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Singular integrals with mixed homogeneity
by

E. B. FABES and N. M. RIVIERE * (Chicago. IlL)

A. P. Calderén and A. Zygmund have widely studied singular integrals
whose kernels are functions defined on E™ and homogeneous of degree
—mn. Lately, Jones [4] considered singular integrals whose kernels satisfied
a “homogeneity” property of the form K (iz, A7™t) = A~ ™K (», t), where
zeH", te(0, co), m a positive integer (for more details see the appendix).

The purpose of this paper is to consider a general class of kermels
K (z), homogeneous in the sense that there are positive numbers a;, ..., a,
such that K (1, ..., A"a,) = 1~ 59K (x).

In the first part of this work the continuity of these operators acting
on I?(E") is considered. In the second part, these same considerations
are applied to operators on I?(E™) arising from kernels K (z, y) satisfying
K(z, 2y, ..., A*y,) = Am*K (v, y). Finally, in the appendix it is
gshown that these kernels include those studied by B.F. Jones.

§1. SINGULAR INTEGRALS

I. A change of variables of polar type. Let z = (z,, ..., ,) e E" and
dyy ...y O Teal numbers, a; > 1. Consider

n

mz.
Flo,0) = Dl

j=1

for a fixed x, F(z, o) is a decreasing function of ¢ (¢ > 0) and therefore
call the unique solution of F(», ¢) =1 by ¢(#). The point

@ &,
L ——)eZ, (T = {meE", x| =1
(2) ’ 79%(50)) ( {= || )]

* The author was partially supported by Consejo de Investigaciones Cientificas
¥y Tecnicas (Buenos Aires).
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and ¢ can be written

2, == 0“1C0O8qQ; ... COBPy,_5CO8Pn_1,

By = 0"2CO8Qy .. SiD@n_1,

@, = p"r8ing,

.y ¢n_y)dodo where do is the element of area

and do = oF 1 J (@1, .-
ey Pn1) €0%((0, 27)" % X (0, =)).

of Z, and 1 < J (¢4, .- vy Pne1) < My I (g -
REMARK 1. o(®) 45 & meiric.
Proof. Observe that o(2) < 118 equivalent to 2| <1 and (A" ®yg, uny
Penw,) = dg(@) (A>0). Call Iy = (), A = e(y)y 4 =i+
From the preceding remarks it will be enough to see that

S
T
(e
+ %3 ((%2—)“1_1 Y1 e (if)an_lyii) <8,
where (¥, ..., 25 eZn, (Usy..vy Yn)eZy. Since 0 < /4 < 1 and using the

convexity of S, = {z; || <1}, the result follows.

II. Singular integrals and class preservation. Let & «E", K () a complex
function defined in E”— (0), ¢; real numbers, such that 1<€a,1 <i<n
(It can always be assumed that 1 = oy < a < ... < ap.) We will assume

1) E(A9@,, ..., An@,) = A FDK (@, ..oy @)y 4> 0.
If
0 ... 0
A=10 2a= 0
0..... A%
this property can be written as K (i) = |det(1)| K (o).

2) ;rf |E (@) |do < oo (we will assume for simplicity: i[|K(ao) lde <1

n

[E@)T (@1 -+ s pas)do =0,
Zp

icm
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where J (@1, ---, Pn_1) is the function determined by the change of variables
defined in Section I.

Let feCy(E™ and set
K .
K- |F@ e@>e
0 otherwise
(o(w) defined as in Section I).
Set
flo) = K, (f) =

[ E.(a—y)f(y)dy
E*

exists everywhere.
THEOREM 1. If

1)

flK(w~

where Sy = {z, o(z) > 4g (@)}, C independent of y
0 > 1), then for feCF (E")

1) fille < ApCliflly for 1 < p < oo where A, depends only on p, aj, ...,
O,y fIK(W)IdG

) There ewists feL" (B") such that hm [Lf feup = 0.

Part 1) of the theorem will be d1v1ded into two lemmas. We pass
now to prove the theorem for p = 2.
Let

y)—K(2)lde < 0

(say for simplicity

K@), &<el®)<E,

h(z) = K .
0 otherwise.

