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The ~p;‘oof of the existence of the limit space (¥y, vy) parallels the
proof of Theorem 5.

TurorREM 11. Styz iff I N-converges to .

Proof. Sryx implies that there exists peN such that ze%, and
N, (@) <. peN implies p is a unit in §; N,(») < iff pF converges
to pz in %.

The operator ¢: %' %' is defined by:

0 for t< —e,

e {f()} = f(t+e) for —e <<t

(A derivation of the operator ¢ may be found in [4], Part IT, Chap. 2).
From the definition of ¢” one notes ¢ < D, hence ¢ «§. If § N-converges
to @, then there exists pe%*, p a unit in §, such that pJ converges to
px in %, for some ¢ = 0. If p3 converges to px in €, then e~“p3 con-
verges to ¢~ “pw in %, hence in %,. Since ¢~ p <N, the proof is complete.

Two questions arise in connection with this section:

(a) It was established that %y < S. It is suspected, but as yet
unverified, that €y = §.

(b) Let Ty denote the topology induced on #y by the S-topology.
Let o denote the Limitierung induced on ¥y by the topology T'x. Theorem
10 and Theorem 11 show that o < 7y. Is 7'y the finest topology on %y
with this property?
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CHAPTER I

This chapter containg the statement of the main results. Chapters
II-VI contain their proofs. Chapter VII contains some additional remarks.

In what follows the function f(x) = f(#y, %5, ..., #,) i8 defined in the
n-dimensional unit cube: 0 <y <1,j=1,...,n, and is of the class I”
there, 1 < p < co. We assume once for all that »n > 2.

Definition 1. The function f has at & point x o k-th differential
in IP — for brevity, a (k, p) differential — if there is a polynomial P(f) =
P(ty, ..., 1) of degree &k or less such that

1/
(1.1) (lQi f]f o+1)—P( t)l”dt) —o(BY, h->0,
where @ is an n-dimensional cube containing the origin and of edge h.

The purpose of this paper is to investigate the connections between
this - differential and certain other notions of differenfial. In [3] a con-
nection between this and what may be thought of as the partial (%, p)
differential is discussed. The main theorem of [3] is:

THEOREM A. If f has a (k,p) differential at each poini of a set E,
then for any integer m satisfying 1 < m <n the function f has a (k, p)
differential almost everywhere in E with respect to the variable @ = (@4,
Lyy oery Bm)e

Actually what we shall need here is the following result, also proved
in [3], of which Theorem A is a simple consequence.

THEOREM A’. Let &' = (@1, ...y Bm)y ' = @my1y - - -y ) ond let f(2) =
=f(®, ..., @) = f(&', @) be non-negative and integrable over the unit
cube Q°. Let a be any positive number and let @ and I denote respectively
arbitrary n-dimensional and m-dimensional cubes with edge h. If at each
point & = (o', ") of a set B < Q" we have

[f(&rag =o(h™), h->0,
Q
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for cubes containing w, then at almost all points of B

[f(&, a")d8 =o(H™"), >0,
I

for cubes I containing '

Many of the ideas and techniques of [3] are used in this paper and
in most cases we refer to [3] rather than repeat the argument here.
A part of the argument, however, which recurs constantly in what follows
deserves a restatement. It is the following theorem of Calderén and
Zygmund [1].

If f(w), €<Q°, has a (k, p) differential, &k >0, p >1, at each point
of a set B, then for every s> 0 there is a closed subset H of ¥ with
|B—H| < & and a decomposition f = f;+f,, where f, <(*(Q"), the differ-
ential of f; is the same as that of f in H; in particular f; =f, f, =0
in H so that

.

1 1/

(g [ rrw) = o G0

(4]

for #<H and cubes @ of edge & containing ». See [1], p. 189, Corollary.
We will consider two other kinds of differential. In what follows,

all rectangles will have sides parallel to the coordinate axes.

) Definition 2. The function f has a (k,p) differential at o if there

is a polynomial P() of degree % such that

1 1/p
(1.2) (Wﬁflf(ﬁ-t)—l’(t)l dt) =o(w), w-—0,

where R is an n-dimensional rectangle containing the origin and w is
the maximum of the edges of R.

) I_n. th(f, case k= 0 this implies the strong differentiability of the
indefinite 1_11tegra.‘1 of. f. By analogy we may call the (&, p)’ differential
a..strong differential in I” ot ». The polynomial P(¢) will be called the
differential of f at ».

.].)efinition 3. The function f has a (k,p)’ differential at » if it
satisfies (1.2) for rectangles R with only two different edge lengths.

A The_question arises as to the relations among these definitions of
differential. Clearly, for any point e,

(ky ) = (k, )" = (k, p),

and it iy easy to see that the implications are not reversible (except in
the case n = 2, for then the notions (k, p)’ and (k, p)"” arve identical).
Also it is easy to see that (k,p) implies (k, p—s), etc. for & > 0.
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Let ug assume then that f has a (&, p) differential at each point of
o set B and ask whether it has a (k, p)’ or a (k,p)"” differential almost
everywhere in H.If k = 0, p = 1, the angwer is no: any integrable function
has a (0,1) differential almost everywhere, and Saks [2] has given an
example of an integrable f which has a (0, 1)'" differential almost nowhere.
(He discusses the case n =2 only but his argument is valid for general
n = 2). It k> 1, however, the situation is surprisingly different and we
will prove the following theorem:

TemoREM 1. If n =2 and & > 1, and f f has a (k, p) differential in
aset H, 1 <p < oo, then f has a (k, p)' differential almost everywhere in .

