| +
+(TyBob | hm) —(Ty B, 6 | )|
AT Bo 01l + Ty B 61} Il — ol +- (T2 B 0 | o) — (Ty B | )|
S 2M - fhn— 9l + [ (T2 Bo 8 | Tip) — (Ty B, 6] ) |
Given & > 0, select h,, 80 that ||h,—y|| < ¢/(3M) and hold it fixed.
Then choose a meighborhood 0, of y, ¢, < ¢, such that

(LB, 0] hm)— (T, B,0lhn)| <ef3 it @eC;.

Therefore
|(ToB,619)— (T, B, 0lp)| <e i

That is, {T.H,} is weakly continuous in .

wel,. '
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Hence Theorem B is valid when (1), (2"), (3”) and (a), (b), (¢), (d)
are satisfied. .

We could have made matters easier for ourselves by supplanting (3")
with condition
8"y {T'.E,} is weakly measurable. (This is implied by (3").) # is

separable.

For, (3') is implied by (3"") also. (See [8], Th. 4, p. 229. The proof
of this theorem depends on Lemma C.)

ii. Next consider a real-valued function f defined on a semi-
group S. If

m

@) D) oaf(mm) >0

1,k=1
for all finite sets {@;j =1,..., m} of complex numbers and all sets
{w;3§ =1,...,m} =8, then it is clear that
(i) f(y2) =f(zy) dor all

For take m =2 and set ay =1,¢e, =14, @, =y, %, =2 Then (i)
becomes

Y, ze8.

F@—if(y2)+if () +(%) =2 0

which implies that 4[f(y2)—f(2y)] is real, hence f(yz)—f(2y) = 0.
On the other hand, if

(i) Z ajorf (o ay) > 0

7 k=1

for all finite sets {a;;j =1,..., m} of complex numbers and all sets
{#:;5=1,...,m} =8 and all w8, then with the same substitutions
and reasoning as before

iv) f(wyz) = f(aey)

Congider next f(w, ... @,) for a finite set {z;;§ =1, ..., n} = 8. Now
(iv) in turn implies

v) Fll@y. . @112 [pga . #0]) = F([@1e 0 Bl [Brga e Tn] @)

for all 2, v,ze8.

for m, any one of the factors except #,. Thus f(w;...x,) i8 unchanged in
value under the shift to the last position of any factor other than the
first. Since any rearrangement of the order of the factors other than the
first can be accomplished by a finite number of shifts to and from the
last position, f is unchanged under such a rearrangement.

(ii) implies

(vi) f(@1[@s...2a]) = [([2. .- 2a]1)

Studia Mathematica XXVII, 2 8
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so that f is unchanged by a shift of the first factor to the last position,
leaving the order of the other factors undisturbed.

Thus (ii) and (iv) together (hence (i) and (iii) together) imply that f
is unchanged by a shift of any factor to the last position, hence under
any rearrangement of the factors.

It is interesting to observe that, if § is a cone in a Lie group, then (i)
and (iv) together imply (iii). For # can be expressed in the form

@ = expX;-expX,... exp Xy = §1¥1¥2¥: - .- YzYL

where we have get y; = exp(1/2) X;.

m m
D warf(omm) = D qaf(y:9s - Yryroo)
1yk=1 7,k=1
m
= & aef ([Y1 oo Yoy [¥ - Yrar]) > 0.
7 k=1

Note that, if § contains an identity e, then (iii) implies (i) since the
substitution of # = ¢ into (iii) yields. (i).

ili. The following definition and theorems contain the essential
properties on reproducing spaces needed in this paper.

DerFINITION G. A function K(x,y), real or complex, defined on
a s_et EXxH, is a reproducing kernel for a Hilbert space & of functions
defined on B if (g| K(-, y)) = g(y) for every ge# and any y<B. (Note
that K (-, y)eF for each yeM.)

THEOREM D (Moore-Aronszajn [1], Th. 2, p. 143). A function K (@, ¥),
real or complex, defined on a set B X E, is a reproducing kernel for o Hilbert
space F of functions defined on B if and only if

m

2 oy a5, K (@, m) 2 0

f k=1

Jor every finite set {a;5j5 =1, ..., m} of complew numbers and every finite
set {w;;5 =1,...,m} < B The class &F, if it ewists, is unique.
TemoREM E (Aronszajn [2], p. 351). If K(x,y), defined on a set
EXE, is the reproducing kernel of the Hilbert space % of functions defined
on B with norm |fll, then K,(x,y), the restriction of K (z,y) to B, x B, <
S EXE where By c R, is the reproducing kernel of the Hilbert space &,
of all restrictions of functions of F to the subset B,. For any such restriction

JieFy the norm |f:l, is the minimum of |[f|] for all feF whose restriction
to B, is f,.

icm
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ILemmA F (see Devinatz [5], Lemma 2, p. 459.) Suppose f(z) s

defined on the imterval 0 < x < o such that

) ayouf (@) >0

1, k=1
for all finite sets {a;;§ =1, ..., m} of comples numbers and all sets {a;;
j=1,...,m} 0 < < a/2. Then there exists an analytic function F(2)
defined in the strip 0 < # = Rez < a which coincides with f(z) on 0 < < a
and such that

Z oo Flz+7) =0
1. k=1
for all sets {35 =1, ..., m} of complex numbers and all sets {2;;j =1, ...,
.ery m}, 0 < Rez; < af2.
The interval may be 0 <& < co. This lemma applies also to fune-
tions defined with the appropriate properties on N-dimensional intervals.

3. Lemma on analytic vectors. Nelson [11] has given the following
definition and lemma.

DermnerioN H ([11], p. 572). Let B be an operator acting in a Banach
space #. An element ¢ in Z is an analytic vector for B if geM) {ﬂ(Bk);
k=1,2,...} and

Zﬂ€ﬂ¥<w
k=0

LevmA G ([11], Lemma 5.1, p. 583). Let B be a closed symmetric
operator acting in a Hilbert space #. Then B is self-adjoint if and only
if it has a dense set of analytic vectors.