R (%) =
Tor simplicity B will always denote any constant depending only on
Ary eeey Uny

fla) = [e™°Vfly)dy
En

will denote the Fourier transform of f(z) in the sense of I*(E") or L' (E")
depending on whether feL*(H") or feL'(E"). Here

n
soy — Mg
=1

LeEMMA 1. lﬁ(m)| < BC for weX,.
Proof. Observe that

a

o)ldo < f{ ] 1E(

usq(w)<a [

(1.2) ()] (¢)do} do < Ba
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(using the change of variables introduced in Section I).

(1.3) K (o) do ={f f %IK(W)IJ((P)%} do <B.

ao(y<ta

Finally, using (1.1),

(14)  [|r@—y)—h(2)ds
Sy

<2 | K ()| de -+ f|K(m—y)-—K(m)ldm+2 | K ()] dov < BO.
a<p(T)<4s S’u Reo(x)yssld
Let e,
ohia) = [Ny —hy—a)ldy = [ &V Ihiy)—h(y—aldy+
bl o(U)=>4
+ [ e —1lgy— [ hly—o)[8™ " +11dy+ [ ny—w)dy.
o(y)<4 eW)<4 o(v)<4

Tor the first term use (1.4) with g(2) = |#| = 1. Observe now that

‘ein(mnw)__l\ < Blyl € Bely) for o(y) < 4,

(Note e(y) > Iyl for lyl <1
lein(wov)_l_l] = le'in(mo(y—-m)) —1| <B1y—“ml < Bo(y—m)

for o(y) < 4.

Both estimates together with (1.3) give a bound for the second and
third integrals. For the last one observe that {y;e(w—y) < 3}« {y;
o(y) < 4} and therefore it can be majorized by

[h(y—a)ldy < B,
<oV —2)<5

and the lemma is established.
A Observe that K, (A%, ..., A0,) = K, (@1, .., @) Which implies
|K,g(2)| < BO for every x<H".
Now if

fir(@) = [ E.zlo—y)f)dy (feL*(E"),
E®
using Pargeval’s identity

1.zl = 1Koz fla < BOIfl = BO|fls-

icm
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Finally, since feO3(E™), fN,,R(m) — f:,(w) everywhere as R — co, and
using Fattou’s theorem,

Ifill: < B[Sl

To prove the same result for every IP(E™),1 < p < oo, we will
prove first weak type (1,1) and then interpolate.

The weak type result holds for convolution with more general func-
tions than K, (). In fact, no homogeneity is needed for this result. More
precisely:

LeMMA 2. Let k(z) be a locally integrable function, satisfying condition
(1.1), and for feCy (E™) assume

floy = [Rke—ypf@dy
i

@

(1.5)

satisfies

(1.5") (Ifle < Cliflls

(it is enough to assume (1.5") for some p >1). Then
i, )| > My < S U

where |A| denotes the measure of the set A.

To prove this, we will need the following result:

SusLEMMA. Let f(z) = 0,felP (B"),1 <p < oo. Then for every M > 0
there exists o sequence of non-overlapping sets {T:} such that

1) Iy = ix ... x Iy (I} one-dimensional intervals), |Ix| = ¢ (o; as
considered before), ¢ depending only on k and determined by the sequence.

2) Consider any a such that 1 < a’ <2 for every o; amd take any
r > 0 satisfying

1 1
(1.6) 1—— —— =0 for every o;.
ol o 7
Then
1 -
M <= | fl@yds <2 M.
]Ikl_lk

3) If Dy = U I, f(@) < M in Diy (the complement of D).
k

Proof. Write E" = By XRyX...XR, (B; real numbers, R =
(—oco, c0). Divide R; into a mesh of intervals of measure |Ijj = ¢/,
project them into E™ and intersect the projections. This will produce in


GUEST


24 E. B. Fabes and N. M. Riviére
E" a mesh of the type described in (1). Let ¢ be large enough so that
1 ) ,
= f Flw)ydw < M.
Il ;
[

