

Extension of the rank function

b

ISRAEL HALPERIN (Kingston)

1. Statement of theorem to be proved

1.1. This note is devoted chiefly to proving the following theorem (the terminology is explained in § 2 below):

THEOREM 1. Suppose that \mathcal{R} is a regular associative ring with rank function R and n is any integer $\geqslant 1$. Then:

- (1.1) There exists a unique rank function R_n on \mathcal{R}_n with the property: $R_n(E(e)) = nR(e)$ whenever e is an idempotent in \mathcal{R} and E(e) is the matrix in \mathcal{R}_n which has e for all diagonal entries and 0 for all other entries.
- (1.2) $R_n(A) = R_n(B)$ whenever $A \in \mathcal{A}_n$ and B is obtained from A by interchanging two columns (rows), or by adding to any column (row) any right linear (left linear) combination of the other columns (rows).
- (1.3) \mathcal{R}_n is complete with respect to the metric of R_n if \mathcal{R} is complete with respect to the metric of R.
- (1.4) There exists a unique dimension function D_n on the lattice of all finitely generated right submodules of \mathcal{R}^n with the property: $D_n(x\mathcal{R}) = R(e)$ whenever x (in \mathcal{R}^n) has idempotent e for one component and 0 for all other components.
- (1.5) If $A \in \mathcal{R}_n$ and the columns of A are denoted by A_1, \ldots, A_n , then $R_n(A) = D_n(A_1\mathcal{R} + \ldots + A_n\mathcal{R});$ if $A_1\mathcal{R}, \ldots, A_n\mathcal{R}$ are independent right submodules, then $R_n(A) = \sum_{i=1}^n D_n(A_i\mathcal{R}).$

2. Introduction

2.1. If \mathscr{R} is a ring (not required to possess a unit) we write \mathscr{R}_n to denote the ring of all $n \times n$ matrices with entries in \mathscr{R} and we write \mathscr{R}^n to denote the right \mathscr{R} -module of all vectors $x = (x^i)_{1 \leqslant i \leqslant n}$ with components x^i in \mathscr{R} . A vector $x \in \mathscr{R}^n$ is said to be *controlled* at the *i*-th place by the idempotent e if xe = x, $x^i = e$, and $x^j = 0$ for j > i. If $A \in \mathscr{R}_n$, then A^t denotes the transpose of A.

2.2. An associative ring \mathcal{R} is called *regular* if for each α in \mathcal{R} , $\alpha\beta\alpha=\alpha$ for some β in \mathcal{R} . The following is a slight generalization of a theorem of J. von Neumann (see [4], Theorem 2.13; [1], § 3.4):

If R is regular then:

- (2.1) \mathcal{R}_n is regular.
- (2.2) The principal right ideals of \mathcal{R}_n form a sublattice, denoted by $P_r(\mathcal{R}_n)$, of the complete lattice of all right ideals of \mathcal{R}_n ordered by inclusion; $P_r(\mathcal{R}_n)$ is a relatively complemented modular lattice with least element 0 = (0).
- (2.3) The finitely generated right submodules of \mathscr{R}^n form a sublattice, denoted by $F_r(\mathscr{R}^n)$, of the complete lattice of all right submodules of \mathscr{R}^n ordered by inclusion; $F_r(\mathscr{R}^n)$ is a relatively complemented modular lattice with least element 0 = (0).
- (2.4) If ϱ is the mapping defined for each principal right ideal I of \mathscr{R}_n by the rule

$$\varrho(I) = \text{set of columns of elements in } I$$
,

then ρ is an order isomorphism of $P_{\sigma}(\mathscr{R}_n)$ onto $F_{\sigma}(\mathscr{R}^n)$

(2.5) Suppose that $M \in F_r(\mathcal{R}^n)$. If $M = y_1 \mathcal{R} + \ldots + y_n \mathcal{R}$ for some y_1, \ldots, y_n in \mathcal{R}^n such that for each i, y_i is controlled at the i-th place by some idempotent e_i in \mathcal{R} , then each $e_i \mathcal{R}$ is determined uniquely by M; indeed,

