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Extension of the rank funetion
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ISRAEL EALPERIN (Kingston)

1. Statement of theorem to be proved

1.1. This note is devoted chiefly to proving the following theorem
(the terminology is explained in §2 below):

THEOREM 1. Suppose that & is a regular associative ring with rank
function R and n is any integer >1. Then:

(1.1) There exists a unique rank function R, on &, with the property:
R.|E(e)) = nR(e) whenever ¢ is an idempotent in % and E(e) 8 the matriz
in R, which has e for all diagonal entries and 0 for all other entries.

(1.2) Rn(A4) = R,(B) whenever Aeky and B is obtained from A by
interchanging two columms (rows), or by adding to any column (row) any
right linear (left linear) combination of the other columns (rows).

(1.3) &, is complete with respect to the melric of Rn, if & is complete
with respect to the melric of R.

(1.4) There exists o unique dimension function D, on the lattice of all
finitely generated right submodules of A" with the property: D,(x#) = R(e)
whenever © (in &™) has idempotent e for one component and O for oll other
components. ‘

(1.5) If A<, and the columns of A are denoted by A,y ..., An, then
Ry(A) = Dp(A, B+... +AR); of A, ..., AR are independent righi

submodules, then R,(A) = ) Dn(4;%).
i=1

2. Intreduction

2.1. If # is a ring (not required to possess a unit) we write %, to
denote the ring of all n xn matrices with entries in 2 and we write 2"
to denobe the right #-module of all vectors # = (wi)lg.ign with com-
ponents 4 in #. A vector <" is said to be controlled at the i-th place
by the idempotent e if ze = z, o =e, and o =0for j>i. I ARy,
then A? denotes the transpose of A.
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2.2. An associative ring £ is called regular if for each a in %, afo = a
for some g in £. The following is a slight generalization of a theorem
of J. von Neumann (see [4], Theorem 2.13; [1], §3.4):

If #Z is regular then:

(2.1) %, is regular.b

(2.2) The principal right ideals of £, form a sublattice, denoted
!Jy P,.(gi’n), of the complete lattice of all right ideals of #, ordered by
inclusion; P,(#,) is a relatively complemented modular lattice with
least element 0 = (0).

. (2.3) The finitely generated right submeodules of %" form a sublat-
tme,ndenoted by E,(gl’“), of the complete lattice of all right submodules
of 52 ordered by inclusion; F,.(Z%") is a relatively complemented modular
lattice with least element 0 = (0).

(2.4) If ¢ is the mapping defined for each prinecipal right i
of #, by the rule ? pul might faeel 1

¢(I) = set of columns of elements in I,

then ¢ is an order isomorphism of P.(%,) onto F,(%™).
(2.5) §uppgse that MeF (Z"). If M =y, &+...+y, & for some
zl, ceey yndm Z" such that for each 1, y; is controlled at the i-th place
y some idempotent e; in £, i i i i
ey P . in Z, then each ¢; % is detern}med uniquely by M;
e % = {o" |we M and o' = 0 for j > 4}.

(2.6) It M<F,.(%"), then there exist y,,...,y, in %" such that
M= yl.%.—}—.‘.—i—yn!% and for each 1, y; is controlled at the i-th place
by some idempotent ¢* and, for all j < 4, ¢ (3, = 0.

2.3. Suppose tl.la;t % is a regular ring. A real valued function R is
called a rank function on £ if it is defined for all ¢ in # and

(2.7) 0 < R(a) < oo for all a = 0.

(2.8) B(af) < B(a), B(ap) <R(P) for all a,p in .

" (2.9) R(e+f) = R(e)+R(f) whenever ¢,f are idempotents in #
which are orthogonal (a, g are called orthogonal if af =0 = Ba).

It follows that R(0) = 0, B(a) = R(B) whenev
f ) = er af =
= #f (in particular R(a) = R’( —a)), i ¢ ‘/3-% o e

m
B(ert--.tom) = D R(e)
=1
‘whenever ¢y, ..., 6, are pairwise orthogonal idempotents, and the func-

101 (ll b ﬂ) R( 2 ) 2 )
- ‘B t0 be called £
1(}1() d a 18 mefric on £, y the ank metric
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2.4. Suppose that L is a relatively complemented modular latbice
with least element 0 so that von Neumann’s theory of independence is
valid for finite subsets of I (see [4], Chapter II, [1], § 2.3). A real valued
function D is called a dimension function on L if it is defined for all a
in L and

(2.10) 0 < D(a) << oo for all a # 0.

(2.11) D(a v b) = D(a)+ D(b) whenever a, beL with a ~nb = 0.