Proceed now by induction as follows: Set ¢; = ¢x_,/a. Every interval
Ii_, can be divided into at most two intervals, the one on the left of
measure ¢ if possible. Project and intersect in Ij_, forming at most 2"
sets, call them I;, select from them those for which |Iy| = off and

1
!—Ik—l,{f(W)dsz,

on the rest proceed as before.
Finally we will have selected a sequence {I;} of nom-overlapping

sets as described in (1).
Tor a selected I,” let Ij,_; the first I such that I = Iy_; and Ij,_
satisfies property ), and using (1.6) T < 2r; hence

|Ik il 1
o] ,f e <G T,

f flw)ds < 2™ M

(since Ij_; was not selected) and property (2) is also satisfied by the‘

selected sequence.
Call Dy = \J I} (I nelected sequence). If x¢.Dy, then there exists
a sequence I, of sets of type (1) such that wely,, |I,] — 0 and

1
—_ ay < M.
] 1{]‘(@/) y <

But for this type of sets (%)

1
m,{f("”dy > (@) e

and the sublemma is completed.

Proof of Lemma 2. Since f(») = f*(®)+f~ () we can assume that
fl@) >0 and |f(x)—f(y)| <elw—y| with bounded support.

For M >0, let {Ix} be the sequence selected by the sublemma,.
Define

(@) for weDy,

f
=11
W,kff(w)dw

(*) See Jensen, Marcinkiewiez, Zygmund, Fundamenta Mathematicae
25, p. 217.234, Theorem 6.

for wely,.

icm
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Set v(x) = f(@)—u(»), then v(z) satisfies:
L.7) v(@) =0 in Dy, [v(@)ds =0;
Ig
(1.8) f[v(m)ld:v <2 ff(m)dm.
En B

Using properties (2) and (3) of the I,’s we have:

(1.9) fuz o) dw = ffﬂ(m)dm+2 f(lll_kl ff(y)dy)2 w
B Dy BTy Iy,

< M (flh+ 2™ M*| Dyl < B

v(x) have bounded support and satisfy a Lipschitz con-
%(@)+0(w) is defined everywhere,

Since u(z), v
dition, f( z) =

- . M
(1.10) Km, If() = M} < {99, [u(z)| = }I + |18, [0(2)] > ’2“”
and -
o M 4 - 4C BC
(1.11) {w, u(@)| = 5-” < TIFEI [ul*de < 2 Ills < 57 11

(using (1.5") a,nd (1.9)).

Call 8,(2) = {y, o(y—x) < 6}. Liet § be the only positive solution of

Zﬁpzaj =1,

j=1

and ), the symmetric center of I,. Then Sy, (7x) covers precisely Ii
(o, defined in the sublemma). Set

8 (1) = Sspo ()

{m, 1% (@) >ﬂ§}]

{o, 5@ > 5} ~ D%

and D¥ = J 8.

k
Then

(1.12)

. M
fo, (@)1 > 2} s

<

((D})" complement of D), and

B
(1.13) < | Dyl < ﬂllflh-

- M
{m, 19 (@)| > _2,} ~ D3 < B )|l = B|Dul
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By hypothesis
k(@) de < C.

[ lo(@—)—

Sy

(1.14)

Hence using (1.7)

z)|de < Z fﬂlfk(w—y)v(y)dy)}dm
=; /1)
" (o)

(DM)

k(o—ya)o(y)dy |} do

<y flv(y)t{ D | llo—g0)= (g =)~ k(o — )| da}
Bk (©3)’
and since for xe(D}), yeli, o(@—yi) = (4/——y,ﬁ) and applying (1.14)
[ 1(@)lds < B(O41) |kl < BO+1)|flls-
(@)
Hence
- M . BO
15) | fos fotoll > g} 030 [ o < 571k
(23)’
Therefore collecting the results (1.11), (1.12), (1.13), (1.15) and apply-

ing them to (1.10),

(1.16)

- BC
|{@;1f (@)] > M} <57 1l

REMARK 2. Let K, (») satisfying the conditions of Theorem 1. Then

= BO
|wlfo) > M} < = Il

Proof. K,(x) is locally integrable and by using the same argument
as for (1.3) ahd (1.4), (1.1) follows for X,. Finally using (1.5) it is of type
(2,2).