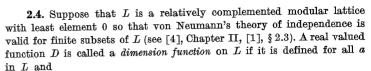
$$e_i \mathscr{R} = \{x^i \mid x \in M \text{ and } x^j = 0 \text{ for } j > i\}.$$

- (2.6) If $M \in F_r(\mathcal{R}^n)$, then there exist y_1, \ldots, y_n in \mathcal{R}^n such that $M = y_1 \mathcal{R} + \ldots + y_n \mathcal{R}$ and for each i, y_i is controlled at the i-th place by some idempotent e^i and, for all $i < i, e^i(y_i)^i = 0$.
- **2.3.** Suppose that \mathcal{R} is a regular ring. A real valued function R is called a rank function on \mathcal{R} if it is defined for all α in \mathcal{R} and
 - (2.7) $0 < R(a) < \infty$ for all $a \neq 0$.
 - (2.8) $R(\alpha\beta) \leqslant R(\alpha)$, $R(\alpha\beta) \leqslant R(\beta)$ for all α, β in \mathcal{R} .
- (2.9) R(e+f) = R(e) + R(f) whenever e, f are idempotents in \mathcal{R} which are orthogonal (a, β) are called *orthogonal* if $a\beta = 0 = \beta a$).

It follows that R(0) = 0, $R(\alpha) = R(\beta)$ whenever $\alpha \mathcal{R} = \beta \mathcal{R}$ or $\mathcal{R}\alpha = \mathcal{R}\beta$ (in particular $R(\alpha) = R(-\alpha)$),

$$R(e_1+\ldots+e_m)=\sum_{i=1}^m R(e_i)$$

whenever e_1, \ldots, e_m are pairwise orthogonal idempotents, and the function $d(\alpha, \beta) = R(\alpha - \beta)$ is a metric on \mathcal{R} , to be called the *rank metric* (see [2], Lemma 3.2).



(2.10) $0 < D(a) < \infty$ for all $a \neq 0$.

(2.11) $D(a \cup b) = D(a) + D(b)$ whenever $a, b \in L$ with $a \cap b = 0$.

Since L is assumed to be relatively complemented and modular, the relations (2.10) and (2.11) imply:

$$D(0) = 0$$
, $D(a \cup b) + D(a \cap b) = D(a) + D(b)$

for all a, b in L, and

(2.12) $D(a_1 \cup \ldots \cup a_m) = \sum_{i=1}^m D(a_i)$ whenever a_1, \ldots, a_m are independent.

3. Preliminary discussion

- **3.1.** It is easily verified that (1.2) holds for any rank function on \mathcal{R}_n . In fact the conditions on A, B ensure that $A\mathcal{R}_n = B\mathcal{R}_n(\mathcal{R}_n A = \mathcal{R}_n B)$ (note that any finite subset a_1, \ldots, a_m of \mathcal{R} have a common right (left) unit: indeed, $\mathcal{R}a_1 + \ldots + \mathcal{R}a_m$ is equal to $\mathcal{R}e(a_1\mathcal{R} + \ldots + a_m\mathcal{R} = f\mathcal{R})$ for some suitable idempotent e(f) and hence $a_ie = a_i$ ($fa_i = a_i$) for all i); hence A and B must have equal rank.
- **3.2.** If \mathcal{R} is commutative and R' is a rank function on \mathcal{R}_n , then the rule $R''(A) = R'(A^t)$ determines a rank function on \mathcal{R}_n . Thus, if \mathcal{R} is commutative and a unique R_n exists as required in (1.1), then $R_n(A^t) = R_n(A)$; this equality may fail if \mathcal{R} is not commutative.
- **3.3.** We shall show now that every rank function R' on \mathcal{R}_n is determined completely by the values R'(E(e)) where E(e) are the special matrices which were defined in (1.1).