We shall give a somewhat simpler proof of the sufficiency of Nel-
son’s lemma in the form given below. (The necessity is trivial.) Absolute,
strong, and weak convergence of Z‘(Bkg) s%/(k!) are all equivalent in %,
the only difficult proof being that of ‘weak’ = ‘gtrong’. However for
our purposes an easy Hilbert space computation, given at the start of
the demonstration of the lemma, will suffice.

Teyya 1. Let B be a closed symmetric operator acting in a Hilbert
space . Suppose there exists a dense set ¥ < o such that ged implies that
ge( {#(B";k=1,2,...} and that

for some s> 0.

00

D (Brg | m)s*(k)

k=0
converges for all he # and each s in some interval |8] < 7g, 7, > 0. (74 8
independent of h.) Then B is self-adjoint.
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Proof. i. Fix ged and select ¢ > 0. By Cauchy diagonalization

M M
Btg | af - |2
Pl - Swrenihie S S w0t
k=N i k=N =N J+k=n
- S <
n=2N

for M, N > my(e, g,2) and for |¢] < 47, =1

Therefore
N

D (Bbg) (k)

k=

q:

converges strongly to an element @ (2) in s, hence weakly to this element.
On account of the absolute convergence just shown a useful expres-
sion for [|¢(2)|| may be found by the diagonal method. Specifically |G ()|

is the limit as N — co of
e
BN
I le= L

H (B g
N
2 B’B"glg)—,f, 2 2 BjBkgIg)—‘—%-‘—

4.k=0 n=0 j+k=n
N ARl _ (@lel)”
2
< O St - 3 w9128 <
n=N+1 J+k=n n=N+1 *

for N > (s, g,2) and |2| < §r, = r. Hence

%Bkg P y . S5
G (2)|]2 = 1i -2 =1

@ =lim | }ZES = tim 3 Y BB 0

k=0 n=0 J+k=n
z+z) ) (2Rez)
—20‘ (Bgl9 == D (B9
Ne= n=0
for 2] < 7.

In particular set z = it, ¢ real and ¢ = 1/ —1). Then Rez =0 and
only the first term in the la,st sum is not zero. Hence ||G(it)|2 = ||g||* for
[t] < r.

ii. Set

Utyg = D, (B*g)-(it)"(k!) = &(dt)

Mz

k:

[
o

icm®
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for ¢ real or complex. U(t)g = G(it) is both the strong and the weak

limit of
N

D (B*g)- (it)*[(k!)

=0
for ¢ real or complex, [tf| <r. Also
(3.1) 1T gll = llgll for ¢ real, [ <.

Since

D) (B g | h)-(it)*/(k?)

k=

=3

converges for |t| <7, for each hes#, it may be differentiated term-by-
term there:

d 0
7 TDg1H) = 3 (B g | Mtk —1)!
k=1

zi(BkBg]h)i(it)k/(k!)=i(U(t)Bg|h) for i <.

k=0

Therefore U (t)Bg-¢ is the weak derivative of U(f)g. Actually

D) (B*Bg)i(ity*|(k!)
fi=0
converges weakly for |t| < r, and, as before, strongly for [¢| <r. The
mere existence of
N N
U(t)Bg =lm Y (B*Bg)-(it)*/(k!) = LmB D' (B*g)- (it)*/(k!)
k=0

k=0

a8 N — oo and of .
Ult)g =lim > (B*g)-(it)*/(k!)
k=0

shows on account of the closure of B that BU(f)g exists and BU(t)g
= U(t)Bg for lt| <r; U(t)g «}(B).

Repeat the argnment, taking the weak derivative of U(t)Bg. Briefly
B2U(t)g = BU(t)Bg = U(#)B% and of course U(t)ged(B?) for [f<r.

By induction U (t)ge#(B™ and B"U(t)g = U(t)B"g for every posi-
tive integer » and for  real or complex, |f| < 7. Thus (3.1) holds also
for

4
) (Bg)-(ix)"/()

i=p

in place of g. Here % is real ([t| < #) and 7 is real or complex (|z] < 7).
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iii. Given £ > 0. There is an N > 0 such that

ZBk Ut Z )

k=1
Bkg "~

k=D

<e for p,g>N

and t, real (l{,| <), real or complex (¢ < 7).
Therefore

D B U ) g+ (i)' (k1)

k=0

converges strongly (and weakly) in [{| <<» for each real #, satisfying
[t} < r and hence = U (%) U(t)g. Thus U2(t,)g is well defined for real
toy Jt| < 7. By induction, U"(%)g¢ is well defined for real #,, [t,| < 7, and
for any positive integer n. Also (3.1) holds for U™ (i)g in place of g:

NT*@) gl = U "()g|| for ¢t real, [t < 7.

Note that first it was necessary to reduce the range from |¢| < ¢
to |i| < 47, = in order to obtain strong convergence of

2 BEg) - (it)*](k!)
k=0
from its weak convergence. But the strong convergence of
ZBk U™(t) g- (36)" /(%)
k=0

for each n > 1 is already present without further reduction of the range.

iv. Let. hed(B*) such that B*h = ih. (B*"h = i"h. We have
(Tig 15 = (—:h) (i) = 2(9

B**p,
)
k=0 :

—Z 1 m=2 m)Zk,

=0 F=0

)

= (g |h)e for [t} <r, t real or complex.

This result holds for U"~'(t,)g in place of ¢ with i, as above.
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Let s be any real number. There is a positive integer » such that
ls/n} <1,

o) = (o) ) = [ )= = . = omer

Also

(o))

Combining these two results, we have

lgim)e® < ligh-IBl  or  |(g1m)] < llgll-IIA]l-e~°.

Let s = oco. (g | h) = 0 for all ged, a dense set in #. Thus » = 0.

Similarly for hed(B*) such that B*h = —¢h. Therefore the defi-
ciency index of B is (0, 0) and B is self-adjoint.

The technique of the last part (iv) of the proof is analogous to that
used earlier by Devinatz [6], p. 188, in a special situation.