Proof of Theorem 1. Theproofofl)forl < p < 2 is animmediate
corollary of (1.5) and Remark 1 by the use of Marcinkiewicz interpolation

Theorem (see [7]), For p > 2, take p’ such that 1/p-+1/p’ = 1. Clearly
l<p' <2

icm
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Ifllo = Sup [fo)g@)an = Sup [ f(@)d.(@)da

19lp<l gn lolpr<l gm

0e0 (E™) 7eOP(E™)

< fllp 1ellyr < Apr BCH1) 1l

A, depending only on p, and Part 1) is established.
2) Let ¢ <5 <1, feCOF(E).

F@—Fel =] [ EZore—wal,
ee(V)<n
=| [ zwife-
s<e(¥)<n
ol (o ) |- ftr+oo)| am | <o HZf@f )
i

using Minkowski's inequality and (1.2) (Jz| < ¢(=)).
a Cauchy sequence in L”(E") which proves part 2).

This result allows us to extend the operations fs, f to the whole of
I?(E™) by continuity, since

£k

y)~f@)ay

<

s<e(m)<n >

Hence {fs} forms

= lim Il < ApB(C+1) [l

and we will denote the extension by

f=rp- [ Ewie—yay,

e(v)=s
understood as a limit in I”, and

f=E(f) =1m [ K.@)fla—y)dy in 1.

[ Efl@—y)dy ewists

REMARE 3. If K{z) is bounded in Z,,
e(v)=¢

and cotncides with fd(m)

REMARK 4. Assume K(z)eC'(E"—{0}) and let

13

[ 1K (2—y)— K (@) de < BC™.
Sy

o* = Sup{ Sup

zeE, =1,

1.17 0
(1.17) o,

Then
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Proof. We have

| (@—y)—K (o)l do = [J(p da{f 07 () K (@' — yp) —K ()] do
o(x)=%e(v) Zp, 4o(V)
where o' = (2,/0% (%), ..., T./¢(#)) ¢ Z, and
= (g [ n = Q_(ﬂ M M "
Yo = (12/0"(8), ..., Yufe (w))~((0(w)) (’/17--~7(Q(m)) yn)-

Since o(y)/e(2) < 1/4, |y,| < 1/4. Hence |#'—y,| < 3/4, and applying
formula (1.17)
n
)\
\K (2 —y)— K (2)| o < BO* f o~ (@) (2(95”)) )dg
o(@)>10() % 4o(v) =1 o(®)
n
(=]
f@ o < BO*
4w @@
since o; > 1
IOI. I7(F") multipliers. Let o = (ay,...,a,), o >1 as before.
For p = (By,..., ) define
ZL_’ (3
=Dlyp and [f = D'
j=1 J=1
For & = (1, ...,x,) define .
Pmo= (2w, ..., M%) and (2)" = zhaf2... afn,

If hix)eL”(E") and @e<Cy(E"), the operation T(p) = F- Y(rF(p ))
(where F is the Fourier transform operator) exists everywhere and more-
over is of type (2,2), ie, |T|, < M|¢ll, where M is the essc. sup. of

h(z), by a simple apphca,tlon of Parseval’s identity.

The funection h(») is said to be a multiplier when

ITell, <

TurorEM. Let h(z)e L° ("), and assume h(w) is N times continuously
differentiable where N > |a|/2; moreover, assume that

SAyllpl, for every p, 1< p < co.

(1.18) d“

B (0/02) h(a)|* =
Ri2<e(w)<2R

a <O, [h(o)

<0 ae.,

where O is independent of R, say 0 > 1, and o(®) defined by o as in Seotion 1.

icm
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Then

IT (@) = || 7~ (RF (@) [|» <

where A, depends only on a and p.