If A is in \mathscr{R}_n with columns x_1, \ldots, x_n , then for suitable y_i with properties as described in (2.6) we have $x_1\mathscr{R}+\ldots+x_n\mathscr{R}=y_1\mathscr{R}+\ldots+y_n\mathscr{R}$. Let E_i be the matrix with y_i as i-th column and all other columns 0. Easy calculations show that each E_i is idempotent in \mathscr{R}_n , $E_iE_j=0$ if $i\neq j$, and $(E_1+\ldots+E_n)\mathscr{R}_n=A\mathscr{R}_n$. Hence,

$$R'(A) = \sum_{i=1}^n R'(E_i).$$

Thus the values of the $R'(E_i)$ determine R'(A).

Next, for any idempotent $e \in \mathcal{A}$, let $E_i(e)$ be the matrix which has e for (i, i)-th entry and 0 for all other entries. Since y_i is controlled at the i-th place by the idempotent y_i^i , and $y_i y_i^i = y_i$, it follows from 3.1 that

 $R'(E_i) = R'(E_i(y_i^i))$. Thus R' is completely determined by the values of $R'(E_i(e))$, where e varies over all idempotents in \mathcal{R} and i = 1, ..., n.

Next, from 3.1 it follows that $R'(E_i(e)) = R'(E_j(e))$ for all i, j. Since each $E_i(e)$ is idempotent in \mathscr{R}_n and $E_i(e)E_j(e) = 0$ for $i \neq j$, it follows that $R'(E_i(e)) = R'(E(e))/n$. Thus R' is completely determined by the values of R'(E(e)).

This implies that if the rank function R_n in (1.1) exists at all it is unique and

$$R_n(A) = \sum_{i=1}^n R_n(E_i) = \sum_{i=1}^n R_n(E_i(y_i^i)) = \sum_{i=1}^n R(y_i^i).$$

3.4. It is now easy to verify that if the dimension function D_n in (1.4) exists at all it is determined uniquely by R.

Indeed, if $M \in F_r(\mathcal{R}^n)$, then for suitable y_i as described in (2.6) we have $M = y_1 \mathcal{R} + \ldots + y_n \mathcal{R}$. Since the right modules $y_1 \mathcal{R}, y_2 \mathcal{R}, \ldots, y_n \mathcal{R}$ are independent, it follows that

$$D_n(M) = \sum_{i=1}^n D_n(y_i \mathscr{R}).$$

Next, let e be a common left unit for all y_i^j $(i,j=1,\ldots,n)$, let z_i denote the vector with e as i-th component and 0 for all other components, and let w_i denote the vector with $e-y_i^i e$ as i-th component and all other components 0. Then

$$z_1 \mathcal{R} + \ldots + z_{i-1} \mathcal{R} + w_i \mathcal{R} + y_i \mathcal{R} = z_1 \mathcal{R} + \ldots + z_i \mathcal{R}$$

where each side is the sum of independent right modules. It follows that $D_n(y_i\mathscr{B}) = R(e) - R(e - y_i^i e) = R(y_i^i)$, and hence

$$D_n(M) = \sum_{i=1}^n R(y_i^i).$$

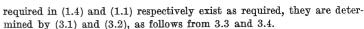
Thus $D_n(M)$ is determined uniquely by R.

3.5. From now on we shall take R_n and D_n to be defined as follows:

(3.1) If $M \in F_r(\mathcal{R}_n)$, then M has a representation $\sum y_i \mathcal{R}$ such that each y_i controlled at the i-th place; $D_n(M)$ is defined to be $\sum_{i=1}^n R(y_i^i)$.

(3.2) If $A \in \mathcal{R}_n$, then $A\mathcal{R}_n = E\mathcal{R}_n$ where E has columns y_1, \ldots, y_n such that each y_i is controlled at the i-th place; $R_n(A)$ is defined to be $\sum_{i=1}^n R(y_i^i).$

We note that (3.1) and (3.2) give unique values for $D_n(M)$ and, $R_n(A)$, since in (3.1), (3.2) the $y_i^t \mathcal{A}$ are uniquely determined by M and A respectively. We note also that if the dimension and rank functions



Our problem has now been reduced to proving that D_n defined in (3.1) is a dimension function on $F_r(\mathcal{R}_n)$ and R_n defined in (3.2) is a rank function on \mathcal{R}_n , and that (1.3) holds.