- QH' lInl] =

o (%)g ” N p—

4. Proof of Theorem 1. The demonstration will run its course
through at most a finite number of stages, some of which will be labelled
formally as lemmas. The nature of the proof is similar in part to that
used by Devinatz in [6]. (1) and (2) will refer to the items so numbered
in the statement of Theorem 1.

i. Translate of f. Reproducing Hilbert space. By continuity of f, (1)
holds for {m;;j =1,...,m} = S u {e}, but with #¢S only. Select any
element ve¢S and define f, by

(3) Folw) = f(v).

f, i8 certainly defined and continuous on & v V,, where V, is some
open neighborhood of ¢ such that vV, < ©. Furthermore

(4) 2 @t (o) = Z & f (vt ) >

i, k=1

for all sets {a;;j =1,..., m} of complex numbers and all sets {z;
j=1,...,m}= S o {e} and also xS U {e}.
In particular, with = = e, (4) becomes
m .
(5) 12 o Gy (2124) > 0
=1

By means of (5) form the reproducing Hilbert space of functions
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defined on & u {e} with kernel f,(zy). Let #’ be the pre-Hilbert space
of all functions ¢ of the form given by

9@ = D afy(a0)
7=1

where {oy;j =1,...,m} is again any set of complex numbers,
{#;;§ =1,...,m} any set of elements in & u {¢}, and ¢S U {e}. It

h(@) = D Bufol@ms),

k=1

define an inner product on F'X &' by

(10 =D Y aBufolyuas) = D ) oz Bufoltiyn).
i=1 k=1 7=1 k=1

The inner product is independent of the particular representations
of g and k. The reproducing property of f, is expressed by

@150y = 12 aifo(yz;) = g(y)-

A pseudo-norm is given by

loll* = (g 19) = D wyonfolasme) > 0.
Since =

lg@) = (g 1fo(- )| < llgl-Iful-9,

llg]l = 0 implies g = 0 and hence the pseudo-norm is actually a norm.
If {gn;n =1,2,...} forms a Cauchy sequence, then

190 (Y) — g ()] < |Ign~ Gl 1fo C ]

s]_Jows that {g.(y);n =1,2,...} is a point-wise Cauchy sequence. But,
ginee [|Ify(-9)l* = fo(y?) is bounded on any compact set, {g,(¥);n =1,
2,...} is a uniform Cauchy sequence on such a set, hence it converges
uniformly there to a continuous function g(y). Thus &% can be completed
to a Hilbert space & by means of econtinuous functions. The reproducing
property of f, also extends to #:

(g 1£:0-9) = g9(w)

lf‘or details cqneerning the uniqueness of (g | ) in #’, the completion
of #' and extension of (g|h) and |lg|| to #, see [1;2].

for all geF,ye® U {e}.

icm

It should be pointed out that functions of type

m

Zaffu( @),

Fam1

foy;§=1,...,m} 6,

are dense in & [so that & must be the completion of the set of such
functions].

ii. Analyticity. Let N be the dimension of ¥.

LEMMA 2. There are N linearly independent elements Xy of the Lie
algebra such that {expXy;k=1,...,N} = &.

Proof. Consider a canonical chart ([4], p. 109-110) at ¢ in ¢ with
coordinates vy, ..., vy in BY mapping an open neighborhood U of ¢ in &
homeomorphically onto an open mneighborhood «# of 0 in . U~S
is an open set whose image /4" in E¥ ig then also open. Henee 4" contains
an N-dimensional sphere. Thus we can find N linearly independent
points (vectors) {px; k¥ =1,..., N} in #". These determine a new system
of coordinates {ux; k = 1, ..., N} related to the old system {ve; % =1, ...,
..., N} by a non-singular linear transformation. If

N
exp (Zv,‘z,,) © (015 .y ),

k=1

where the Z;’s are linearly independent elements of the Lie algebra,
N

then substituting in 3 vxZ; for o,’s in ferms of w's and rearranging
2. k=1
gives

N
exp(z ukYk) > (Ugy ooy Un),y

k=1

a new canonical chart, the ¥,’s being linear combinations of the Zys.
I pg =(0,...,0,%,0,...,0) in the new system, then by setting
X, =ulY, we have N linearly independent X’s with {expXy;
k=1,...,N} in U~ S. (Alternately, if pp = (vF,...,0%) in the old
N
system, then setting X; = ) vZ%; yields our result.)
f=1

Lzmma 3. Every function geF is analytic on ©.

Proof. Let {X;;j =1,..., N} be as in the preceding lemma. There
is a homeomorphism (chart) between an open neighborhood U of ein ¥
and an open neighborhood {(t;, ..., t); all [t < a;, a; > 0} of 0 in By

1
such that U, consists of all elements [] exp(#X;) for || < ;. (See [4],
p- 110.) =y
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Fix y,e©. There is an open neighborhood U, of ¢, U, < U, such

that %, U, < &; ie., there is an a,, 0 < a, < ¢;, such that
1
Yo' ”exp(t,Xj)eé
i=N

for || < @,. (Note order of appearance of factors in the product.)
Select fixed {t};j =1,..., N} with 0 < # < a,. Then
1 N
=y [[exp(~4X)c@ and o =z [[exp(§X).
j=N j=1
Now for each j, exp(t;X;) lies in a 1-parameter subgroup for every

real t{. It 4> 0,4 = n(j)4-a, where 0 < a; <1 and n(j) is some non-
negative integer. Hence

exp(; X;) = {exp X,;}"Pexp(a; X;)eS for all #> 0.

The reproducing kernel for the space & is K (z, y) = f,(xy) on BxX B
PG Lot »Y) = folay) X 4,

N
B, = {zo-nexptiX,-; = 0} =
j=1

and consider the restriction K,(#,y) of K(z,y) to By xB,. Let #, be

the reproducing space corresponding to K, (x,y). Consider any function
geF. Its restriction to B, namely

N
91z, =9 [ [expt; X)),

=1
is an element of #; (Theorem E).