Since I is assumed to be relatively complemented and modular,
the relations (2.10) and (2.11) imply:

D) =0, Diawvb)+D(anlb)=D(a)+D(®)
for all ¢,b in L, and

(2.12) D(ayw -« v 8) = 3, D(a;) Whenever @, ...,y are inde-

i=1

pendent.

3. Preliminary discussion

3.1. Tt is easily verified that (1.2) holds for any rank funetion on
&,. In fact the conditions on 4, B ensure that A%, = B&,(%, 4 = #,B)
(note that any finite subset ay,...; am of # have a common right (left)
unit: indeed, %a,+....+ &op, is equal to Re(a, B+-... F on R = fR) for
some suitable idempotent e(f) and hence ae = a; (foz = a;) for all i);
hence A and B must have equal rank.

3.9. Tf & is commuiative and R’ is a rank function on £, then the
rule R'(4) =R’ (4% determines a rank function on #,. Thus, if # is
commutative and a unique R, exists as required in (1.1), then R, (4%
= R,(4); this equality may fail if # is not commutative.

3.3. We shall show now that every rank function B’ on Z, is deter-
mined completely by the values R’ (E(e)) where E(e) are the special
matrices which were defined in (1.1).

If A is in %, with columns %, ..., Zn, then for suitable y; with pro-
perties as described in (2.6) we have 2, #+ ...+, & = 1 B+ ...+ Y.
Let E; be the matrix with y; as i-th column and all other ecolumns O.
Easy calculations show that each E; is idempotent in #,, B E; = 0 if
i # 4, and (By+...+Bn) & = AZ,. Hence,

R'(4) = ) R'(B)).
i=1

Thug the values of the R'(F;) determine R’(4).

Next, for any idempotent e, let Hs(e) be the matrix which has e
for (4, i)-th entry and 0 for all other entries. Since y; is controlled at the
i-th place by the idempotent 4%, and y;yk = ¥, it follows from 3.1 that
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R'(By) = R'(B;(y})). Thus R’ is completely determined by the values
of R’ (Ei(e)), where e varies over all idempotents in # and ¢ =1, ..., n.

Next, from 3.1 it follows that R'(B;(e)) = R'(H;(e) for all i,j.
Since each F;(e) is idempotent in %, and FE;(e)E;(e) = 0 for ¢ 7, it
follows that R'(B;(e)) = R’ (H(e))/n. Thus R’ is completely determined
by the values of R'(E(e)).

This implies that if the rank function R, in (1.1) exists at all it is
unigue and

n n n
Ra(4) = ) Ru(By) = D Ra(Bi(9) = D R(%)).
i=1 1=1 i=1
3.4. It is now easy to verify that if the dimension function D, in
(1.4) exists at all it is determined uniquely by R.
Indeed, if M <F.(%#"™), then for suitable y; as described in (2.6) we

have M =y, #+...+y,%. Since the right modules ¥, %,y %, ..., Yo%
are independent, it follows that

Do(M) = D) Da(y: ).
=1

Next, let ¢ be a common left unit for all 4} (i,§ = 1,...,m), let #
denote the vector with ¢ as ¢-th component and 0 for all other compo-
nents, and let w; denote the vector with e—yﬁe a8 ¢-th component and
all other components 0. Then

210A ..+ B+ W, Ry R =2 R+ ...+
where each side is the sum of independent right modules. It follows that
D, (y; %) = R(e)— R(e—yie) = R(y3), and hence

n

Da(M) = D) R(yi).

=1
Thus D,(M) is determined uniquely by R.

3.5. From now on we shall take R,, and D, to be defined us follows:
(3.1) If MeF,(4,), then M has a representation J'y;Z# such that

each y; controlled at the i-th place; D, (M) is defined to be ZR(yZI).
=1

(3.2) If Ae#,, then A%, = E%, where F has columns y,,..., ¥,
such that each y; is controlled at the i-th place; R,(4) is defined to be
2 R(). '

We 'note that (3.1) and (8.2) give unique values for D,(M) and,
R.(4), sinee in (8.1), (3.2) the ;% are uniquely determined by M and A
respectively. "We note also that if the dimension and rank functions
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required in (1.4) and (1.1) respectively exist as required, they are deter-
mined by (3.1) and (3.2), as follows from 3.3 and 3.4.

Our problem has now been reduced to proving that D, defined in
(8.1) is a dimension function on F.(%,) and R, defined in (3.2) is a rank
function on #,, and that (1.3) holds.