We shall prove Theorem 1 by induction on n. Thus we shall suppose that m is an integer $\geqslant 1$ and that Theorem 1 holds for all n < m, and we need only establish that Theorem 1 holds for the case n = m.

3.6. Suppose that $M_1 = y_{11} \mathscr{R} + \ldots + y_{1m} \mathscr{R}$ and $M_2 = y_{21} \mathscr{R} + \ldots + y_{2m} \mathscr{R}$ with each y_{1i} and y_{2i} controlled at the *i*-th place. If $M_1 \subset M_2$ it follows from (2.5) that for each i, $(y_{1i})^i \mathscr{R} \subset (y_{2i})^i \mathscr{R}$. This shows that $M_1 \subset M_2 \to D_m(M_1) \leqslant D_m(M_2)$.

Next, if $A, B \in \mathcal{R}_m$, then the columns of AB are right linear combinations of the columns of A. The preceding paragraph now implies that $R_m(AB) \leq R_m(A)$.

Thus to prove Theorem 1, we need only verify that $R_m(AB) \leq R_m(B)$, that (2.9) holds for R_m on \mathcal{R}_m , that (2.11) holds for D_m on $F_r(\mathcal{R}^m)$, and prove the completeness theorem (1.3) for \mathcal{R}_m .

3.7. The isomorphism ϱ of (2.4) clearly has the property that $R_m(I) = D_m(M)$ whenever $\varrho(I) = M$. Suppose that (2.10) does hold in $F_r(\mathscr{R}^m)$ and that E_1 and E_2 are orthogonal idempotents in \mathscr{R}_m . Then $E_1\mathscr{R}_m \cap E_2\mathscr{R}_m = 0$ and $E_1\mathscr{R}_m + E_2\mathscr{R}_m = (E_1 + E_2)\mathscr{R}_m$. Hence we have $\varrho(E_1\mathscr{R}_m) \cap \varrho(E_2\mathscr{R}_m) = 0$ and

$$\begin{split} R_m(E_1+E_2) &= D_m \left(\varrho \left((E_1+E_2) \mathcal{R}_m \right) \right) \\ &= D_m \left(\varrho \left(E_1 \mathcal{R}_m \right) + \varrho \left(E_2 \mathcal{R}_m \right) \right) = D_m \left(\varrho \left(E_1 \mathcal{R}_m \right) \right) + D_m \left(\varrho \left(E_2 \mathcal{R}_m \right) \right) \\ &= R_m(E_1) + R_m(E_2). \end{split}$$

Thus the validity of (2.11) for D_m in $F_r(\mathscr{R}^m)$ will imply that of (2.8) for R_m in \mathscr{R}_m .

Moreover, since we assume that Theorem 1 holds for all n < m and since each M in $F_r(\mathscr{R}^m)$ has a representation as described in (2.6), the validity of (2.11) for D_m in $F_r(\mathscr{R}^m)$ will clearly follow from the following lemma:

LEMMA. Suppose that $M=y_1\mathscr{R}+\ldots+y_m\mathscr{R}$ with each y_i controlled in the i-th place. Suppose that x is a vector in \mathscr{R}^m controlled by some idempotent f in the m-th place. Suppose that $x\mathscr{R} \cap M=0$. Then $M+x\mathscr{R}$ has a representation $y_1'\mathscr{R}+\ldots+y_m'\mathscr{R}$ with each y_i' controlled at the i-th place and

$$\sum_{i=1}^{m} R(y_i^i) + R(f) = \sum_{i=1}^{m} R(y_i'^i).$$

Thus we need to prove: the above Lemma, $R_m(AB) \leqslant R_m(B)$ and proposition (1.3).

4. A useful dimension relation

We shall now prove that the function D_n defined in (3.1) satisfies the relation.

relation. (4.1) For each
$$x=(x^1,\ldots,x^n)$$
 in \mathscr{R}^n , $D_n(x\mathscr{R})=R(g)$ if $\mathscr{R}g=\sum_{i=1}^n\mathscr{R}x^i$.

For the case n = 1, relation (4.1) follows directly from the definition of D_n . We now proceed by induction on n.