Set .
Flegstyy ooy tw) = fo(3- [ [ expty X,)
Jm=1
for all # > 0. With obvious substitutions

N N
Ei(@,y) = K (2, 9)|mxm, = K(o* [ | expt; Xy, 2 [ [exps; X))

§=1 =1

N N N

= folen: [Jexpt ;-2 [ Jexpy X)) = fy(ei- [T oxp s+ 5) X)
= F=1 el

= F(2; H+ 81, .y byt 8n).

. There is a fune!;ion F (7 ...,7y) of the complex variables {z;;;

= R, o, N3, _a,na.lytm for ?,]l i = Ret; > 0, whose restriction to ¢

= Rez; >0 is the function F(ey;ty,...,0). F(v,4a,..., y+ow)

is the reproducing kernel of a Hilbert space & , for Rer; >0, Reog; >0

icm
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(Lemama F, Theorem D). All members of the linear manifold generated
from F(v,401, ..., Ty-+0x) by treating (z,, ..., 7y) a8 the indeterminate
and selecting sets of values of (oy, ..., oy) are analytic in the N-dimen-
sional half-plane t; = Ret; > 0. Hence every element of &#, as a limit of
such members, uniformly in any compact subset, is analytic for # > 0.
The Taylor series expansion for any @(7y, ..., Ty)eF, about the point
@, ..., ) is valid for |5—u#| <%

K.(z,y) is the reproducing kernel for the class &, of all restrictions
of functions of &, to B, (Theorem E). But by the uniqueness of the re-
producing space corresponding to K,(z,y) (Theorem D) #, = &F,; that

is, .
g(z- ﬂ expt; X;)
=1

is the restriction of some G(7, ..., ) to real variables #; > 0. Therefore
N
oo [] ox01.)
=1
equals its Taylor series expansion about (i, ...,tx) for [t;—1] < i35 or
N
g(a [Jexp(8+11X))

el

equals its Taylor series expansion about the origin for |4 < 13-
The proof of Lemma 3 has been completed. Note that a gimilar result
is obtained for

N
g(o [ ] expty %)

F=1

under the further restriction that all > 0 since in such a case
N N N

g(ew [ ] expt X;- [ ] expty X;) = g (20 [ [explti+ 41%;).
7=1 j=1 j=1

However later (part vi) we shall need the Taylor series represen-
tation for

N
g(vo- [] exvt,.X;)
7=1

without this additional restriction. For this purpose we now consider
two charts at y,. The first chart maps an open neighborhood U, of points

N
{a [[exp @ +1) X}

a1


GUEST


124 S. Lachterman

in & onto an open neighborhood {(,...,%y); all |t < as, az > 0} in
BEY. What has already been shown is that there is an o', 0 < o' < gy,
such that

N
g (e [[explf+417))
j=1

equals its Taylor series expansion about the origin for || < o’. The
second chart maps an open neighborhood U, of points

N
{wo [] exvts X}
F=1
in & onto an open neighborhood {(3, ..., ty); all [t}| < a4, a, > 0} in B,
Since these two charts at y, are analytically related, there is an a,

0< a < a4, such that
N

' g{ve [] expt, %)
7=1
equals its Taylor series expansion about the origin for |;| < a. The proof
shows that a« = a(y,) depends on y, and {tj;j =1, ..., N} but not on g.
For any y,¢® obviously these results apply to

N
9(voys- [ ] expty X))
I=1
for an a(y,¥,) depending on y, as well as y,. However for later purposes
let us eliminate this dependence on ¥, at least for #; = 0. Note that

N
Y1Yo = Y12y HexP(t;’XI)
i=1
for the same 2, and {#};j =1, ..., N} as before. These depend only on
Y. The charts at g, are now translated to charts at Y1Y,; that is, they
are mappings of neighborhoods of y,y, onto the game neighborhoods in
EBY as formerly for neighborhoods of y,. Thus we have the same q,, a,,
@3, @'y 0y, a a8 before and they all depend on y, only, not on y,. Hence

N
9(vsyo [ exvty X;)

f=1

equals ity Taylor series expansion about the origin for 4l < a = a(y,).
Now for all # >0 we have

N N
9(yae [ ] expt,X) = g (o3 [ ] exp ;).

J=1 Frml

icm®
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Therefore
N
9(woys- [T expt, X))
F=1

equals its Taylor series expansion with respect to the origin for 0 <t
< a = a(y,), a(y,) being independent of ¥,.
Note that we could restrict %, in the proof of Lemma 3 to

N
By = e [ [ expt;Xp50 <ty <9}
7=1

where 2y >t} without altering our essential result. The values of a,,
o'y a4y @ might be changed.
Similar results hold for

N
g{{[ ] expt; X} -va)-

f=1
iii. The derivative operator. Let X be an element of the Lie algebra
such that ¢X¢S. For any ge% we have just seen that Xg(w) =
= (@/dt) g (we™) |s_, exists for all z<S. Since f,(zy) = f,(y») for all z,y<S
implies g(xe’*) = g(éXx) for ¢S and t > 0, denoting right derivatives

by means of t = 0, we have

d . x
= —g(xe
» dty( )

a
— Z0(%a)

d ix
— g (e
dt g(@e™) im0+ im0+ df

To complete the picture there remains only the question of what
happens at . Here we call Xg(e) the right derivative (d/dt)g(e ) li_os
if it exists. If there is an he# such that h(zx) = Xg(z) for every z¢S,
then Xg(e) exists and = h(e) by continuity of the functions in &.

Define the operator 4 by Ag = Xg with domain #(4) all ge# such
that Xge# also. (Occasionally we write Ag(z) for (Ag)(=)).

