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Cross-continuity vs. continuity
by

F. GRUNBAUM and E. H. ZARANTONELLO (Cérdoba)

A mapping T of the Hilbert space # (real or complex but not neces-
sarily separable) into itself is said to be §-continuous or s-cross-continuous
if there are constants ¢ and ' such that for any couple of distinet points
z, and , in its domain
® T, — Tl < CO(flmy— )

2 (T2, — To) | < O+ 8(flwy— )

respectively, where 4 (f) is a non-decreasing, non-negative, sub-additive func-
tion defined on the open positive half line (“triangular function”), and where
(Ty—Tws, 2, — )

[lapy — 5|

For 6(t) =1, 0 <» <1, é-continuity coincides with the usual Holder
condition of exponent », also called Lipschitz condition if v =1, and
d-crogs-continuity yields the notion of cross-Holder condition of expo-
nent » (or cross-Lipschitz condition if » = 1) introduced by one of the
guthors in a recent study of non-linear operators in Hilbert space [3],
where the idea was immediately put to use without any further in-
quiry into its meaning. Clearly, since (Tw,—Tw,)* is the component of
Tz, —Tx, orthogonal to =, — x,, a Holder condition implies a cross-Holder
condition of the same exponent. At the beginning the apparent absence
of counter-examples led to the conjecture that perhaps the converse of
this was also true and the new notion altogether superfluous. Counter-
examples such as zlog(1/||z]]) — which is cross Lipschitzian but not Lip-
gehitzian — arrived to later showed the conjecture false but were insuffi-
cient to establish for which »’s any »-cross-Holder mapping is y-Holder,
or more generally still, for which &’s é-cross-continuity and §-continuity
are equivalent, if ever. This broader question is our main coneern in this
article, to which we give the following somewhat unexpected answer
(boundary behaviour being ignored): There is equivalence if and only if

(Tw, —Txy)t = To,—Tas— (2, — ) .

1
1
ltﬂ?mjé(t/u)du< co.

18
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According to this, in the special case §(¢) = t*, 0 < » < 1, equivalence
occurs for » <1 and non-equivalence for y = 1. As a result of our dis-
cussion it will also appear that the distinction between both notions
is a subtle one in the sense that J-cross-continuity may be weaker than
d-continuity by a logarithmic factor at most.

If the dimension of the space is one, all cross-increments vanish
and any mapping is é-cross-continuous for any § whatever. Thus dim s#
>2 is a basic condition in all considerations that follow. As to the
domains of definition of the mappings 7': # — 5 considered here will
be assumed to be dense subsets 2(T') of open convex sets, that is, the

2(T)s will be required to satisfy 2(T) < intZ(T), with Z(T) convex.
Behind this choice there is a double motivation: 1st if a continuity
assertion is to be made about any point of 2(T) such a point must be
an accumulation point of P(T) and hence 2(T') dense in itself; 2nd it
is the possibility of moving about any point which gives strength to cross-
continuity, strength that is maximized if 2(7T) is taken as dense in an
open set. Easily constructed examples show that nothing of the nature
we seek is to be expected of less substantial domains. Convexity is im-
posed only for convenience; its effect is to make distances within 2
coincide with distances in s#. For any £ of the type described and any
positive ¢, 2@ will indicate the set of points in 2 at a distance > o
from the boundary of 9. The restriction of T to 29(T) will be denoted
by i),

For any T the functions of a real variable t,

(3) O (1) :“ SuII)I , 1 Tm, —Ta,|,
(4) oF (1) = sup |(Tw,—Tws)t],
12—l <t

are respectivelly called the modulus of continuity and the cross-modulus
of continwity of T. As we shall see later they are both triangular functions.
Their finiteness for some value of ¢ expresses boundedness or cross-
boundedness, whereas their approaching zero as {—0 says that the
mapping is either uniformly continuous or uniformly cross-continuous
as the case be. So, uniform continuity (cross-continuity) and é-conti-
nuity (d-cross-continuity) for some & are the same thing, and therefore
the comparison of the various degrees of uniform continuity or uniform
cross-continuity can be effected by comparing the corresponding moduli
of continuity:

DEFINITION. Given two triangular functions 6, and &, ¢, is said
to be weaker than 8,, in symbols 6, < 8,, if

Lim (8, (1)/8,(t)) < + oo
=0

icm®
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If 6, 36, and 6, 3 6, hold simultaneously one says that §, and 6,

are equivalent and denotes the fact by 6; ~ 6..