Let β be chosen in $\mathcal R$ so that $x^n\beta x^n=x^n$, and set $y=x-x\beta x^n$. Then $x\mathcal R=y\mathcal R+x\beta x^n\mathcal R=y\mathcal R+x\beta x^n\beta\mathcal R$ and $y^n=0$, $(x\beta x^n\beta)^n=x^n\beta$. It follows from the definition of D_n and the inductive assumption that

$$D_n(x\mathcal{R}) = D_n(y\mathcal{R}) + R(x^n\beta) = R(h) + R(x^n)$$

if h is chosen to be an idempotent in \mathcal{R} such that

$$\mathscr{R}h = \sum_{i=1}^{n-1} \mathscr{R}y^i = \sum_{i=1}^{n-1} \mathscr{R}(x^i - x^i \beta x^n)$$

and we need only prove that $R(h) + R(x^n) = R(g)$.

Clearly $\mathcal{R}h + \mathcal{R}x^n = \mathcal{R}g$ so it is sufficient to prove that $\mathcal{R}h \cap \mathcal{R}x^n = (0)$. Suppose now that $ah = \gamma x^n$. Then for suitable δ_i ,

$$ah = ah\beta x^n = a\Big(\sum_{i=1}^{n-1} \delta_i y^i\Big)\beta x^n = a\Big(\sum_{i=1}^{n-1} \delta_i (x^i - x^i \beta x^n)\Big)\beta x^n = 0.$$

This shows that $\mathcal{R}h \cap \mathcal{R}x^n = (0)$ and hence that

$$D_n(x\mathscr{R}) = Rg$$
 if $\mathscr{R}g = \sum_{i=1}^n \mathscr{R}x^i$.

5. Proof of the Lemma of 3.7

5.1. We consider the Lemma first for the special case $f\mathscr{R} \cap y_m^m \mathscr{R} = (0)$. For this case we let g be an idempotent such that $g\mathscr{R} = f\mathscr{R} + y_m^m \mathscr{R}$. By a decomposition theorem of von Neumann there exist orthogonal idempotents h, k such that $\mathscr{R}f = \mathscr{R}h$, $\mathscr{R}y_m^m = \mathscr{R}k$, and g = h + k (see [4], Lemma 3.2; [2], (2.12)). Thus, without changing $x\mathscr{R}$ or $y_m\mathscr{R}$ we can replace x by xh, f by h, y_m by $y_m k$ and y_m^m by k. After these replacements have been made the Lemma will be satisfied by the choice $y_i' = y_i$ for i < m and $y_m' = x + y_m$, since with the new x and y_m :

$$(x+y_m)\mathscr{R}=x\mathscr{R}+y_m\mathscr{R},$$

 $x+y_m$ is controlled at the m-th place by $f+y_m^m$,

and

$$R(y_m^m) + R(f) = R(f + y_m^m).$$

This establishes the Lemma for the case $\Re f \cap \Re y_m^m = 0$.

5.2. Next we consider the Lemma for the special case that $f\mathscr{R} \subset y_m^m \mathscr{R}$. For this case we have: $x\mathscr{R} + y_m \mathscr{R} = x' \mathscr{R} + y_m \mathscr{R}$ where $x' = x - y_m f$.

Now $x'\mathcal{R}$, $y_1\mathcal{R}$,..., $y_{m-1}\mathcal{R}$ are independent right submodules of \mathcal{R}^{m-1} if the *m*-th components (which are all 0) are ignored. Thus, to prove the Lemma for the present case it is sufficient to show that $D_{m-1}(x'\mathcal{R}) = R(f)$, or equivalently (by (4.1)) that

$$\sum_{i=1}^{m-1} \mathscr{R}(x')^i = \mathscr{R}f.$$

We have

$$\sum_{i=1}^{m-1} \mathscr{R}(x')^i = \sum_{i=1}^{m-1} \mathscr{R}(x^i - y_m^i f) \, \subset \, \mathscr{R} f.$$