This theorem does not hold for » > 2 as the following regult shows:

THEOREM 2. Given n =3, k=1, p =1, there exists a continuous
fumetion f in the n-dimensional wnit cube and a set B of measure as close
to 1 as we wish such that f has (k, p) differential everywhere in B but has
a (k,p) differential nowhere in H.

However for n 3> 2 we have the following substitutes for Theorem 1:

TamoREM 3. If k=1, p =1, and f has a (k, p) differential in E,
it has a (k,p—e), & >0, differential almost everywhere in H.

TEEOREM 4. If k=1, p =1, and f has a (k, p) differential in H,
it has o (k,p)"’ differential almost everywhere in H.

" Clearly Theorem 1 is a special case of Theorem 4.

In the remaining two theorems we treat the case % = 0 which has
some exceptional properties. In this case we obtain substitutes for Theorems
3 and 4 by strengthening the hypotheses.

TazorEM §. If for every weE the function f satisfies

1
(1.3) —lj;—Iflf(ert)-—f(w)ldt = O(W)
Q

where Q 8 a cube of edge h containing the origin, then almost everywhere
“in F the function f has a (0,1)" differential, i.e.,

N

(1.4) E

[1f@+a—f@ia =o@), IR0,
b
where Ri§ a rectangle containing the origin and with two different edge lengths.

TrmoreM 6. Let g(u) = u(logtu)*™" (u = 0). If for every el the
function f satisfies

1 1

1.5 — o4-1)—f(@)|}dt = o (—————)
(15) a ! pllf@+0 (@)} g T

then f has o (0,1) differential almost everywhere in B, i.e. (1.4) holds for
arbitrary rectangles R containing the origin.
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CHAPTER II

In this chapter we prove Theorem 4. As is explained in the proof
of Theorem A in [3], it is sufficient to consider the case f(z) = 0 for z¢ B,
and hence P(f) = 0 at every point of density of . If we replace [f|” by
g and kp by a, Theorem 4 becomes equivalent to the following theorem:

TeEOREM 4'. Let g(x) be defined, non-negative and integrable in the
unit cube Q°: 0 <a; <1,j=1,2,..,n Let a be a positive number and
let @ and B denote respectively a cube with edge b and a rectangle with edges

s=w,i=1,2,...,5; & =ULi=j+1,...,n; wxl

If at each point © of a set B < Q° we have

(2.1) [9(8dE = o(h™) (b 0)
Q

where ze@), then at almost every point xell

(2.2) [9(&)a& = o(w* |R]) = o(w**1"7) (10 - 0)
R

where z¢R.
As in [3] (we do not repeat the argument here) we further reduce
our theorem to the following form which is of independent interest:
THEOREM 4"'. There is a positive constant A depending only on the
dimension n and o having the following property. Let g(ax) = g(@,, ..., @)
defined in a cube @, be non-negative and integrable. Denote by U the set
of points weQy such that there is a cube Q o v with

(23) [og)a > wmee
Q

and by V the set of points weQ, such that there is a rectangle R o @ with
edges s; =w for L <i<j and s, =1 for j+1 <4 <n, with w>1 and

(2.4) [g(&)ds > w*|R|.
R

Then

(2.5) VI < 4|0
That Theorem 4 implies Theorem 4’ is plausible if we note that U
can be thought of as the set where (2.1) is not likely, to hold, and V is
the set where (2.2) is not likely to hold. Theorem 4" aggerts, then, that
if (2.2) is not likely to hold neither is (2.1) v

We need the following lemma the proof of which canbe found in [3]:

icm
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LeMMA 1. Let g(w) = g(®y,...,5,) Dbe non-negative and iniegrable
over a cube Q, of edge hy and suppose that

by @) fg(m) do < 2"
Q

(2.6)

where a > 0. Then there is a sequence of non-overlapping cubes Qy, @, ...
contained in Q, with edges respectively hy, hy, ..., such that

1< B [ gla)de < 2™,
Qe .
and g(x) = 0 almost everywhere in the complement of ) Q. v
We proceed with the proof of Theorem 4. If (2.6) does not hold,
then U = @, = V and we have (2.5) with 4 = 1. Thus we assume (2.6)
and apply Lemma 1. Clearly, | J @z = U. Let £ = (513 ceey &) = (&, &),
where & = (£, ..., &) and &’ = (&1, ..., &) Let @y be @y, expanded
three times about its center. Let @ = @i X Q¢ , Where @7, and @y are the .
projections of @, onto the & and &' subspaces respectively. Let @y
= Q% Jy, where Jy is @; expanded y times about its center; y is the
smallest odd integer for which
(2.8) (y—1)* > griitiagn,

(2.7) k=1,2,...,

Let V =V, u Vs, where V, = ¥ ~ U @ and V; = V— V. Clearly.