The relation ~ is in fact an “equivalence relation”, and it is seen
at once that it is the class of the triangular functions equivalent to 6
what is attached to the family of é-continuous or é-cross-continuous
mappings rather than the individual 6. A third modulus of continuity,
the parallel modulus of continuity or(t), is defined by

(5) oh(t) = sup

lir) —xq <t

(T2, — T )]

where
" Ty Xy — Xg
Ta,— Tx,)' = (Ta: — T, ————) B E—
(Fmn ) VT e —mll) fr—

is the component of Tx,—
(6) oz (1) < (1)

Our first step towards the announced goal is a basic inequality which
serves to translate the geometric content of the hypotheses into analy-
tical terms:

LEMMA 1. For any three poinis #,, ¥y, and z; in the domain 2(T)
of a mapping T

Tz, parallel to #, —x,. Note the relation

2L 84 (1)2.

(Tzy—Txy, o, — 23)

_ (T, —Tx5, 25— x3) ‘

flws — 2 i

(M

[l — s

87 (lloy — &3]+ [lra — @)
nain {|jo, — @51, {2 — 3], d(25, bdry 2)}

<24V2
where‘d(ma, bdry @) denotes the distance of @, to the boundary of 2.
Proof. We start out from an identity wvalid for x,, z,, 2,¢2:

(8) [Ny — @3|? llwe— 2512 — [(@1 — @3 Tp — 23) [P X

[(Tmz_Tmay @y — I5) - (Tz, —Tits, -Tl“wa)]
s — @42 Iy — 5]
= oy ) (T, T 0y = OIS 0, )
1%y
— &3, Ty— Ts)
+ (1 — B, By — %5) ((T‘”z\”‘Ta’a)J' y By —Lg— (y H%'g:—.-’ﬂ-i!z—a‘ (wz—wa)) +

“{“((Twl—Twa)iy (3 — gy By — ) (B — Tg) — (B1— T3, By — L) (J’z—ma))-
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To verify (8) observe first that the factors multiplying (T, —T'z,)L,
(Twy—Tmg) L, (T, —Tx,)* scalarly are vectors respectively orthogonal to
&y — By, Bo— B3, L1 — 2,3 then drop the symbols | and check the result-
ing identity by expanding the scalar products according to the ordi-
nary rules.

Simple calculations yield

(2, — @5, B, —5)
R S rar )
- ||m2—man]/1— (—mj— LL)
lly— sl * Yy —
(10) mwfvs—w'r—m(” — |
[l — a4}
By—0y  @y—, \[
= los “s"l/ (xlwl—msn’ uwa—wall)’
(1) a2y, @3 0s) (23— ) — (03— g, 31— ) (@, — )|

Ly — Ly By— 25 \|®
= [j6y — @y]| |21 — 23] [lwe— @5l l/l“ (m, m) .

Taking absolute values in (8) one obtains by Schwartz’ inequality
and by virtue of (9), (10) and (11),

(12) ]/1_ ( By— &y Ly— Dy ) (Toy—Twy, T,— @,) _
llz— ]| ’ o, — 5] lleee — 4]
. (Twy—Twy, 2, —4)
. O m—wlr
llwy — @]

[Ty —Tg) ™ ||+ (T — Tamg) | +][(Tow, — o) M1

h llowy — ]| [la05 — 5]

We are halfway towards (7); our next step is to get rid of the in-
convenient square root factor. For this purpose we take an auxiliary
point @, constructed as follows: Let

0 = arg(w, — @3, €, —,),

M2y, By, T5) = min ||, — 24]|, 0, — 2], d (a0, bdry 2)},

icm
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and seb
&y 5 To—Ty
| ol Tma Lo wnd
— g T Ay

Tyt M (D By ) T z—m |» @a— &y are nob

(13) @, = Ti—% g0 P27 % | parallel,
0 I llew, — ]l |lapy — 23] |

25+ m(@y, Ba, T5) %, With v unitary and orthogonal to
2, — &, and x,— @, if they are parallel.