Hence by von Neumann's decomposition theorem ([4], Lemma 3.2; [2], (2.12)) there exists an idempotent g such that

$$\mathscr{R}g = \sum_{i=1}^{m-1} \mathscr{R}(x')^i \quad ext{ and } \quad gf = fg = g.$$

Then $(x')^i(f-g)=0$ for $i=1,\ldots,m-1$; hence x'(f-g)=0 and $x(f-g)=y_mf(f-g)$; since $x\mathscr{R} \cap y_m\mathscr{R}=(0)$ it follows that x(f-g)=0. Since $x^m=f$, it follows that f(f-g)=0, hence f-g=0. This proves that

$$\sum_{i=1}^{m-1} \mathscr{R}(x')^i = \mathscr{R}f$$

and completes the proof of the Lemma for the special case that $f\mathscr{R} \subset y_m^m \mathscr{R}$.

5.3. Now we consider the Lemma for the general case. We use von Neumann's decomposition theorem (already used in 5.2) to obtain an idempotent g such that $\Re g = \Re f \cap \Re y_m^m$ and fg = gf = g.

By 5.2, the Lemma holds for M and $(xg)\mathscr{R}$ (in place of M and $x\mathscr{R}$). Let $M' = M + (xg)\mathscr{R}$, x' = x(f-g). Then M', $x'\mathscr{R}$ are independent, x' is controlled at the m-th place by f-g and

$$M'=z_1\mathscr{R}+\ldots+z_m\mathscr{R}_m$$

with $z_m = y_m$ and each z_i controlled at the *i*-th place. Hence $\mathcal{R}(f-g) \cap \mathcal{R}(z_m^m) = 0$. Now 5.1 applies and completes the proof of the Lemma.

6. Proof that $R_m(AB) \leqslant R_m(B)$

- **6.1.** Choose X in \mathcal{R}_m so that BX = E, say, has columns E_1, \ldots, E_m such that each E_i is controlled at the i-th place and EB = B. Then BXB = EB = B and as we have already proved: $R_m(AB) \geqslant R_m(ABX) \geqslant R_m(ABX)$, $R_m(B) \geqslant R_m(BX) \geqslant R_m(BXB)$. It is therefore sufficient to prove that $R_m(AE) \leqslant R_m(E)$.
 - 6.2. We now have:

$$egin{align} R_m(AE) &= D_m\Big(\sum_{i=1}^m (AE)_i\mathscr{R}\Big) \leqslant \sum_{i=1}^m D_mig((AE)_i\mathscr{R}ig), \ &R_m(E) &= \sum_{i=1}^m D_m(E_i\mathscr{R}). \end{split}$$

Thus it is sufficient to prove that for each i

$$D_mig((EA)_i\mathscr{R}ig)\leqslant D_m(E_i\mathscr{R})$$
 .

We have: $\mathcal{R}(AE)_i^j \subset \mathcal{R}E_i^i$ for all j hence

$$\sum_{j=1}^m \mathscr{R}(AE)_i^j \subset \mathscr{R}E_i^i.$$

By (4.1) it follows that $D_m((AE)_i\mathscr{R}) \leq R(E_i^i)$. Since $D_m(E_i\mathscr{R}) = R(E_i^i)$, the proof of the inequality $R_m(AB) \leq R_m(B)$ is complete.

7. Proof of completeness theorem (1.3)

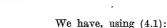
- 7.1. We now suppose that \mathscr{R} is complete with respect to the metric of the rank R and we wish to show that \mathscr{R}_m is complete with respect to the rank R_m . Thus we suppose that A_1, A_2, \ldots is an infinite sequence of elements in \mathscr{R}_m such that $R_m(A_q-A_p)\to 0$ as $p,q\to\infty$ and we wish to show that for some A in $\mathscr{R}_m, R_m(A-A_p)\to 0$ as $p\to\infty$.
- **7.2.** Suppose that $B \in \mathcal{R}_m$ and that $B_j^t = a$. We shall show that $R_m(B) \geqslant R(a)$.