We shall prove Theorem 1 by induction on n. Thus we shall sap-
pose that m is an integer > 1 and that Theorem 1 holds for all » << m,
and we need only establish that Theorem 1 holds for the case n = m.

3.6. Suppose that M, =y ; Z+...+ym#® and M, =yuZ+...+
+ ¥ ® with each y,; and y,; controlled at the i-th place. If M; = M,
it follows from (2.5) that for each i, (y.)'# < (yx)'#. This shows that
M, ©¢ My — Dp(M,y) < Dn(M,).

Next, if 4, Be#,, then the columns of AB are right linear com-
binations of the eolumns of A. The preceding paragraph now implies
that Rn(4B) < Rn(4).

Thus to prove Theorem 1, we need only verify that Ry, (4B) < Rm(B),
that (2.9) holds for R,, on &, that (2.11) holds for D, on F.(%™), and
prove the completeness theorem (1.3) for #.

3.7. The isomorphism o of (2.4) clearly has the property that R.(I)
= D, (M) whenever p(I) = M. Suppose that (2.10) does hold in F (™)
and that B, and K, are orthogonal idempotents in £,. Then
B\ Ry~ BBy, =0 and By &+ Ey R = (By+ B,)#r. Hence we have
0(B,%n) ~ 0(B:%p) = 0 and

Ro(By+ By) = D (0 ((Br+Ba) 2))
= DM(Q(EI'%M)"{— Q(Ezgm)) = Dm(Q(E1 g?na))“}‘l)m(Q(EagEm))
= Rm(E1)+Rm(E2)'

Thus the validity of (2.11) for Dy, in F,(%£™) will imply that of (2.8)
for R, in &,,.

Moreover, since we assume that Theorem 1 holds for all # <m and
since each M in F,(%™) has a representation as described in (2.6), the
validity of (2.11) for Dy, in F,(Z™) will clearly follow from the following
lermnma:

LeMMA. Suppose that M =y, Z+...+yn# with each y; conirolled
in the i-th place. Suppose that & is a vector in &™ controlled by some idem-
potent f in the m-th place. Suppose that @ ~ M = 0. Then M+ zZ has
o representation Yy R+ ...+ ym® with each y; controlled at the i-th place
and

S REH+HR() = D R
i=1 1=1
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Thus we need to prove: the above Lemma, Rn,(AB) < R, (B) and
proposition (1.3).

4. A useful dimension relation

We shall now prove that the function D, defined in (3.1) satisfies
the relation. . .

(4.1) For each s = (2%, ..., &")in A", Dy(5%) = R(g) it Zg = "bzlgfzml

Tor the case n = 1, relation (4.1) follows directly from the defini-
tion of D,. We now proceed by induetion on x.

Let 8 be chosen in Z 80 that 2" 2" = 2", and seb y = x— 2fz". Then
@R = YR+ afa” R = yA+apr"fA and y" = 0 (xpa"B)" = &"p. It follows
from the definition of D, and the inductive assumption that

D, (@) = D,(y%)+ R(z"B) = E(h)+ R («")
if 1 is chosen to be an idempotent in # such that
n—1

Rh = Zgzq, = Z%’(w — o pa™)

and we need only prove that R(k)+ R(2"™) = R(g).
Clearly #h -+ #x" = %g so it is sufficient to prove that Zh ~ Zx" = (0).
Suppose now that ah = ypz”. Then for suitable d;,

oh = ahPz” = a(§15iyf)ﬂmn — a(:;::lﬁi(mi_;piﬁm“))ﬂm —

This shows that %h ~ #z" = (0) and hence that

n
Dn(a®) =Ry i %g= D %

=1
5. Proof of the Lemma of 3.7

5.1. We consider the Lemma first for the special case fZ ~ yn 2
= (0). For this case we let g be an idempotent such that ¢#
= f#+yn#& By a decomposition theorem of von Neumann there exist
orthogona,l idempotents %, & such that &f = #h, Byy, = %k, and g = b+ &
(see [4], Lemma 3.2; [2], (2.12)). Thus, without changing mQZ or Yy,Z we
can replace £ by mh by by ym bY ymk and ym by k. After these replace-
ments have been made the Lemma will be satistied by the choice y; = ¥;
for i< m and ¥y, = T+ Ym, since with the new x and ¥u:

2+, is controlled at the m-th place by f+¥m,
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and
R(ym)+EB(f) = B(f+ym)-
This establishes the Lemma for the case &f ~ Bym = 0.

5.2. Next we consider the Lemma for the special case that f# < yn 2.
For this case we have: 221 yn® = &'+ Y & where 2’ = r—ynf.