In the next several sections we examine various properties of A4,
the aim being to show that 4 is self-adjoint.

iv. A is densely defined. For any e > 0 let k(t) = k.(t) = 0 be a real
function with derivatives of all orders on (—oo, co), vanishing together
with all its derivatives outside the interval (—e, &), and such that

[r(@d =1.
For each 2O there is a f(z)> 0 such that €S for 1> —B(=).
For a fixed set {;;7 =1,...,m} =G let g =min{f(a);1 <j<m}
That is, {z;35=1,...,m} = © for t> —§.
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For 0 < ¢ < p define g, (depending on {w;;§ =1,...,m} = &) by

(6) (@) = [0 ) osfolwe™a)at,

=1

where {a;;j =1, ..., m} is a set of complex numbers, 2eS U {€}. g,eF
by the continuity of the integrand in the topology of #.
For s satisfying s—e > —f

4x
go(@0™) — g, (2) Folwe®HH% fv we' 901)
k(1)
- [
= fk(t)Zoq»d—f (e at
o et du v ‘u=t+08
8 m
N Z fowdZa)dt as s—>0
_s T=1

= f —k’(t)wa.,(me‘Xw»dt
J=1

Here the mean value theorem (0 < 6 < 1) was applied; the limit
procedure is based on the uniform convergence of the integrand resulting
from the uniform continuity of the derivative, k(¢) being bounded.

Note that actually ¢, is defined in a neighborhood of ¢ and its two-
sided derivative exists at & = e also.

Now
f—k Za,f X o) dit

=

belongs to &#. Therefore g,¢9(4) and

L3 m
Q) Ag, = [—¥ () D) asfo(-6Fay)dt
8 je=1
Ay e—0,
at 1=0,

k(1) — )
0  elsewhere,

in such a faghion that

[ To(t)fo (@y6 i) @t > fo(ay )

icm
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and

g &

[ Je@k@f (=2 X2 dtdr ~ f, (a,).

— —&

(Note In any neighborhood of x;z; there are always points of type
eZ ;6% 3; by the continuity of multiplication in %.)

—2%(-@)“2

Zalaf(fkt)fu( 0 di—fy (- @)

i,J=1

JE@f (e Fa)dr—f, ().

The inner product on the right side is

f f E(8) T (2)fp (6% a; €% my) A dr 4, (o0 ) — f E()fo (6T m;) dt—

—2 —e

— flc(r)f,,(e’xwiwi)dr 0.

Therefore
9= D afs(-my)
7=1

in the topology of &. Since functions of type

m
Za'ifv(‘mi): {35 =1,...,m}c &,
=1
are dense in &, so are functions of type g, given by (6). Therefore 4#(A4)
is dense in & and 4* exists.

v. Closure of A, symmetry of A*. If in & we have a sequence g, —> ¢
and Ag, —h a8 m — co (hence Ag,,(v) - h(z) uniformly on a compact
set), then Ag(x) = h(z), or Ag = h ([10], Th. 4, p. 342).

Therefore A is closed. 4 = A**; A* is densely defined.

Next let g be any element in ﬁ(A*) Let z¢© and choose ¢ 0 <&
< B(2), and k(t) = k.(t) as before. We get

(A*gI fk(t)f,,(-e‘xz)dt) = (g’A fk(t)f,,(-e‘xz)dt)

(o] [—w@s(-Tna) = f — k() (glf(-6F2))dt

—E

I

= f—k'(t (€Xz)dt = f k(t X2 dt.
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Let ¢ - 0;
(4%g)(2)

for all 2¢®.

Since a priori A*ge, g is in #(4),
A* is symmetric.

vi. A4 is self-adjoint. Let g, be given as in (6). The class of functions
of this type is dense in # as was noted before. We use induction to show
that

a
= (A*NIfo(-2)) = d—sy(e’xz)le.,o = Xg(2)

A*g = Ag. Hence A™ < 4 and

gee N (#(4™);p =1,2,...}.

Suppose g, e} (A*?) for any p > 0. Then

A*Pg, = APg, = f(

—1PP k(1) 3 afo(- 6% ay) dt
f=1

by repeated application of (7). Let yed(4).

(Ap|d*g,) = (Ay|4%g,) = f 1P EP() D) (Aylfy(-eay)) dt
f=1
= [(=1PE9®) 3% (Av) (@ Fa)di = [ (~LPT R 3G p(e e dt
—8 i=1 —8 J=1
= f (=L EE (1) 3o (plf( - ¢ F )@ = (47 g,)
—8 J=1

Therefore A*’g,e9(4*), or g,ed(A*T).
Now take any he#. Let s be such that s—e > —f. We have

E(A:!gs h) & fZaf 2 1)”79(10) Pl )
=0 e j=1
fi’ Z pkm ) (o)t = 204 fk t)zd—ﬁﬂ Xy dt
—& f=1 p=0 —&
a8 pr“’ fk dtp

for |s| < a for some a independent of % (part ii) with 0 < a < f—e¢, bY
the analyticity of %, provided e is sufficiently small; and this last member
incidentally

f I( t)z R (6% g dt =

=1

SP
j)z—ﬁ dt

f k(e 2 (Fo(- e+ % my) ) dt = (g, (- ¢ F)I1).

icm
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The limit process above is justified by the uniform convergence of
the integrand which is seen as follows. Select a, 0 < 4a < B, such that
its Taylor series is a valid representation for each %(e¥w;),j =1,...,m,
in |f| < 4a. There is a function Hy(z), analytic in the cirele |z| < 4a, which
reduces to k(é¥a;) for v =1 (real). Let M = M(3a, H;) = max |H;(7)]
on the circle |7] < 3a. Take 0 < & < a. For each real ¢ in || < ¢ apply
Cauchy’s inequality to the circle C; with center at the point (¢, 0) and
radius 2a. We get

(@/asy’h(eFa)|-1s[(p!) < M-|sf/(20)° < M-(1/2)" for |s] <a

Then the geries in the integrand converges uniformly for [¢| <e
and for |s| < a. Thus

D (47, m)s[(p 1)
D=0
converges for all he# and each s in |s| < ¢ where o depends on {z;;
j=1,...,m} but not on k, while 0 <¢ <a.
Apply Lemma 1 with B = A*. A* is self-adjoint. A*
Hence A4 is self-adjoint.
vii. The exponential (or translation) operator. Let E be the spectral
resolution of the identity for 4. Define

=A™ = 4.

oo
(8) T(X) or ¢4 = fe“dE(l) for —oo <t< oo.
Let g,e9(4) for which there is a number ¢, 0 < ¢ < oo, such that
Ag. = [1dB(2)g.
—C

(B.g., set 4
e (B(4

={A; —e<A<el = {461 <™ <) and take
) & =range.) g (To(X)) and

fzﬁodﬁ)(a
_Z flpdE'(l)gc —2-A”gc

p=0

Ty(X)g, = f dB (2

Pick any v,¢S. Since ¢, is analytic, there is an o = a(y,) (independent
of g,) such that .