Let e be an idempotent with $\Re e = \Re a$. Then for suitable B', B'' in \Re_m we have: $(B'BB'')_s^i = e$ and all other $(B'BB'')_s^k = 0$. Hence

$$R_m(B) \geqslant R_m(B'|B) \geqslant R_m(B'BB'') = R(e) = R(a).$$

7.3. Suppose that $B \in \mathcal{R}_m$ with columns B_1, \ldots, B_m . We shall show that

$$R_m(B) \leqslant \sum_{i,j=1}^m R(B_i^j).$$



$$R_m(B) = D_m(B_1 \mathcal{R} + \ldots + B_m \mathcal{R}) \leqslant \sum_{i=1}^m D_m(B_i \mathcal{R}) \leqslant \sum_{i=1}^m \sum_{j=1}^m R(B_i^j).$$

7.4. Now in 7.1, for fixed i,j, we have because of 7.2: $R\left((A_q)_j^i-(A_p)_j^i\right)\to 0$ as $p,q\to\infty$. Since $\mathscr R$ is assumed to be complete, there exists a_j^i in $\mathscr R$ such that $R\left(a_j^i-(A_p)_j^i\right)\to 0$ as $p\to 0$. Define A by the relations $A_j^i=a_j^i$; it follows from 7.3 that $R_m(A-A_p)\to 0$ as $p\to\infty$. This proves (1.3) and completes the proof of Theorem 1.

8. Remarks

- **8.1.** If \mathscr{R} is a division ring, then \mathscr{R} is regular and there is a unique (normalized) rank function R^0 on \mathscr{R} with $R^0(1)=1$; namely $R^0(\alpha)=0$ if $\alpha=0$, $R^0(\alpha)=1$ if $\alpha\neq 0$. Then R^0 coincides with the classical left row, right column rank on \mathscr{R}_n .
- **8.2.** Theorem 1 continues to hold as stated if rank function, dimension function, metric are replaced by semi-rank, semi-dimension, semimetric respectively; this means that the conditions R(a) > 0 for $a \neq 0$, D(M) > 0 for $M \neq 0$, d(a, b) > 0 for $a \neq b$ are replaced by $R(a) \geq 0$, $D(M) \geq 0$, $d(a, b) \geq 0$ respectively.
- **8.3.** Theorem 1 continues to hold as stated if rank, dimension and metric have values in the positive semi-group G^+ of any totally ordered commutative group G provided that for each $a \in G^+$ and each n > 1 then exists a unique $b \in G$ with $a = b + \ldots + b$ (n addends).
- **8.4.** An alternative proof of Theorem 1 can be obtained as follows: prove Theorem 1 first for the case n=2, then by induction for $n=2^m$ for all $m \ge 1$; then by restriction (\mathscr{R}_m can be considered as the set of those $2^m \times 2^m$ matrices which have zero entries outside the upper-left $m \times m$ corner) for m.

9. Inductive limits

9.1. Let I be an ordered directed set (this means that any two elements i, j in I have an upper bound in I). Suppose that \mathcal{R}_i is a ring for each i and that for each i, j with $i \leq j$, there is given a ring homomorphism $\varphi_{ii}: \mathcal{R}_i \to \mathcal{R}_j$ such that whenever $i \leq j \leq k$, we have

$$\varphi_{ki}\varphi_{ji}=\varphi_{ki}$$
.

Then we define a relation by the rule: $(\alpha, i) \equiv (\beta, j)$ shall mean that α is in \mathcal{R}_i , β is in \mathcal{R}_j and for some γ in some \mathcal{R}_k with $i \leqslant k, j \leqslant k$:

 $\varphi_{kl}a = \varphi_{kl}\beta$. The relation \equiv is clearly an equivalence relation on the set $S = \{(a, i) \mid i \in I, a \in \mathcal{R}_l\}$.

The equivalence classes of S form a ring called the *inductive limit* and denoted by $\mathcal{R} = \lim_{\longrightarrow} (\mathcal{R}_i, \varphi_{ii}) = \lim_{\longrightarrow} \mathcal{R}_i$, with respect to the following operations:

(9.1) If u, v are the equivalence classes of (a, i), (β, j) respectively, then for any k with $i \leq k$, $j \leq k$ the sum u + v is defined to be the equivalence class of $(\varphi_{ki}a + \varphi_{kj}\beta, k)$ and the product uv is defined to be the equivalence class of $(\varphi_{ki}a\varphi_{kj}\beta, k)$.