Now &' %, 1y, &, ..., Ym_, # are independent right submodules of %™ *
if the m-th components (which are all 0) are ignored. Thus, to prove:
the Lemma for the present case it is sufficient to show that D, ,(x'%)
= R(f), or equivalently (by (4.1)) that

m—1
D (@) = gf.
i=1
‘We have
m—1 . m—1 . .
D A@) = D 2’ —ynf) < 4.
i=1 i=1
Hence by von Neumann's decomposition theorem ([4], Lemma 3.2;
[2], (2.12)) there exists an idempotent g such that

m—1
ag = D' &) and  gf =fg =9
Then (2')(f—g) =0 for ¢ =1,...,m—1; hence #'(f—g) =0 and
2(f—g) = Ymf(f—9g); since z& ~ Y% = (0) it follows that z(f—g) = 0.
Since ™ = f, it follows that f(f—g) = 0, henee f—g = 0. This proves
that

m-—-1

Zg(x')i = &f

i=1
and completes the proof of the Lemma for ghe special case that f# < ¥ &.

5.3. Now we consider the Lemma for the general case. We use von
Neumann’s decomposition theorem (already used in 5.2) to obtain an
idempotent g such that %g = #f ~ Ryn and fy =gf =g

By 5.2, the Lemma holds for M and (xg)4 (in place of M and zZ).
Let M' = M-+ (2g)®, «' = x(f—g). Then M', 2'# are independent, z’
is controlled. at the m-th place by f—g and

M =2,R+...+ 2, &

with 2, = ¥,, and each #; controlled at the i-th place. Hence Z( f—g) ~
R(Z") = 0. Now 5.1 applies and completes the proof of the
Lemma.
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6. Proof that Ry (AB) < B (B)

6.1. Choose X in 4, so that BX = F, say, has columns H,, ..., B,
such that each F; is controlled at the i-th place and EB = B. Then
BXB = EB = B and as we have already proved: R,(4B)> R,(ABX)
> R.(ABXB), By(B) > Ry,(BX) = R,(BXB). It is therefore sufficient
to prove that R.,(4E) < Bn(H).

6.2. We now have:

m m

Bn(48) = D 3 (AB;Z) < }) Du((AB):A),

i=1 q=1

= D Dp(B:i).
i=1

Thus it is sufficient to prove that for each ¢

D ((BAKR) < D (B R).

We have: %(AE), c #ZE: for all j hence

D R(AB) = 2E.

j=1
By (4.1) it follows that D, ((4E); %} <
<

R(EB). Since D,,(E;#) = R(H,
the proof of the inequality R,(4B) <R

»(B) is complete.

7. Proof of completeness theorem (1.3)

L]

7.1. We now suppose that #Z is complete with respect to the metric
of the rank R and we wish to show that £, is complete with respect to
the rank R,. Thus we suppose that A4,, 4,,... is an infinite sequence
of elements in %, such that R,(4,—A,) —>0 as p, g — oo and we wish
to show that for some A in %, R,(4A—A4,) =0 as p - oco.

7.2. Suppose that BeZ&, and that Bi=a. We shall gshow that
Bn(B) = B(a).

Let ¢ be an idempotent with #e = %a. Then for suitable B', B”
in %, we have: (B’ BB")} = ¢ and all other (B’ BB")f = 0. Hence

R (B) > En(B' B) > Ru(B'BB") = R(¢) = R(a).
7.3. Suppose that Be#, with columns By, ...

that
> R(B).
4,f=1

; Bm. We shall show

R.(B) <
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We have, using (4.1):

ZM:R(B’

i=1

Ms

By(B) = Dy (B, &+ ...+ Bud) ZD,,,(B | ®)

-

q=

7.4. Now in 7.1, for fixed 4,j, we have because of 7.2:
((Aq),—(Ap),) —0 as p,g—>oo. Since #Z is assumed to be complete,
there exists f in # such that R(aj—(4,)j) >0 as p — 0. Define 4 by
the relations A = of; it follows from 7.3 that R,(4 —4,) — 0288 p — co.
This proves (1.3) and completes the proof of Theorem 1.

8. Remarks

8.1. If # is a division ring, then £ is regular and there is a unique
(normalized) rank function R® on £ with R%(1) = 1; namely R%(a) = 0
if @ =0, R(a) =1 if a £ 0. Then R} coincides with the classical left
row, right column rank on Z,.