(2.9) [Val <8” D)1l <3"|UI,
and it remaing to estimate |Vl
Let
VY =o' (¢, ") e Vi)
Since
(2.10) Vil = [V,

%

it suffices to estimate |V2"|. Now «'eVy if and only if (#',2")¢ U O
and there exists a rectangle R = R'X B” where R’ is a j-dimensional
cube of edge w and R’ is an n—j-dimensional cube of edge 1 withw >1,
2'eR and z''eR”, such that

(2.11) [g&ae > w7,
R

By an elementary Vitali theorem, there exists a finite disjoint collec-
tion % = {R} of such rectangles R for which

. R =17,
(2.12) ﬂ;gl l
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where # is a constant depending only on the dimension j. For a fixed
Re&,

(2.13) w1 dE =
<ng(5) E=3 [ 9@

T R
= dE-
2 [ owder 3, [ oo,

where Y, is taken over all @ such that 2" eJy and ), over all ¢, such

that o” ¢Jy,. Now R~ Q, # 0 and o eJy imply @ c R, where B is R
expanded three times about its center and that

2 2
by <l —— < W—-
ke = y—l\wy—l

Thus

3. [ otoae < 3 reenee oo (2] S

RAQy;
N o a 2 ¢
< 243N Rl w (-—1~) < Jw' e,
y—

Hence, in view of (2.13),

(2.14) w”"l““fgzzl fg(f)df.
By, ,
Let
[olg, enag i &<y,
b gu(&") =1 ¢
0 otherwise.
Hence
Jawas< [ ar [geenar = | g,
o wady G wnd

and thus, by (2.14),

i+a
(2.15) w2 E . an-i f ge(E"AE" <2 E'l g (@)
0 »

QR R"an QR0

0 Y e,
QR0

icm®
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where g} is the n— j-dimensional Hardy-Littlewood maximal function
in J with respect to cubes; that is,

1
2.16 H(@) = sup —- " ag"
(2.16) fi(a") = sup wlsfgk(f yag",

where S is a cube and &'eJy. Thus
@in R = <[2 Y] <2 3 @),

where the summation is over all % such that @z ~ E # 0.

Now R is not contained in’any @k gince otherwise we would have
zeV,. Hence B ~ Q) 7 0 implies i <w and therefore B’ must contain
one of the 2’ vertices of Q. Since the R’ are disjoint, any % can appear
in at most 2 sums of (2.17). Thus

(2.18) SR <2 ) (gl ).
Re® k
Hence, by (2.12),
(2.19) 7| < g2 gk (@)
k

We recall the fact that if f is a non-negative function defined in
an m-dimensional cube @ of edge h, f* is its maximal function, and
0 < 6 < 1, then there exists a constant A = Ay; such that

([ (f* @do)” < Anph™=" [ f(@)ds.
Q ]

Thus, by (2.10) and (2.19),
(2.20) ]Vll < ﬂ2i+12f(gmwn )J'I(Ha)dmu
k J;c’

<A 2 pp—A=T1 <) ( f gela)d m,,)i)(;i+a)
k Q;;

< A2hscn—i)(1—i1(j+a))hs:L+a)y'/(i+a) — Azhﬁ < AT,
3

where A stands for a generic constant depending on n and o
This together with (2.9) completes the proof of the theorem.

CHAPTER III

We now give the proof of Theorem 3. We may, of course, reduce
the general case to that of differential 0. It is a curious fact that in this
special cage we have a stronger version of the theorem, namely, thab
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the w in (1.2) may be taken to be the smallest edge of the rectangle R
ingtead of the largest. To show this it is clearly enough to prove the fol-
lowing theorem:

, TraEoREM 3'. Let g(x) > 0 be defined in the n-dimensional unit cube
Q:0<2<1,j=1,2,...,n Let « and ¢ be positive numbers and let Q
and R denote respectively a cube with edge h and a rectangle with smallest
edge w. Let ge L' (Q"). If at each point  of o set B < ° we have

(3.1) [N EAE = o (W) (7 > 0)
Q

for cubes @ = w, then at almost all points x of I:

(3.2) [ 9(&)az = o(|B|w"
R

where zekR.

We will prove Theorem 3’ by induction. For n = 1 there is nothing
to prove. Thus we may assume it true for n—1. Let & = (&,,. &)
= (&, &) Tet B

7(6) = s Jfgus,un)dun.

énel

Using the fact that if ¢(¢) is defined and non-negative i i
: -negative in
I, and if 1 <7 < oo, then ¢ o el

(3.4) If (e*)a < 4, If ¢ (W,
we see that (3.1) implies

(3.5) [ g (E)dg = o(hrranty)
for zeB, Q > a. ’

By The !
have y orem A’, for almost every & = (wy, ..., z,) = (', @) e B we

(3.6) fg*(1+s)(§,:’ Bp) BE" = O(hn—l+a(1+n))
&

fgrs(nh—ll)-dimensional cubes @' containing «'. Let m, be fixed such that
gﬁ .6) 1? d_s a]_.mosjﬁ everywhere in B = {o’ : (&, ,) e H}. By the induction
ypothesis, if B’ is a rectangle containing «',

(3.7) J 9% (&', w,)AE = o(w®|R'))
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bolds almost everywhere in E™. Let R be a rectangle containing (', 2y)
of smallest edge w, which we may assume parallel to the @, axis, and let
R = R'xJ. Then

[o(oae = [ag [g(&, &)ag <V [¢*(&) a)ds
R R J R

= o(|J|w"|R|) = o(w"|E]).
Thus (3.2) holds almost everywhere in Z.

CHAPTER IV

In this chapter we prove Theorem 5.

Let M be a large number; write f = f,+fa, where f; = fif [f| <M
andf, = 0 otherwise. If M is large enough, then f,(z) = 0 and |f,(2)] < M/2
for weH < F, with |E — H| arbitrarily small. In view of the inequality
ifa(z+1)] < 2|f(z+1)—F(@)| for w<H, f, satisfies in H an inequality anal-
ogous to (1.3). Since f; is bounded, it has a differential (0,1)' almost
everywhere. Thus it is enough to consider f,, that is the case when the
function is zero in the set.