Proof. Let x(1)eCf(—oco, co) be positive in § < {t] < 2 and zero
otherwise. Set

<A 0leln, @0 (B,

o) = 20,
Priad)
Clearly,
Yoy =1
f=—00

and P(t)eCy(—o0, co) with support in the interval } <| Let

i <2
»(@) = (o(a) 0% (") and

e,
jgmw(z ) =1
(2"*g = (277)°% in the sense previously defined). Write hy(z) =
then for || < N

h(@)p(2""e);

(1.19) 2N (D, hy) (@) = D 2N (Dyf) (@) (D, p)(27")

Bty=n
and since (D, )(2 (277°%) iz absolutely bdd. and has support in 27— g o(x)
< 9/, applying (1.18) to the right hand side of (1.19) with B = 2/, we
have

. dz
(1.20) flzj( '".)Dnhf(m)izw < BC.

Let g;(2) = ﬁ,(m). Applying Parseval’s identity to (1.20) and adding
over all ¢, |n] <N,

(1.21) D [ ey g, (o) de < BC 2.
<N gn
Now,
(1.22) 2 |2 > B+ 2P > B(1+ 92(2ium))N.

<N

The second part of this inequality follows immediately when |27°s] =1
since then [2/°s| > 0(2°¢) and becomes trivial when |2°z| <1 (which
is equivalent to ¢(2"°z) <1).
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Applying now (1.22) to (1.21),
(1.23) [ (12" ¢ @) 1g; (@) dw < BOF'.
¥
Using now Holder’s inequality and (1.23),
120) [ lge)ldo < (BOM( [ (14+2¥ g @)~V da) " < (BOY
£ "

provided N > |af/2.

Moreover

f g5 ()| de < (B0)1/22:f|n|]2( f (1_}_22792(“7)),.1\70[%,)1/2
o(7)=a e(@)=a
< (BOM (2’ a)”  where 7 =.J.g.ﬁ —N < 0.

In particular, the preceding inequality shows that

(1.25) | lgle—y)—gy(@)lde < (BOYP (Xoly)
o(®)>4e(v)

which is a good estimate for that integral when 20(y) = 1. When %o (y)
= 0(2°y) < 1, we will proceed as follows:
Set f(@) = (~W*"—1)h,(x). Hence

2D, fi(m) = D) (—i2ly) " P (Dyhy) (@) +

+ [e—iuo:c__l]27'(a,ﬂ) (D" hy') (m)’

and therefore

(1.26) f|27(“ﬂ)1)f] < BO2¥ g (y).

2f| a

Using that 12’“y1'7' < 12°y] < 2'9(y) when |y| > 1 and since in the
support of D, h; 2! < o(x) < 2+, we have

e~V —1] < Blwoy| = Bl2*w'y| = Ble'o2®y| < Bl2'| |9y < BY o(y).

(Note ¢(#') < 2, and inequality (1.20).)

Ob.serv%ng now that f;(@) = g;(w—y)—g;(#) and proceeding with f
a8 we did with A, we replace in inequalities (1.21)-(1.24) BC by B02Y ¢*(y),
and we finally obtain

E£ lgs (@ — )~ g; ()| dov < (BOY2 g(y).
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Thig inequality together with (1.27) shows that
(1.27) f lg; (2 — y)— g5 (@)l do < BOmin {2/ 0(y), (2 ()}
o(®)>4(¥)

Let
M

Gulo) = D gi().

j=—M
(1.26) shows that
Ga(@—y)— Gu ()| de < BC
e(z)>4e(¥)

independently of M and o(y).
Let

M
CHy(@) = ) (@)
j=—M

Then |Hy(x) < BC and b ar = Gy, Therefore @y (x) satisfies the
conditions of Lemma 2 in the previous section. Then for @ (®) 07 (B")

Tyulp) = j Gule—y)e@)dy = F~ (HuF(p)

satisfies |7 (@)l < 4p Gnqo][p,A depending on p and a only. Now Hy
are uniformly bdd. and converge everywhere to h(). Therefore,

Hy (@) F (¢)(#) — h(2) F (p) (2)
in I1(#") by Lebesgue dominating theorem, and hence
F(HyF(p)) (@) — F1E (9)) (2) a0
Usmg now Fattou’s lemma
| 2@ = | T AP @)]s < Aplols

and the theorem is proved.
This result has been proved by Hormander in [4] when a; = o, = ...