8.2. Theorem 1 continues to hold as stated if rank function, dimen-
sion function, metric are replaced by semi-rank, semi-dimension, semi-
metric respectively; this means that the conditions R{a) > 0 for & 0,
D(M)>0 for M #0, d(a,b) >0 for a b are replaced by R(a) >0,
D(M) >0, d(a,bd) > 0 respectively.

8.3. Theorem 1 continues to hold as stated if rank, dimension and
metric have values in the positive semi-group G+ of any totally ordered
commutative group @ provided that for each a<G+ and each n > 1 then
exists a unique beG with a = b+...+b (n addends).

8.4. An alternative proof of Theorem 1 can be obtained as follows:
prove Theorem 1 first for the case n = 2, then by induction for n = 2™
for all m > 1; then by restriction (%, can be considered as the set of
those 2™ x2™ matrices which have zero entries outside the upper-left
m Xm corner) for m.

9. Induective limits

9.1. Let I be an ordered directed set (this means that any two
elements 4,4 in 7 have an upper bound in I). Suppose that %; is a ring
for each ¢ and that for each %, j with ¢ < j, there is given a ring homo-
morphism ¢;; : #; — %; such that whenever ¢ <j <k, we have

Prj Pii = Phi-

Then we define a relation by the rule: (a,4) = (8,j) shall mean
that a is in £;, § is in #; and for some y in some % with ¢ <%,j <k:
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gpkl-d = ¢y 8. The relation == is clearly an equivalence relation on the set
8 = {(a,8)]iel, ae}.

The equivalence classes of § form a ring called the inductive limit
and denoted by # = Lim(Z;, ¢;;) = lim Z;, with respect to the following
operations: - -

(9.1) If w, v are the equivalence classes of («, %), (8, ]) respectively,
then for any % with ¢ <k, j < % the sum % v is defined o be the equi-
valence class of (gr;o-+ @i B, k) and the product wv is defined to be the
equivalence class of (grio@wf, k)-

It is easily verified that if each #,; is regular, then ]i_z;n%i is also

regular; if each ¢y is injective, then the mapping a — (equivalenee class
of (a, 7)) determines an injective ring embedding of #; in lim £;; if each

A; is a regular rank ring and each mapping g;; preserves the rank, then
the function

R(equivalence class of (a, %)) = rank of a in %;
is a rank function on lim%,.

9.2. Let N denote set of integers {1,2,3,...} and write m|n to
mean: m,ne N and # = mp for some pe N.

Suppose that # is an associative ring and let %, denote the matrix
ring. For m,neN with m|n we define an injective ring isomorphism
Cnm: R — By a5 follows: if Aey, then g, ,(A) shall be the nxn
matrix with 4’s down the diagonal and zeros elsewhere; more precisely,

. . n
(ponlfE = 4] for 1 =0,1, (Zo1)1 < <m

and
@nm(4) has all other entries 0.

Now suppose that I < N and that any pair m, » in I have a common
multiple in I. Then the inductive limit

Ry = h_ln('%m7 ¢n,m)n,1m1
is defined as a special case of 9.1.

9.3. Suppose next that %, N,I are as in 9.2 and also that # is
a regular ring with normalized rank function R. Theorem 1 now implies
that for each #, the function R,/n is a normalized rank on #,, to be
denoted also without fear of ambiguity by R; with this choice of rank,
each mapping @, ., preserves the rank. Henee #; is again a regular rank
ring and its rank will be denoted again by R.

It is easily seen that if I is infinite and # # (0), then £%; is not comp-
lete (even if £ is complete). But by [2], (1.4), (1.5) and (1.6), the com-
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pletion of #; in the rank metrie, denoted .éI?I , is again a regular ring with
a rank (again denoted by R) which is an extension of that of the rank
on #;; the ring #; is complete with respect to its rank metric.

The study of the dependence of #; and @I on % and I was initiated
by J. von Neumann [5], [3] for the case that # is a division ring. We
shall continue this study in subsequent notes.

References

[1] K.D. Fryer and I. Halperin, The vorn N coordinatization theorem
for complemented modular lattices, Acta Sci. Math. (Szeged) 20 (1956), p. 203-249.

[2] Israel Halperin, Regulor rank rings, Can. Jour. Math. 17 (1965), p. 709-7189.

[3] — Von Neumann’s manuscript on inductive limils of regular rings, Can.
Jour. Math., to appear.

[4]1 J. von Neumann, Continuous geometry, Princeton 1960.

[5] — Independence of Fo from the sequence y, unpublished manuscript written
in 1936-37 (review by Israel Halperin in vol. IV of the Collecied works of John von
Neumann (Pergamon, 1962)).

Regu par lo Rédaction le 5. 1. 1966


GUEST