Theorem 5 it easily seen to be implied by the following theorem:

THEOREM 5. There is a constant A depending only on the dimension
n and having the following property. Let g(x) = g2y ooy @) be mom-
negative and integrable in a cube Q,. Denote by U the set of points xeQy
such that there is a cube @ > © with

n

)5
4.1 L.
(4.1) Qfg(f)d& = logllh’

and by V the set of poinis meQy such that there is a rectangle B o x of edges
s =w for 1<i<j; si=1For j+H1<i<n; w =1, with

(4.2) [g(&)as > IR|.
R

Then
(4.3) V1 < 41U].

The proof of Theorem 5’ follows faithfully that of Theorem 4" until.
we reach the analogue of (2.17) which now takes the form
(4.4) B =o' < Do)

Unlike, however, in the case of the proof of Theorem 4" where we

congidered ¢i/0*? we cannot now operate with the functions gk, because
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they need not be integrable. We note however that if some of terms on
the right; of (4.4) exceed 1 we can replace them by 1 without invalidating
the inequality since, in any case, w < 1. This shows that ingtead of the
m:?dmal function f* of Hardy and Littlewood we may use its modifi-
cation

(4.5) fu(®) = min{1, f*(a)}
and replace the gy in (4.4) bY gps.

Before we proceed with the proof we state two lemmas.

LemumA 1. Let g(x) = g(2y, ..., @) be non-negati ;
. 1y eeey & gative and integrable o
o cube @, with edge by < 4 and suppose that ! W‘

(4-6) [g@ao <omrs "
do log 1/,

. The’.n there is a sequence of non-overlapping cubes Qy, Q,, ... contained
in Qo with edges respectively hy, by, ... such that

n
hi

&
T < f zyde < 2"
logi/hy 4 gloydo < log 1/h;

and g(@) = 0 almost everywhere in the complement of {J Qy.

oy Thislis ;;nba.na,iogue oflLemma, 1 of Chapter II in which the factor
" 13 replaced by (logl/h)~*, the proof is completel
not be repeated here. ’ pletely parelel and need

MM . € ’(m) ¢ Nnon-neqairve a,nd 2 g ~
LE A 2. Let b Y7 y le ble d enstonal
f N < nIeGr o m an n-armension

Fr@) =sup L [ f&)ae
Sz 18]

where 8 is an n-dimensional cube, and
fe(®) = min {1, f*(»)}.
Let o =0 be any number such that

B < [ f(@)da.
Q
Then

(4.7) fﬁ(w)deAalog(%) ff(W)daJ—qui !f(w)dm,
&

Q

where A is a constant depending only on n.

icm®
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Proof. Let
By ={w:f" (@) >y}, y>0.
1t is well known that there is a constant B depending only on the
dimension » such thatb
(4.8) |B,| < By~ Qf f(@)da.

We split @ into three sets
B = o f @) >1)  Fo={o1>f@ =8 Fo={o:f@) <)
We may assume that « > 0 since if a = 0 the lemma ig trivially true
with 4 = 1. Clearly,

(4.9) [ful@)dw = |Fy] = |By| <B [f(a)da
P . Q
by (4.8). For zeF, we have fu(#) = f*(x) and
(410) [ful@)an = [1*(@)do <HIQ| < [f(@)da-
Fy 7y Q

Finally, if weF,, then again fi(#) = f*(z) and writing |B,| = e(¥)
we have

(4.11) [ @)do = — [ydely) = —yo(¥)
Fy e

1
” +hfa"(y)d”

<e(®)i*+B [f(@)do [y~ dy
Q [0

< B [ f(@)da+ B log(1/h) [§(@)do.
Q Q

.. Adding (4.9), (410) and (4.11) we obtain the lemma.

f of Theorem 5'. We may assume

We ean now complete the proo
a 1, and leb

that (4.6) holds: Apply Lemma 1. Let Q be the @ of Lemm
Qx, > Q4 Ity Qu have the same meaning as in Chapter II, except that
now we take y» to be the smallest odd integer for which

-1
log(’yz ) < 2n+13n.

Following the same steps as in Chapter 1T we show that if » = (o, 2'")
is in V and in the complement of | @, then there exists an B = o,
R =Rw,...,w,1,..., 1) such that (see (4.4))

w <2 Z P (8')
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and arguing as in the proof of Theorem 4'’ we arrive at the inequality

(412) VI <4 [ guala”)ia".
7

Let us now recall that

n
He 01

(4.13) Sk
log(1/h) = ™"

fgk(m”)dw” = fg(w)dm
5 3.

5

Denote the side of J;, by te; thus ), = yh;. Define 8 by th i
o U + i e e
¥y 1 =27f Then, by (4.13), c poy Anation

Joule)dw” = Gritries = gesie
T
w.here % = f+j+1. Hence by Lemma 2 applied to the g, and the (n—j)-
dimensional space J; we have l
igk*(m")dw” < Aoglog(1/t,) fgk(w”)dw”
Tk i
< Alog(1/h) [ g(o)de < ARy,
o
Hence, by (4.12),
V<43 =431 <4T],

This gives (4.3) and completes the proof of the theorem.