:a"=1.

§2. VARIABLE KERNELS

Tn this section we consider kernels K(z,y) with the following pro-
perties (zeE", yeE"):
1) For every =z fixed K(z,y) is a smgular kernel in y as treated in
§1 with homogeneities 1 <a; < ay... <.
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2) For every o fixed K(z,y)<C™(I"—{0}) and

a\f
P (8?/) Kz, y)| <

YeZy,

Op

independent of .

Define
K(z,y) for ofy)=e,
Elo,y) = 0 otherwise.
Tor feOF (B™) net
flo) =K, () = [K,(@,2~9)f@)dy.
E’IL

ﬁ(w) is well defined everywhere.
THEOREM 1. For feCF(E"), 1 < p < oo, we have
1) Wiy < Aplflys Ap independent of s and f.
2) There exists f such that Hm ||f,—fl, = 0.
&0

Before proceeding with the proof of the theorem, we will state certain
properties of n-dimensional spherical harmoniecs which will be needed
in the proof.

Let Yi(#) be an n-dimengional spherical harmonic of degree !; then

. a\* (252 +10)
2.1) weZ,; (5;) Y. ()| < B
Let
T, 1<r<(H00Y) - (000)

be an orthonormal base for the space of all spherical harmonics of degree I.

Then {¥;(x)} for all k, 1 is a complete orthonormal system of functions
over X,.

If feC®(Z,) and if f(a Z‘ gy Yia(@) (weZy,) is the Fourier series
development of f(») with respect to {¥y;} where

g = [f(@) Veu(a)do,
Zp

(g;)%

then, for every r > 1,

(2.2) logeg| < 4,17 Sup

)
|Bl=2r
TeZy,

A, depending only on r and n.
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For the proof of this result the reader can see [3].
Proof of Theorem 1. Since J (¢, ..., @, 1) c0®(Z,), for yeX, and
calling ¢ = (@, ..., Pn_y), We consider \

K (2, 9)J () = 3, aa(e) Yia(y).-

k,1
Hence
2 a1 () Yo ()] (@
Define
o(z) when p(x)>e,
Q,(ﬂ'}) = .
0 otherwise.

Given yeE" write y = (¢"(§)1; s €™(¥)¥) Where 7 =(7,...,

Tn)€Z,. Then the series -
Vi1 (F)
g (2)
; =) 5o o )

converges in LY (E"), 1 < ¢ < oo, to K,(x, ¥), using (2.1) for § = 0 and (2.2)
for » large enough. Therefore

~ Y,
Je(@) =Zakz(w) fJ e () fle—y)dy  a.e.

oZ4(
“ ()

Observe that, on the other hand, Yi;(%)/J(p)es™(y) is a singular
integral kernel as treated in Section II of §1- and therefore

Il < 4 (2 max |a; ()| {H—Z sup | =~ Ykl }}) (171l -

Using now (2.1) and (2.2) with g =1, » > 2n—1

Wfillo < 4 (3 17 (@102 1l
k1

<A,,(;,’z—*<1+z"—2>/2+1)(('j”_”1'1) (i 3))[|f!in

4, ( S +Zn/z)l(n~—1>ﬂ) il < Apliflp,
1

A, independent of ¢ and f.
The proof of 2) is the same as in Theorem 1, Section IT of § 1 applied
term by term to the series.

Studia Mathematica XXVII z. 1 3


GUEST


o
34 E. B. I'abes and N. M. Riviére Im

TuroREM 2. For feCOF (H") let
o)y = [R.(y, a—9)iy)dy;
¥
then for 1 <p < o0

1) ¥ < ApIflly -
2) There exists f eI’ (B") such that llm Hf"‘ f*H,, = 0.