Assume first that x,e2(T), and apply (12) twice With.wl and 2,
successively replaced by x,, and add the results. One obtains

(14)

[ y— @y Dy—s ‘2 (T2, — T, 03— 5) (T — T4, Zo— s)
]/1 - (“%““"3” ’ “wo_ms”)i vy — sl Jlazg — 5l
To— By @y— g \['| (Lo —T5, @p—3) (L3 —TTg, 21— Ds)
ﬂ/l_ (uwo-wau’ uwl—wsu) Too—al® i — al?

< __te—al [Ty —T5) L | -+ I(Tg—Ts) * | +1l(Tws — T} 11+

[l — s} 2o — ]
oz, — 2ol

floey — ]| ll220 — 5l

Moreover,

(15) ]/

[Tty —Tawg) ||+ (T, — Tvg) | - Lo — L) |1
( Ly— T3

0— Ty = — 1—
Ilma—ws!l ”mo“—ws”) ]/
1 - — Ty
_ ]/ 5(1+ (

Ly — By )
llr — 5] llws—
and in consequence

Ly — By )
”-’”1_903”: [y — sl

(551*“973

)>%,

(Tz,—Tws,, wl—w3)1

(T2, —Tws, Ly — B3) .
loy—mls |

|l — a4i®
V2w, — |

= |lws— 4]l {170 — sl

(16)

[Ty — Tg) H| 41| Ty — Tos) |+ Twe —To) 1+

_VRlm= g, [Ty T (Lo = T -
oz, — 5| llo50 — EA
Now, since Jles — @lf < [lop, — 2| +llws — Zolls NBa— 2ol < lwa— 5|+

lleg— o]l and [ls— ol ——m(ml,wz,ma), each term in square brackets
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on the right does no exceed 6% ([lw, — ]|+ [, — #,]]), and (7) follows from
(16) upon observing that

llze — |
ey — 24|

Jlopy — o)
oy — | =

[y — |
[y — ]

[l225 — o]

fly— | =

If #, does not belong to 2(T), the same conclusion can be reached
by using in its place a sequence @{”¢ P (T) with [lzf"— )| < m(ay, 2;, o )
converging to x,, whose existence is assured by the nature of 2(T) ’ansd
the meaning of m(w,, #,, x,).

LeMMA 2. If 87 (%) < + co for some £,> 0, T is bounded over any
bounded set at a positive distance from the boundary of 9.

Proof. Let # be such a set and z, any of its points. Then it
follows from formula (7) that

(T2, — Ta,)l|| = w

iy — |
remains bounded as ®; runs over the intersection of # with a ball of
radius 4/2 about w,, and as ||Tw, —Ta,)| < (T2 — Taog)|| 4[| T, — Twg) L)
80 does || Tz, —Tw,||. Otherwise said, any point of & is the center of a ball
f)f positive fixed radius over which 7' is bounded, and so the desired result
18 a consequence of the boundedness of &.

- Lymas 3. The moduls of continuity op and 8k of a mapping T:H# — #
daf?ned over a dense subset of a convex open sei, are triangular functions.
This also holds for ol if T is locally bounded or 2(T) convex and open.

. Proof. It is clear that the only property in question is subadditi-
vity. That it holds for dp is almost immediate, for if @y, o 2(T)
llzs —@all < 01405 (@1, 02 > 0), there is always an @, (T) with ”‘1’1“%{[
< 01, |B,— @]l < g,, and hence [T5, —Tw|f < |\ Tey—To]| | Tty — To]|
< 07(01) 4 0r(@,), which by the arbitrariness of @, and %, implies o7 (o, + g»)
< 51'(91)4‘51’(@2)- Less simple is the situation for the other two
moduli; let us prove 87 (o,+ 02) < &4 (0y) - 84 (o). Tt is sutficient to con-
.51der t].ie case when 67 (g,) < + o0, 8% (05) < 4+ oo, for otherwise there
is nothing to prove. For any =, and @y in P(T) with ||, — 2| < 01+ 04
?et #, be the point of the segment e+ (11—, 0 <t <1, dividi;Jg it
11(1}:)0 two par.ts of length proportional to o1 and p,, and take a sequence
Zo" e D(T) with |z~ < oy, |, —a{”| < o, converging to 2,. Since