CHAPTER V

1?1 Eh(i}&;l chapter we prove Theorem 6. Arguing as in the first para-
graph o apter IV we reduce Theorem 6 to the i i i
zero for @ in H. That is, case fn whieh fla) 1

THBOREM 6'. Let g = 0 be defined in the n-di 2 2
> n-dimens 1 ’
Let B be the set of all @ such that ionat it e @

(8.1) g(&)log™ g(&)"%aE = (hhn__
Qf ( 4 )) §=o log1/h
where @ o % és a cube of edge h. We also suppose

(5.2)

g(@) =0 if zeE.

-

icm
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Then for almost every meH,

(8.3) Rf g(&)ag = o(|R)
where R is a rectangle containing .
We need several lemmas. We may clearly assume that » > 3.
TLemMA 1. If g and B satisfy the hypotheses of Theorem 6', then given
any & > 0 there exists a subset H of B with |B—~H| <z and a decomposition
g = g1+ g, with g;eL(logL)"™, gi(®) = 0 for x in B, and g, satisfies
the hypotheses of Theorem 6'; moreover

(5.4) ga(§) >1  or  gu(§) =0
and
- hﬂ
(8.5) 6{ 02(8)log* ga( 80 = 0 sy (B> 0)

for cubes @ conta,i';ziny @, where veH.
Let H « B be the set where
hn

. X tg (&) RaE < O———
(36) Jotelog g "2 < 07y
for all cubes @ of edge % containing . If the constant 0 is large enough,
|B— H| is arbitrarily small. We may also suppose H cloged. Now the
complement of H or rather its interior can be expressed as a union of
non-overlapping cubes Sy of edge I such that

B <<
2(Yn+1)
where d,, is the distance of §; from H. Let g,(x) = g(») if welS, and

(5.7)

- (@) < 1fly; g:(@) = 0 otherwise. Let g(@) = g:(@)+ga(e). By (5.6) and

(B.7) we see that

(5.8) [9ofog*g(e)fas < [g(&log"g(&)""a¢
8y . Q )

W B

< <B
<0 log1/h 7 log 1fk,

where @ is the smallest cube eontaining 8 and a point of H.
It follows from (5.8) that

[ gu(®)tog*g, () a <log(Lfw) [ g(log™g)"~'as < B,
8 B

and hence g, eL(logt L)* ™"
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If Q ~ Sy #0,Q ~ H 50, then 1V/n > I, as easily seen from (5.7).

If £e8;, then
g2 (E){logtgu (&))"~ < (log 1/l) 'ga()(log™t gy (&))"
Hence, if zcH, 5@,

(5.9) [gallogtga)"as = D' [ ga(logtgs)"tds
Q )

< D log1/i)™ [ gy(log*g,)*de

(1l

— . n
< log 11/ [ galog"ya)* it = of (s
Jostioess (log 1/} )"
Thus, since g, satisfies (5.3) (by a familiar theorem on the strong

differentiability of integrals), we may replace ¢ b ]
st (55) ) . g by g, and B by H and

LevMA 2. If f(t) >0 4s defined for 0 <t <h <% and

h
[ fat = n
0

for some a =1, then

h h

h
(5:10)  [f*(0)d < A(a—1)log (L) [ fat+A4 [ flog*fit-+4 fhfolt.
0 0 0

Proof. We may assume f({) non-increasing. Then

h h i »
[rwa=[(r o - | frog (%) i,

Set _
h
fat = U={t: t>-.l___
of ’ 10> g |
If teU, then
h h h
K < -v—f(t)log3 (—{)
and hence

log(hft) < 2log™f(2)+ 2log*hfv
< 2log™ f(t)+2(a—1)log 1/h.
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Tt follows that
h

h
[Ft)log(hfp)dt < 2(a—1)log 1/h [ fat-+-2 [ f log* fdt.
U 0 0

Tf ¢ is in the complement of U, then

v
f(6)log(hft) < Fﬂ)ﬂg—g(m

and hence
I

1
[ floghtyas <o [t l0g™ (hft)dt < A [ fas.
g 0 0
Temma 3. If f(8) is defined for 0 <t < 7 < } and takes values either
>1 or 0, then, A denoting an absolute constant,

h
[+ (logf*)"ds

[

(5.11)
h h
< Am [ f(log*f)™+'at+Aalog 1/ [7Qog*sy"at,
0 [
provided m >1 and
h
[flogtfy"at =1,  a>1.
[]

Proof. It suffices to prove (5.11) for f non-incréasing. In this case,
as we will show later, :

(8:12) Flogtr o) < (Fofog f ")
Thig will imply that

A 3
(5.13) 1 (0)(tog* f*v)"at < [ (f(log*f")* -
[ 0

Applying now Lemma 2 to the function ft)(log™f(#))™ and using
(5.13) we obtain (8,11). Thus it is enough to prove (5.12).

Tet @ be such that f(#)>1 for 0 <t < & and f(t) =0 for t > a.
If t < @, then (5.12) is just Jensen’s inequality for the convex function
@ (u) = u(logu)™. Let now

o a

v = [f()ds, v, = [f(s)log*f(s)"ds

0 0
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and suppose that ¢ > a. Clearly,

o) =17 [fs)ds = 7oy, (F((log*f@)")" =70,
0

Hence

(5.14)  fH)(logtf* @)™ = t7 v, (logt ™ vy)™

(108 2)" = o @ftog* " @)

o Uy
<~——
t a

Using (5.12) for ¢ = & we see that the right-hand side of (5.14) does
not exceed

Vs

~ = (F)(tog*m)")*.

=2
t o
This completes the proof of (5.12) and so also of Lemma 3.