<« 1 ® .
X o) = D) A0 = D) 25 6306 Voo

P=0 Pp=0

= g,,(y,,e‘x) for i <a.

Studia Mathematica XXVII, 2 9
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Also, if y,¢© U {e}, then for the same a = a(y,) (independent of
y, — see part ii)
Ti(X)9e(9oy1) = 9o (9oy26™)  for 0
Now T,(X), as well as 4, is the closure of its restriction to the clagg
of such g,. Therefore
9) Ti(X)g(yo) = g(yoe'™)  for
To(X)g(Woys) = 9(Hy16™) for 0
for all ged(Ty(X)).
viil. Study of domain of Ty(X
and
(10)

<t<a.

It < a,
<t<a

). Tt turns out that f,(-gyyy)ed (T,(X))

X) fol* You1) =fu('f‘/oy16tx) for 0

For, let {#;; k =1,2,..
subspaces such that

LKt< a.

.} be a sequence of mutually orthogonal

F = 2 DAy,
=t

and such that each .4 reduces 7,(X
Tk,t(.X). Let fk
each gest),

) to a bounded self-adjoint operator
(", %0y,) be the projection of f,(-y,y:) on ;. Then for

(915 Yo y26%) = (glfo( Yo 926%)) = g (5 y16™)
= Tu(X)g(%¥y1) = T X)gWY1) = (Tr,e(X) glfo(Yoy1)
= (Tr (XD glfe ("5 You2)) = (91 Tre(X)fil -, Yo¥1))

t << a. Therefore Ty (X)fe(, ¥y1) = fu(-, ynyle”x) and

Z”Tkt(xfk (s %oyl ‘Z(fk ( %oy ¢

k=1 k=1

for 0 <

N Fel-5 %oy €%))
= kZ:(fk(-, o916 (- Yoys )

= Zfla (f’/o?hetx

k=1

s Yo 6%) = fo1¥16 40y, 6%) < oo.

Thus, for 0 <1 < q,

100 TuUD)fol-go¥) = D Tuo(X)fil -5 %033)

k=1

(Similarly T(X)f,( “Yo) = fu(- yoe

= fol %oy 6%).

) for |t] < a.)
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ix. The translation operator T(X). Let M = [1/a]+1 (so that M is
the least integer > 1/a) and let v = 1/M. Hence 0 < 7 < a.

(X) = [{T.(X)}¥), the closure of the M-fold product of the same

factors T,(X). If M =1, set y, = ¢ and ¢t =1 in (10). If M > 1, then

To(X)fo(-¥0) = (T (XM ¥o) = (Tl X o (~¥06™)
= {T (D) fo(-406*) = ... = T(X)fo( -y V%)
= (fo - %6™™) = fol(-4,6")

where (10) has been applied suceessively with y, = e, 6%, ..., M-V,
Set T'(X) = T,(X). Then
(11) T(X)fo(-y) =fol-ys™) for any yeS.

But fo(-yy:) —fo(-ey.) strongly as y —e, 3¢S, y,¢S v {¢}. Since
T(X) is closed, (11) holds for any yeS o {e}.

x. Permutability of expomential operators corresponding to different
elements of the ILie algebra. Suppose that X, and X, are any elements
of the Lie algebra such that exp X, expX,,¢S. Consider the correspon-
ding self-adjoint operators 4, and 4,,, and their spectral resolutions
E, and E,,. Let «, and a,, depending on y, only, have the same meaning
a8 assigned to a(y,) earlier. Finally consider T;(X,) and T:(X,) for
0Kt <oy, 0 <8 <opy:

Ty( X)) Te(Xm) fo* Yo) = Te(Xn)fo( yoxpsXy)
where (10) has been applied suceessively with y, =e, expsX,. Also
To(Xn) Te( X ) fo(%o) = fo(-%o0XDtX, XD Xon) = ful - YoeXPpsXpexpiXy).

= fo( Yoexps X, exptX,),

Hence
T( X)) T,

For any gsﬁ(Ts(Xm))

f & d(B

Xn)fo(Y0) = To(Xm) Te( Xn) ol o).

B, (%) T (Xon)fo (- 0)lg)

= (To(Xn) Ts (X fo - Yo)lg) =
=(Tt( Xo)fo(+40)| Te(Xm)g)

= fe‘”d

Since ¢ ranges over the interval (0, a,) for each s,

(To (X fo (- Yo)Bn (2)9) = (Bn(») Ta(Xm)fo(¥0)l9)

= (En("’)fv( Yo)| Te( X,

(To(Zom) T X ) fo (- 90)] 9)

(9o (Yo Ts(Xm) 9)

m)4)
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by uniqueness of measure for Laplace-Stieltjes integrals ([15], p. 243,
Th. 6a). Further

[ (B (%) B (Dfo(-30)1g) =

00

[ (B (D, (-90)| Ba (%))

= [SUB (9 En()g) = [ ¢ 8B (1) B (3)fo (- yo)lg).

Therefore
(B (?) B (o (-90)19) = (B (2) Bn(»)fo (- 50)lg)
again by uniqueness of measure since s ranges over the interval (0, a,,).

Since #(T: (X)) is dense in &, the last equality holds for all geF and
hence

By (v) B (D)o (+y) = B () By (v) ()
for any y<®. Finally, since the linear manifold generated by {fo('y);y
varying over &} is dense in &,
Bo(3) B (1) = B () B ().

A{E,(v)E,(4)} is thus an orthogonal spectral measure. Consider
any finite set X, ..., X; of elements of the Lie algebra with all exp X, e S,
By induction

LB () By(h) ... By (As)} = A{[By(A)... By, (s 1)1 Es (A1)}

is an orthogonal spectral measure and indeed the E’s may be rearranged
in any order. (Apply consecutive pair-wise interchanges or let the induc-
tion hypothesis be that this result is true for a product of any j—1 of
the Bs, 3 <j <J.)