Proof. 1) follows exaectly as in prekus proof once it is observed
that

~ Yy, .
fiw) = Z J(f'})lgz?.;; ey (=) f(@—y)dy  a.e.
o o O\

For 2). Given & > 0 select first N large enough so that for e <1

Hzf Y“ Eﬁw Dfta—y)ay|

Ial i

8
<.
4

This is possible by using part 1).
For the terms where | < N using part 2) of Theorem 1 of Section IT
in §1, there exists an &,; ¢, < &, such that

Yi,1(9)
I ()™

ep(@—y)f (@—y)dy LS5

kL e<o(¥)<sn
I<N )

which proves ||f* fﬂllp 3 for ¢, n < &, and therefore {j,} is a Cauchy
sequence.

: ~Theorem 1 and Theorem 2 allow us to extend the operations f:, f,
f¥, f* to the whole of L”(E"). These operations we will call

fo=E.f) = [E.(o,0—y)f(y)dy,
En

=K = [R(yo—9fy)dy,
En

f=K(f)=PV.[E@®,0—9)f(y)dy =lm K,f in I?,
a0

~

f=E*f) =PV.[E(y,e—y)f(y)dy = lim K*f in IP.
80

Observe that K and K* are the conjugate operations of X,
and K.
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§3. APPENDIX

Similar singular integrals to those presented here have been studied
when a, = @y = ... = a, = 1 by Mihlin [6], and by Calderon and Zyg-
mund [1], [2], [3] who first developed the theory of variable kernels
for indices a; of the preceding form [2].

Lately, Jones [5] studied a similar problem where o, = a, = ... =
=a, =1, ay, = a, but using a different truncation. The conditions
of Jones are:

Let xeB,_;, teE; = {positive real numbers}.

() K(hz, 2%) = A" "K(2,1), A>0, a>1.

Call Q(z) = K(z,1), K(x,t) = t " K (¢~ V2,1) =t~ 2t "z).

(3.1) ) [ @+l i2@)]ds <0

Ep
(3.2) [Q@ s =

By,

(3.3) © [l2@—y)—2@)lds <Olyl,

By
(3.4) f]!)(l—]—d)w)—Q(w)]dm <06 for 8<1;

En

(@) [ 12(@)ds < Ca™.

|z >a
Under these conditions the truncation used in [5] is

) K(.’L’,t). for t>=e,
K, (z,1) =

0 otherwise.

We will show that conditions (a), (b), (¢) imply conditions (1), (2)
of Section IT, §1 and (1.1). Moreover, if I, is the truncation defined in
Section II, §1, K,—K,L'(E"") and
(3.8) |IE,—EK., <0, C independent of .

This result will immediately imply the continuity of the operator K,.
Observe that (3.1) implies for ¢ > 0 that

(3.6) dtJle t]dm_f {fm Idm} <Ok
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and
(3.7) jdt f [K(m,z)\dm=f7 Q(m)|dw} a
0 || =a 0 lekuﬂ]/“ ‘
e 1
\f {fm 12 )\dr} < 0.
] a t 1,

With these two observations and condition (a) we will prove now
(2) of II, §1 and (3.5).

For that
K(z,t)dedt = f]((m, 1) dedt fl((:v, t) duedt — fl((:v, t) dwdt,
1<l l)<2 I 1 Iy
where I = {(#,1); 1 <t <2}, T = {(2,1);0 <t <k, ¢(w,t) 2 k}.

I
|
l
1
1
|
|

a

-1

2
|
|
|
: |
- |
Lo I,

The existence of the three preceding integrals is given by (3.6) and
(83.7). This will in particular show that

K (w, )| dadt =12 [ |K (@, )] (p)do < oo.
15e(x,f)<2 piy
Since

[ K@, vawit = [ K(w,t)dedt

I Iy

by a simple use of the homogeneity of K (z,1); and

fK (@, tydwdt = f—%ﬂ{f(e(m)dm}dt =0,
I 1 By,

[ E(a,t)dedt =1n2 [ K@, )J(p)do = 0.
Zp,

Io(®, <2
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To prove (3.5),
f K, (2, t)—K. (o, )| dedt = f}K(w,t)det: f[K(w,t)]dwdtgc’.
Ep 41 I, I
Finally using conditions (a) and (b) we will prove (1.1). .
Call A, = {(»,8);|t] >2°0°(y, 8)}}, o= {(m, 2); It| <2%"(y,8),
|| = 20(y, s)}. Then