Levma 4. Let f(w) be non-negative and integrable over the n-dimen-
sional unit cube Q°. Let

"
5.15 =
(5.15) fff) & o( l/h) xeQ,
for all weB. Then for almost every » = (o', @,) el we have

5.16 Ll ,
(5.16) [Hesear =o (o), v,

where § is an n-dimensional cube of edge h and I an (n—1)-dimensional
cube of edge h.

The proof of this lemma is analogous to that of Theorem A’ and
we omit it here.

We now pass to the proof of Theorem 6. For n = 2 it is just a special
case of Theorem B. Thus we assume it true for n—1 and prove it for a.
By Lemma 1 we may assume that ¢ satisfies (5.4) and (5.5). Let

9(E) = g(&' &) = sup 171" [ 9(&', un) dus
J
where J is an interval containing Z,. We wish to ghow that

(5.17) *(E)logtg* (BN g — ( K" )
!y (&)log*g* (&))"~ = o T ip

icm
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for zel, Q o ». By Lemma 3 the left-hand side of (5.17) does not exceed
(5.18) 4 f (a(&)10g (1/) f 9(&, Enllogtg(&', &))" ~,) ag' +

—|—Aéfg (€)(log™g (&) dé,

where a(&') is the a of Lemma 3. The second term here is o{A"/(log 1/h)}
by the hypothesis of the theorem. To estimate the first term we split
the £ ¢Q’ into two classes, §; and §,, such that in §,

(5.19) f (&, &)(log*g (&', En)""aé, > 1Y,

and in 8, the opposite inequality holds. For & 8, let 8(£') be defined by
the equation

WE = [g(&, &)logtg(¢, &))" dkn.
Qn

Hence the first term of (5.18) does not exceed
(5.20) Alog(1/h) [ g(&)(log*g(§)"~*dé+ A4 [log(L/h)B(&)RdE .
@ A

The first term of (5.20) is o(h"(log 1/h)~") by (5.3). Using the fact
that Ar'~*log 1/h < C for all § >3 and h < 4, we see that the second
term in (5.20) does not exceed AR = o(h” log 1/hy~Y). Thus (5.17)

holds.
By Lemma 4, for almost all ,, we have for almost all # such that

(2', z,) e E the relation
(8.21) [ g*(&, m)log*g* (&, wn))"" A€’ = o(h" (log 1/m)7),
I

where I is an n-dimensional cube containing «’. By the induction hypo-
thesis this implies that for almost all such '
[ (&, m)ag’ = o(IR'I),
&
where R’ is an (n—1)-dimensional rectangle containing »’. But if R =
= R’ X J with z,¢J, then '
f g(é)as = f g(&, ) A Ak <\I| [ g*(&, )A€’
#
= o(|R'| |JI) = o{|E).
This completes the proof of the theorem.
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CHAPTER VI

In this chapter we prove Theorem 2. We restrict ourselves to the
gpecial case n» =3, k=1, p =1 but the construction is general and
can be routinely extended to the general case. We will construct a fune-
tion which is bounded, in fact the characteristic function of a set but
again the changes needed to make the function continuous are minor
and can be supplied by the reader.

LeMMA 1. Let N > 0 be an integer and let L be a lamina with thick-
ness b = N~ (logN)~'* contained in the wnit cube Q° and parallel o the
(@1, ) plane. Let ¢ > 0. Then there exists a function fr, the characteristic
function of a subset of L such that

(1) If @ is any cube of edge q > h, we have

9*h

(1) Tog B

ffLéA
2

(2) Bwoept in o set of measure less than &, for all @ at a distance less
than 1/2N (logN)* from L there ewist arbitrarily small rectangles
B = R(w;, wy, wy), Wy = Wy, Wy = W, conlaining x such that

1
(6.2) mljh =1.

To prove this we need the following lemma (see [2]):

Lemma 2. Let 8 be a 2-dimensional square, ¢ >0, N any positive
integer. There ewists g(w, #,), the characteristic function of a subset of S
such that

(1) [9<218|/NlogH.
s

(2

Bxcept for @ = (wy, ;) in o set G of measure less than ||, there
exists a rectangle R’ containing @ such that

IR [g =18,
.

Proof of Lemma 1. Let §, be the unit square 0 < o, <1, 0 <,
< 1. Let L be of the form 8yx I, where I = [0 <, < 1] i an interval
of length k. Cut 8§, into non-overlapping squares § of side h. Since % is
going to be very small, the residual ‘fringe’ may be disregarded.
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We define g on §, by defining it on each § to be the g of Lemma 2. We
check properties (1) and (2):

4
<h f<h—————2
!fL\ 2 I<tFioaw ¢

sxInQ#0 §
= Agth2(log Ny~ < Ag®h(log N)~2.

1)

(2) Let Gr = (|J G)x [0, 1], where the @ are those of (2") of Lemma 2.
Let # be in the complement of @y and let it have distance less than
1/2N (log N)"* from L. Let J, be an interval of length w = 1/N (log N)**
containing both I and #,. Let R’ be a rectangle of Lemma 2 corresponding
to (x,,%,) and let R = R'xJ,. Then

1 1 h h
(6.3) — = [e2 A1
wiB J 2T w R )T iw
Now we construet the function f of Theorem 2. Let j, be an integer
to be chosen later. Liet N; = 47, j = jo, jo+1,..-;

= 277N; (log N)*5, 1y = 1/N;(log N;)'2.
& i i § i

‘We begin by constructing parallel laminae of distance N,Tol(logN,o)‘”
apart and thickness k; . In each lamina we construct the function f; of
Lemma 1. Between these laminae we construct parallel laminae of thickness
hyy41 ab distance Nji(logN; ,,)"* apart and define the corresponding
function f; in each of these laminae. We proceed for j = j+2,... Leb

f = EfL’

where the sum is extended over all the laminae we have constructed.
Tet B = Q— (U L— U Gy, where L is L expanded three times. At the
j-th stage we add no more than N;(logN;)" new laminae, so that-

. 1 X (log ;) 3 i
< = 2 .
(6.4) D <3 2 T (log T, (log4)"4;
[
Clearly,
(6.5) ez < Zz-f.