Thus the closure of T'(X,)7(X,)...T(X,) is a self-adjoint operator.
(This is & known result in Hilbert space theory.)

xi. New translation operator T,. Every u<S can be expressed in
at least one way as a product of the form

J
% = nexpxj

where the X;'s need not all be distinet, all exp X;¢©. Define a new ope-
rator Ty, = [T(X,)...T(X,)], where [ ] means closure:
Tufo(y) = T(Xy)...D{X7)fo(-9)

=T(Xy)... T(Xs)fo(yexpXy) = ... = f,(y [ [ exp X))
F=J

J
=fv(-yﬂeXpX1) = fo(-yu)

icm
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fory«S o {e}, where (11) has been applied successively withy, yexp X, Ty oeney
2
y []exp X; taking the role of y. Defining T, = I, the identity operator,
F=J
we have

(12) Tufo(y) = fo(-yu)  for

(12) shows that T\, is uniquely defined on the linear manifold gene-
rated by {f,(*%); ¥ «S u {e}} irrespective of the particular product repre-
sentation of «. Let us suppose that T, and T, arise from different repre-

sentations

ue@ U {e},y¢S o {e}.

J 4
% == Hepr,- and u = n exp X;
j=1 I=J+1

respectively. We must show that 7\, = T",. This follows as a corollary
of the next lemma and the above remarks since T, and T, permute.

LeMmA 4. Let B and C be permutable self-adjoint operators and let
Bz = Oz for all @ in a dense set & in #. Then B = C.

Proof. Let dF and dF be the spectral measures corresponding to-
B and C respectively. Let

G(4) = [AB(2)aF (v)
a4

where A is any Borel set in the plane R Select a sequence {Az; %k =1,
2, ...} of mutually disjoint finite rectangles such that

R ={J 4.
k=1

Set #; = R(G(4y)), # = range, and By, = B | My, Cp=C |.M; (vestric-
tions of B and C to .#5).

My reduces B and C to the bounded self-adjoint operators B, and
Oy, respectively. B = Y @B and O = 3 @0%. Let y <s# and y; its projec-
tion on ;. Let xed. Then

(Biyult) = (Byslw) = (yxlBr) = (4:]0) = (Cyilz) = (Crysl ).

Therefore By, = Oy since # is dense in #;

D 1Byl = 3110kl
k=1 k=1

Since both sides are finite or infinite together, ye#(B) if and only
if ye®(C). Therefore

B=Y®B =) a0=0.
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Incidentally, if ged(Ty),
(Tu9) (¥) = (Tuglfo-9) = (91Tufu(-9) = (glfe(-yu)) = g(yu).

Thus Tyug = g(-u) and g(-u)eZF.
xii. Semi-group of operators; 'representation of f,. Suppose

; ,
u:”epr, and r = n exp X;.
f=1 Ju=d+1

T, and T, permute; i.e., their spectral resolutions permute,
B,(3)By(v) = B,() E,(A). From the comments following (2”) of §2,
[T,T,] = [T: Tyl = Ty = Top. Thus {Ty; ueS U {e}} forms what we may
call a semi-group of operators.

Let e {#(Tw); #eS w {¢}}. Consider a function of the form

ﬁkju( mk)y

li
avM s

where {z; %k =1,...,m}c Sy {e}:

(Tueh) = (E1TuR) = ) Bu(61Tu fol-21)

k=1

m m
. = Y Blelf(-mew) = 3 k().
k=1 k=1
Then (T, & | b) is continuous in  since £(xyu) is. Since & is the completion
of the pre-Hilbert space &’ generated by functions of type h, (3”) of
§2 is satisfied.

Alternately (3"’) of §2 is satisfied. For by the discussion following
Theorem B the cone © contains a countable dense set D. Hence the class
of functions of type given by k above but with {#;k =1,...,m}< D
and f£’s having rational real and imaginary parts is dense in &#. Hence &
is separable.

Now Theorem B may be applied for 4¢®. There exists a spectral
measure F(dy) such that

T, = fx(u)E(dx) for all %S,
Sh

(13) Fo(w) = (foC-wl fol-8)) = (Tufo(-0)|fo(-6))
= [ x@)(B@DL(-0)f(-e)
eA

= fx(u)dwu(x) for e,
eh .

Exponentially convex functions 135

xiii. Representation of f. Take z = vuevS, u = v~1x:
fl@) = flow) = fo(w) = [ (™ @)dn(y),
6'\
1(@) = gl ) = g(v) g (v w),

2(r) >0 for all re© and all y«S". (See discussions following Lemma
A and Definition C.) Hence

x(v7'7) = 2 (0)7 (),
= [ 2@10) dy(y) for all zevS.
el\

Let u, be the positive measure defined on S* by

polh f h(x)dpo (1 efA h(x) (o) dmn (%),

where % i3 a continuous function vanishing off a compact seb. u, will
now be shown to be independent of the choice of v for » in a certain subset
of .

Let v, weS and choose a symmetric neighborhood W of ¢ such that
Woc© and WwesS. Let Z =W~ S, Z+#0 since e<[S]. Take zeZ;
Tloe Wo £ G, 27 lweS, and 18 = 20 < 26, wS < #&. Therefore

(14) Jx@ap) = f(@) = [ 2(®)dps(z)
4 sh
for all zevS.