By = {(w, t); olw, 1) = 4o(

[ 1K @—y,t—s)—K(o, 1) dods

Swe)

< [ |E(@—y,t—9)—K(@,)ldodt + [|K(@—y,t—s)=K (2, dudl-
Ay

¥,8)}c A, v 4y,

Now

f |K(z—vy,t—s)—K(z, )| dodt < flK(m—«y,t—s)]dwdt+Afz | K (=, t)| dzdt,

Ay Ay

[ 1B (z, 1)l dodt <O
Ay

using (3.7).
[ 1K (2—y, t—)| dodt = [ |K(a,t)]dedt < BO
s :5)+43
using (3.6), (3.7) and
(y, 8)+4, = {(, 1), 18| < o*(y,9); ol = ey, 8)}
< {(z,1), ¢ o™y, 8) <l < 3%0%(y, )}
Also
' Q-9 (@—y) _ Qo)
flK(:v—~y,t—s)——K(w,t)]dwdt= H—((T:S-)TITJ—W dwdt
A, 4y
i ! o —5)" Y g)|dw} dt
< | o] oot o= o= o
2%%(y,8) n
a —1ja
+ f(t s)ﬂ/m{ fiQ ((t— ) H0)— (7 a)| dw } dt-+
2“9(1/3)
1 e _
s)n/m — {Ef Q) as) dt = P+Q+ .
2%(¥,9) n
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ro1 ~1fa |
P= f —————{ f|!2(w—(t—-s) y) — Q(x)| dow| 0
oL, j

2%%(,8)
[~

1 1
< Olyl f sy at <0
2%%w,9)
using (3.3).
A similar inequality is obtained for ¢ using (3.4).

o
u 1 1 g .
R= f il gy T g { J |2()| dm} dt
Z“Qa(ll,s) K n
@ Is| 1 \mat2 d
. s i 1 }
zaea(”'s) 2“0(1(1/,8)

and the condition (1.1) is finally proved.
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On the convergence structure of Mikusifiski operators
by

Edwin I, WAGNER (Albugquergue)

1. Introduction. Let # denote the complex algebra, the elements
of which are continuous complex-valued functions of a non-negative
real variable with the operation of multiplication defined by finite con-
volution; the operations of addition and scalar multiplication defined
in the usual manner. € has no zero divisors, hence the quotient field may
be constructed. This field, which we will denote by ., is called the field
of operators, and is the foundation of the operational calculus developed
by Mikusinsgki [4].

Mikusinski [4] (Part Two, Chapter I, p. 144) states a definition of
convergence of sequences of operators. Urbanik [6] has shown that there
is no topology satisfying the first axiom of countability in which con-
vergence of sequences iy convergence in the sense defined by Mikusifski.
The definition of convergence as given by Mikusinski is generalized to
nets and filters and is referred to as M-convergence. ‘We show that M-
convergence defines a Limitierung, vy, o0 the field of operators which
is the direct limit of Limitierungen on subspaces of . It is shown that
the Limitierung, 7, is not topological. Thus there is no topology on .
for which convergence of nets and filbers is precisely M-convergence.

Some properties of the limit space (A, ;) are investigated and the
notion of a linear limit space is defined. The topology defined by Norris
in [5] is shown to be the direct limit of Limitierungen on certain subspaces
of the field of operators

2. Preliminaries. If the complex algebra % is provided with the
topology of compact convergence it is & routine matter to verify that #
is a topological complex algebra. The collection

B(f) = {Blay &, [): @ >0,¢6> 0},
where
Bla, e, f) = {ge®: max |f() =g <e}
[iE<2:7

is a fundamental system of neighborhoods of the element fe% with respect
to the topology of compact convergence.
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