7o

If j, is large, the sum of the right-hand sides of (6.4) and (6.5) will
be small. Thus the measureof B can be as close to 1 as-we like. We will
now show that, in E, f has a (1, 1) differential but not a (1, 1)’ differential.
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Let wek, § any cube containing ». If @ ~ L s£ 0, then ¢ > h because
2 is in the complement of L. Thus
A h
RN <Ayt
f I=7 Q;, J Te S i Tlogmy™
1 1 1
<AZ S h< A MAx —— gy > 0 - 0).
4 q Llilgio(IOgN)l/z Z onLzo (log N (g ->0)

LAQ#0

For every zeQ" there exists for every j a lamina at the j-th stage
whose distance from # does not exceed 1/2N;(logN;)*. Let weH. Fix
4 and choose such an L. Let B be the rectangle of Lemma 2 corresponding
to this L. Then

waxR\ 1= ws|R1 ,ff“l

Clearly wg ->0 a8 j - oo.
This completes the proof of Theorem 2 as stated. By placing the
aminae closer together we could also obtain

Ji=se
R

lim sup

1
wy | B

for zeH, R > .

- CHAPTER VII

In this chapter we include some additional observations.

1. In the preceding chapters we have shown that under suitable
conditions the function f has at almost every point of a set F either
a (k,p) or (k, p)’ differential. It is natural to inquire about intermediate
results where the conclusion would be that f has almost everywhere in B
a k-th differential in LP with respect to rectangles having s different
sides, 2 < 5 << . The results can of course be novel only for n > 3. The
following theorem containg Theorem 5 and 6 as special cases.

TeEOREM 7. Let feL(log™ L)*~*(Q°) and suppose that at each point
of a set B < Q" we have

n

(13)  [if(o+0~f(a) og lfo-+0—f(a))*at = o
Q

[
)
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where Q are cubes of sides h containing the point 0. Then, for almost every
ws.E,

(7.2) J1f(@+0)—F(a)| @ = o(|R])
R
where B is a rectangle containing 0 and having s different edge lengths.
Theorem 8 below is, like Theorem 3, an xn-dimensional substitute
for Theorem 1, if s = n.
THEOREM 8. Let feIP(logt L)Y %,1 <p < 00,2 <8 <
k=1 and that, for each weE,

n. Suppose that

(7.8) f [F(o-+)—Pa(0)P (log* [f(@-+1)— P(t)l)"zdt) = o(#"),

(o

(7.4)

flf @+1)—Py (t)l’“dt) " o((ng"i/i;;@va)‘

(IQI
where Q are cubes of side h containing the point 0.
Then, for almost every xeH,

1 R N
(7.5) (IRI f [f@+H)—P, (t)l”dt) —o(w®) (w—0),

where R is a rectangle containing 0 with s different edges the longest of which
s w.

Though the proofs of Theorems 7 and 8 follow the general lines of
other proofs of this paper, they are a little more involved; in particular,
they require a slight refinement of the decomposition lemma of Calderén
and Zygmund stated in Chapter I giving the moduli of continuity of the
derivatives of order % of the function f,. We omit the proofs here.

2. The following remark is obvious and does not require any further
comment: when in conclusions of theorems of this paper we speak of
equal edges of R, we might actually assume that these edges are essen-
tially equal, in the sense that the ratio of any two of them remains bounded.

3. Theorems 1, 3-8 can be strengthened in the following manmner:
thé o’s in the hypotheses can be replaced by O without affecting
the conclusions of the theorems. Actually, in the case of Theorems 1,
3, 4 there is no novelty in this generalization, for it is well known (see [1])
that if we replace the o in (1.1) by O (the terms of degree k of P(f)
are then arbitrary) and if the new relation, with P(i) = P,(#), holds at
each point of a set B, then f has a (k, p) differential almost everywhere
in B. The situation is different when we have powers of log1/h in the
hypotheses. We state and prove the strengthening of Theorem 5 only;
for Theorem 6 modifications of the proof are similar.
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TEEOREM B,. If for every wel the function f satisfies
1 1
@ [ o=t - o(iz17)

where Q is a cube containing the origin, then almost everywhere in B:

(7.6)

(7.7) Tilﬂ Jc Flo+)—f@)dt = o(1),

where R 18 a roctangle containing the origin, with two different edge lengths
and diameter tending to 0.