Now select linearly independent elements {X;;j =1,..., N} of the
Lie algebra such that all expX;eS (Lemma 2 in part ii). Let

{Hexth,, all ;>0 th>0}

F=1 =1

For
N
= H expt; X;e U
j=1
and for 4eSh,

N
2(@) = [ [expt; 2y

F=1

for certain numbers {4;;j =1,..., N}. Set A = (4, ..., 4y). The equation

v
#(@) = [ [ exptyy

Fu1
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defines a map y of & into B" indicated as y(x) =1 = (,, ..., iy).
This map is one-to-one. For, if

N N
[T ootk = (@) = [ Jospin
i=1 fe=1

on U, then
N

N
[[exptithi—m)y =1, or  Yy(h—m) =0,
j=1 J=1
for all 4; > 0. Fix 4; set t; = 1 and set all § = 0 for j 5 i; then J;—y =0
for each i. Thus y is mapped into only one A.
To show the converse let

N
U, = {nexpth,-; 0<t < e}.
F=1

For sufficiently small ¢, U, is an open set on account of the homeo-
morphism between some neighborhood of ¢ in ¢ and one of 0 in B, while
{(try . ty); 0.<t; < &} is open. Fix such an s. U, c U s &. If y(x)
= 2:{#) on U, then the character y(x) = yo(x)™'-y.(#) = 1 on U. Select
@,¢U, and an open neighborhood V of e such that 2,V < U, and such
that V satisfies condition (4) of Definition 1. Let W, = V ~ & and take
any he Wy. 1 = y(wh) = y () x(h) = x(h). Since W, generates S, y=1

on S. Hence, if

N
1u(@) = [ [expy4; = za(@)
j=1

on U, then y;=y, on & so that only one y can be mapped by y into any A.

If a point A° £ 0 is in %(y), then al’c#(y) for all real a. (That is,
if a non-zero point is in the range of v, then so is the entire line determined
by 0 and this point.) For, if

N
x2(@) = [ [expy2,

Je1
then

N
(@) = ”expt,al}’.
TS

Algo
N N N
(2222) () = H expl /1(1”~nexpt,/1$” = nexpt,(2§l)+z}”))
7=1

I=1 j=1
80 that y(xize) = A4 2. By induction similar results hold for any
numbe‘r of X.’s. Hence y is a homomorphism mapping &* onto a “plane”
P of dimension % < N. (The dimension # is possibly 0.)
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In the “plane” P select a neighborhood of the origin,

M= =l ..., ) 4l <& 1 <j< N}~ P
Let

N
0; = {o = [[expt; X;;0 <t; < 1/s for all j #14,1/(20) <t <1fe}.
j=1

Let

Since all the sets
{expt; X;; 0 <4 <1fe}  and  {exp#Xi;1/(2e) <1 < 1fe}

are compact, so are the sets (; and their union C. Set y,=1. Consider
the neighborhood
A = {g; [g(®)—1] < 1/2, all 0} c S".

Let ye A7
N N
%(z) = exp Zi,,lj for « = nexpt,-X,eO.
i=1

7=1

If [%] > efor any 4, take the corresponding #; = 1/z and the remain-

ing s = 0; but then [y{exp(1/e)X;}—1| is either =1—e¢ ' >1/2 (if

A< —e) or 2e—1>1f2 (if 1; >¢), in either event a contradiction.

Henece all |4;] < e and 80 y(z) es#. p(A") = #A. Therefore y i3 continuous.

Now we can define a measure u3 on the Borel sets in the “plane”

P by setting p3(B) = (v~ (B)) since y~*(B) is a Borel set in & if B
is a Borel set in P. Now let us suppose

N
v=[[exps;X;eU.
Take any

N
H exp ‘[ij eU

Fu=1
and seb tj = 3j+ Tj. Then

N N N N
x(vnexpr,Xf) = nexps,-ﬂi-”expr,-l,v =’I_Iexpijlj.
7=1 7=1 =1

j=1

From (14) . ”
(15) Jexp( X un)ausx) = [exp( 3 uk)dui(a)
P j=1 P f=1

for a range of values of each #; which surely includes an interval since
ranges over (0, oo).
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If 0 < n < N, then the coordinates of the points in P are so related
that we can find ¥ —n of the A’s as linear combinations of » independent
ones, say {4;j=n+1,...,N} in terms of {i;j =1,...,n}. Thus
e = O dy+ .+ Gy Ay Teal, n < & < N. The sum in (15) becomes

N n N
Zt;z, =12{t,+k2 o g} 1.
=1 =1 =M1

If momentarily we take fixed {t};
to vary over an interval, we see that

N
it 3 o)

k=n+1

=n+1,...,N} and allow

varies over an interval and so the range of

ok ZN‘ g}

k=n+4-1

certainly contains an interval for each j.
Therefore by the uniqueness of measure for Laplace-Stieltjes integrals

ol (B) = iy(B) = ub(B) = p, (y~"(B))

for every Borel set B in the “plane” P.

If » = W, there is no need to alter the form of the sum in (15) and
the same result holds. If C* is a compact set in G4, then (0*) is a com-
pact set, hence a closed set in P. Thus g, (C") = #=(C1). Since SN = ~1(P)

N ]
also 4, (S") = 4, (S") (possibly o). Therefore 4y = u, on the ring ge-
nera,j\;ed by the compact sets in G provided vel. If n — 0 — ie., if
p(Br) = {9}. — then 8" = {y,=1} by the one-to-one nature of v; then
Mo = p, trivially by (14).

Similarly p, = p, for we U and hence My = py = p on this ring if
v, wel.

Now let «eS. There is a symmetric neighborhood § of ¢ such that
Qz < © and Q@ ~ U=@. Select any veQ ~ U. Then v '2¢S, wevS, and

fo) = [ x@dp(z) = [ y(@)du(y).
. eh S ’
Consequently .

f@) = [ g(@)au(y)

SA

for all 2¢S.

Finally, if there were two such measures ey and p, with the property that

J 2@am() = 1) = [ y(@)apalz)
eA -1

icm°®
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for all xS, then proceed essentially as above. (14) is replaced by our
present equation. The details following (14) are practically the same
with u, and u, in place of u, and u,, but with no mention of u,. We show
4y = Hg in the same fashion as u, = u, except that now we omit

N
v =Hexps,-X,-

entirely. Thus x is unique on the ring generated by the compact sets in SA.

Note, since & is locally compact and satisfies countability axiom IT,
that ©* is locally compaet ([14], p. 98, Prop. 2) and satisfies countab-
ility axiom II (Bourbaki, III, Ch. 10, 2nd ed., p. 41). Hence the o-ring
generated by the compact sets is the Borel field.
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