Ty, — 2,

Ly — oy By— Ty

o=zl Tor—aoll 7y — o]’

icm®

9
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we may write
(T, —Twy)* = (Lo, —Taf) + (Lol —Ts)* +

2 2 _ .
T1— & oy — 2—xy \ T — 2,
+{[(T”1“Tm%”’»-i~?,—q) e — (rn ey, 2 ) =
llowy — 2/ [l — ™} llaey — all) Tl — o]l
E a:”)~m ‘T(n)——(l‘., 2 — 2 5 —a
o ) e 220 2250
”958 — Zollf Ny — ]| flatg— all/ [l — el
But as
@y —af? Ly — Ty M —r, Log— Xy

ez, lwo—il’

and since Tz{™ is a bounded sequence by Lemma 2, the term in braces
of the identity above tends to zero as n — co. Therefore,

lor—af ~ Tea—g)’

(T, —Tmo) || < i (T, — Tf) | +-lim [[( Tl — Tazo) |

< 87 (1) + 87 (22),

whence 0% (o,+ 02) < 0% (0,)+ 0% (0s), a8 we wished to prove. The proof
of subadditivity for 6l is similar and is left to the reader’s care.

Before proceeding with our study of the relations between conti-
nuity and cross-continuity we shall stop to gather some informa-
tion about triangular functions (for a fuller discussion of this material
we refer the reader to [2], Ch. VI).

TEMMA 4. Any non-negative function 6(t), t>0, for which a(t)ft
does not increase is sub-additive ([2], p. 83). In particular, any non-nega-
tive, non-decreasing concave function s @ triangular function.

Proof. If 8(t)/t is not increasing, and %,,%, >0,

8(1y+1s) < 8(ty) D)
t+1, b ty

8(t+1)
B +1,
On the other hand, if é(f) is non-negative, non-decreasing and con-
cave, and if 0 < B < q, i
— — — — 5(pt s(at
00 _ g B0+ —AO(L— ) gy D(PEE)  dlat),

1 240 pt a0 fit i
Letting 8 } « it follows that 8(t)/t does not increase and hence that &

is a triangular function. :

LevMA 5. For any triangular function 4(f):
a. limé(t) = 0 implies continuity for every walue of
>0 )

i 24y = B(t)+ (k).

Ot +1.) =
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b. im 8(#)/¢ ewists and is equal fo supd(t)/i;
0 ‘

c. we have
Db (ty) Dt
2 @ Z & §
Proof. a is an obvious consequence of sub-additivity. As to b we
have if #; < 1,,

17)

<26( ), a-;>0.

(18) S(ta)fts = S((Lafte) ) [tz = S(([taft]+1) 1)/t
1 to+1t, (¢
S (Tl +1) 8(h) < “;L il) .
2 2 1
So, letting ¢, — 0 first,
(19) 8(tn)ft < lim et B O) o 00)
e L
and then ¢, — 0,
20 gy 30
=0 7 I 13

Hence lim§(t)/t exists and by (19) coincides with sup 6(?)/#.
=0 i

Now we prove ¢; it is enough to do it under the assumption D=1
‘We have

Zaiﬁ(ti) =2ai6(2k:—f;£2k? aktk)

i

1
< Z -5 (h/(; aktk) +1) ) (; aktk) =26 (2 aktk) .
This lemma has interesting interpretations. Part b says that the
funetion ¢ iy comparable with any triangular funetion 4(t) and that if
6(¢) is strictly weaker than t, 6(f) = 0. In particular, dr(f) =3 ¢ strictly
amounts to 7' = const, whereas if this holds for &% (t), then

(T —T2y, ¢ — x,)

=Tt

(@— o)+ (To—Tm)* = Twy+ 0 (z—m,),
because (T'z — T2, vanishes and (T —Tay, — x,) /|l — m,||2 = const by (8).