It is easily verified that if each \mathcal{R}_i is regular, then $\lim_{\longrightarrow} \mathcal{R}_i$ is also regular; if each φ_{ji} is injective, then the mapping $a \to \{\text{equivalence class of } (a,i)\}$ determines an injective ring embedding of \mathcal{R}_i in $\lim_{\longrightarrow} \mathcal{R}_i$; if each \mathcal{R}_i is a regular rank ring and each mapping φ_{ji} preserves the rank, then the function

$$R(\text{equivalence class of } (a, i)) = \text{rank of } a \text{ in } \mathcal{H}_i$$

is a rank function on $\lim \mathcal{R}_i$.

9.2. Let N denote set of integers $\{1, 2, 3, ...\}$ and write m|n to mean: $m, n \in N$ and n = mp for some $p \in N$.

Suppose that \mathscr{R} is an associative ring and let \mathscr{R}_n denote the matrix ring. For $m, n \in \mathbb{N}$ with m|n we define an injective ring isomorphism $\varphi_{n,m}: \mathscr{R}_m \to \mathscr{R}_n$ as follows: if $A \in \mathscr{R}_m$, then $\varphi_{n,m}(A)$ shall be the $n \times n$ matrix with A's down the diagonal and zeros elsewhere; more precisely,

$$\left(arphi_{n,m}(A)
ight)_{rm+j}^{rm+i} = A_j^i \quad ext{ for } \quad r = 0\,, 1, \ldots, \left(rac{n}{m} - 1
ight), 1 \leqslant i,j \leqslant m$$

and

$$\varphi_{n,m}(A)$$
 has all other entries 0.

Now suppose that $I\subset N$ and that any pair m,n in I have a common multiple in I. Then the inductive limit

$$\mathscr{R}_I = \lim (\mathscr{R}_m, \varphi_{n,m})_{n,m \in I}$$

is defined as a special case of 9.1.

9.3. Suppose next that \mathcal{R}, N, I are as in 9.2 and also that \mathcal{R} is a regular ring with normalized rank function R. Theorem 1 now implies that for each \mathcal{R}_n the function R_n/n is a normalized rank on \mathcal{R}_n , to be denoted also without fear of ambiguity by R; with this choice of rank, each mapping $\varphi_{n,m}$ preserves the rank. Hence \mathcal{R}_I is again a regular rank ring and its rank will be denoted again by R.

It is easily seen that if I is infinite and $\mathcal{R} \neq (0)$, then \mathcal{R}_I is not complete (even if \mathcal{R} is complete). But by [2], (1.4), (1.5) and (1.6), the com-

pletion of \mathcal{R}_I in the rank metric, denoted $\hat{\mathcal{R}}_I$, is again a regular ring with a rank (again denoted by R) which is an extension of that of the rank on \mathcal{R}_I ; the ring $\hat{\mathcal{R}}_I$ is complete with respect to its rank metric.

The study of the dependence of \mathcal{R}_I and $\hat{\mathcal{R}}_I$ on \mathcal{R} and I was initiated by J. von Neumann [5], [3] for the case that \mathcal{R} is a division ring. We shall continue this study in subsequent notes.

References

[1] K. D. Fryer and I. Halperin, The von Neumann coordinatization theorem for complemented modular lattices, Acta Sci. Math. (Szeged) 20 (1956), p. 203-249.

[2] Israel Halperin, Regular rank rings, Can. Jour. Math. 17 (1965), p. 709-719.

[3] — Von Neumann's manuscript on inductive limits of regular rings, Can. Jour. Math., to appear.

[4] J. von Neumann, Continuous geometry, Princeton 1960.

[5] — Independence of F_{∞} from the sequence γ , unpublished manuscript written in 1936-37 (review by Israel Halperin in vol. IV of the Collected works of John von Neumann (Pergamon, 1962)).

Reçu par la Rédaction le 5. 1. 1966