We assume f defined in a cube @, of edge hy < }. As in the proof
of Theorem 5 we split f into a sum of two functions, f = f,+f,, where f;
is bounded, and so satisfies the conclusions of the theorem, and f, is zero
in a set & = B with |F—@| small. Replacing |f,| by g, we have

1
. it = 0 (1" /log —
(7.8) Qfg(t)t ( /ogh)

for @, @ o «. Dividing g by a suitable constant and neglecting a subset
of @ of arbitrarily small measure we may suppose (after renaming &)
that

1
(7.9) Qf ghdt < (h" /1og-h-)
for all x¢G and all @ > ». In particular,
1
7.10 t)dt < 2" Ry Jlog —.
(7.10) Q{ 9 b/ log 7-

Apply Lemma 4 of Chapter V to g and @,. We obtain cubes @ for
which

1 1
7.11 hy /log— dt < 2" by [log—
(7.11) flog; < Q{" < 2"y log;-
and g = 0 in the complement of |_J Q.

Clearly @ is contained in the complement of () Q. Let @ be a point
of density of the complement of |J @, and let Q > @ be a cube of edge h.

If h is small, then @ ~ @ # 0 implies that Q,, < Q, where Q is @ expanded:

three times. Thus

(7.12) of < af < 2V log -
QpnQ#0 Qp QpnQ#0 hk

gn+1

< .
< Togamy 20

Q@0
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But
(7.13)

Y = > 1@l = o(IQl) = o(A").

QpnQ#0 QprQ#0
From (7.12) and (7.13) we obtain that

éfgdt = o(h/log%).

Thus the O in (7.8) can be replaced by o and Theorem 5, follows
from Theorem 5.

4. Theorem 9 below is an analogue of Theorem A for strong differ-
entials in IP; it is not particularly deep but perhaps deserves a proof.
We consider a function f(z) = f(@q, ..., %) eL”(Q), 1 < p < oo, Where
Q, is the unit cube: 0 < »; <1,i=1,...,n. We write 2’ = (@, ..., Zn),
%' = (Bmy1s...s %) and for any rectangle (in particular, cube) R we
denote by R’ and R" the projections of R onto the subspaces of ' and
«'', 8o that R = R'X R".

THEOREM 9. If f(x) has at each point xeE < Q, a (k, p)' differential,
then at almost all points weE it also has a (k, p)’ differential with respect
to the variable ='.

Using the decomposition theorem stated in Chapter I, we may reduce
the general case to that of differential 0. Write |f|* = g. Omitting from B
a set of arbitrarily small measure we may assume that given any & > 0
there is a 6 = &(¢) such that for any rectangle R containing a point ze¥
and of diameter < § we have

(7.14) [ gdo < ew™|R|
R

where w is the maximum edge length of E.
Let R, be any fixed rational subrectangle of Q; (i.e., a rectangle
whose vertices have rational co-ordinates), and let

h(mll) e hR; (wll) p— Ig(él’ wll)dé/.
Rl

The family of functions k(') is denumerable. Each function A (")
is integrable over @, and (a) its indefinite integral has a regula.r derivative
(i. e., demvatlve with respect to cubes @ < Qo) equa,l to h(2”) for a.].most
all pomts @’ <Q} . Moreover, (b) for almost all #”* @ the function f(a', ©”
as a funection of ', is integrable over Q-

Consider now any point » = (z', #')eE for which we have both (a),
no matter what rational rectangle R we take, and (b). In (7.14) we con-
sider only rectangles B > = of the form By x @", so that |R| = |Ei| |Q"],
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R, > a,Q" > &' The requirements (a) and (b) eliminate only a subset
of B of measure 0. Dividing both sides of (7.14) by |@”| and making the
passage to the limit |Q"’| -» 0, which is justified by (a), we see that

Ja(g,a")ag < ew Ry,

&,

where now w is the largest edgelength of Rj. The last inequality has been
established for rational.rectangles R; containing &', but, in view of (b),
it holds, by continuity, for all rectangles R’ containing 4" and of diameter
< 6. This completes the proof of Theorem 9.
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On some properties of a class of singular integrals
by
CORA SADOSKY (Buenos Aires)

Introduction. Our purpose is to extend some known properties of
the singular integrals of Calderén and Zygmund to a more general class
of operators introduced in [5]. These singular integrals are convolution
operators by quasihomogeneous kernels having mean value zero on
certain differentiable manifold surrounding the origin (in the case of
parabolic kernels, see [67). '

The aim of this paper is twofold. Firstly, we study the pointwise
convergence of the quasi-homogeneous singular integrals and the beha-
viour of their maximal operators. Similar questions have been considered
in our joint paper with E.B. Fabes (cf. [9]) for the different kind of
parabolic singular integrals introduced by Jones in [4]. The same ar-
gument of [9], that is essentially a suitable modification of the method
used by Calderén and Zygmund in [1], could be repeated for this general
case, changing the computations to adequate them to the truncation
of the kernels used here. Nevertheless it may be of interest to reconsider
the question since an adaptation of the general method of “subordination
of operators” given by Cotlar in [3], that can be used for the singular
integrals of Calderén and Zygmund, enables us to get also a complementary
result for the case p = 1 not considered in [97 and the pointwise con-
vergence even for integrable functions.

Secondly, we consider the classes Tj(w,) studied by Calderén and
Zygmund in [2], conveniently generalized, and prove that they are
preserved under quasi-homogeneous singular integral operabors.

In §1 we give the definition of quasi-homogeneous functions and
kernels and state some results about the singular integrals given by
convolution with those kernels.

In § 2 we study the maximal operators of these integrals and obtain
a8 a consequence that the guasi-homogeneous singular integrals converge
in the pointwise semse for functions in LP,p > 1.

In § 3 we give a generalization of the classes T3 (x,) to the case where
a different number of derivations may be taken in each variable and
prove some basic properties of these clasges.
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