As to ¢, it may be read to mean that the non-negative, non-decreasing
concave function

(20 8(t) =  sup Zanﬁ (%)

Jap=1, Fal<t
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satisfies
(21) 8(1) < 8() < 28(2),
and hence is equivalent to 4.

Levma 6. For any triangular 6,

1

(1) + [S(tfuydu, 0<t<1,
12
8(1), t1>1.

(22) S =

18 a concave triangular function. DMoreover,

(23)  8(1)+{3(1)—8(1) < 8*(1) < w(1)+2(1—t)6(lit 1og%),

0 <t <l

1 1

8 () 8%(t) |
%y 1y

A iy

(24)  8(min(t;, £,))

2

11
< 6(max (2, t)) - , 0<#,t,<1.
1

Proof. §*(¢) is obviously non-negative. Taking t/u as the integra-
tion variable we have, if 0 <? <1,

(25) 8*(t) =t8(1) +1 [ 8(a)/a*dm,
t
whence
as* (1) - by B()
(26) =~ 6(1)+tf5(m)/m do— =
>a(1)+é(t>(%— —1) A s —sw > o,

showing that 6*(f) does not decrease. Further, if 1 >1, >4, > 0,

1y

a6*(t,)  d0*(t) _ (k)  O(%) —f 5@) ..

dt, dt, I s 4 z2
8(t)  6(ta) (1 1 ) (1) — 6(ts)
— — 0ty — ——) < ————K0.
< t T () o ot 1y

Thus, §(f) is concave and an appeal to -Lemma 4 proves its tri?,n-
gularity. The first of inequalities (23) follows at once from fhe defini-
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tion of 6*(¢) upon noticing that 6(¢) is the minimum value of 4(¢/u) in the
interval (¢, 1). As to the second, we use (25), replace d(z) by the concave
function §(z) defined by (20) and apply Jensen’s inequality ([1], p. 151)
to getb

(1) <t5(1)+tfé(m)/w2dx
t
fldm/m .
1)+t(fdm/a:2)3 4 =t6(1)—|—(1‘t)5(t10gt )
i [ ) 1—t
t

which since §(f) < 26(f) yields (23).
It remains to check (24). Through the change of integration variable
@ = uft we write, if 1, < {,,
—1

i
Ot _ 8"(h) lfa .
— == (™) du

t )
2

and deduce (24) by simply replacing §(u~

mum values 4§(¢,) and &(f,) respectively.
Remark. By requiring that 8*(¢) be stronger than §(f) but weaker

than d(tlog1/t), (24) indicates how small the marging of variability left

to &%(t) is. This is to be kept in mind for the proper comprehension of
what follows.

We are now conveniently equiped to reasume our discussion of the
main topie.

LeMMA 7. For any T:38 — 3 not of the form Tx = y,+ Cx, defined
over a dense subset of a conver open set
(27) Sho 2 (88)";  ¢>0,
where T® is the restriction of T to PNT) = {weP, d(w, bdry D) > o}.
Proof. If »;, 2, ;9@ and |jo,— o, < o, |@,— o] < @, (7) yields

1y by its minimum and maxi-

[ (T, — Ty, 2 —4)

[lewy — 4]
(Twy—Tg, 23— mg) b7 (max {[|@, — @l [l2a— 2l})
et Mt 48V2 .
Pt | min {loy — o], |22 2ol}
Assuming [l — 2q)| < 8t < |, — @] < t < g, we have by definition
of 61,(9,,

Tx,—T — —
l_(__wl___m_a) < ség,(g)(t)+481/25%(t),

lley— ]

icm
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and taking the sup on the left,

28) Sl (st) <soly (D +48V2604(1), 0<s<1,0<t<o

Consider now the identity

Sy (s"t) = ™8 (1) + [ 0] (8" 1) — 88k (8" )1+

+ 5[0 (") — sy ("] + .. s

S T(e) St)*‘eér@( )1,

and apply (28) to each term on the right. This gives

8l (8™) = 8™ 8y (0) -+ 48 V2 {04 (s" 7 )+ 887 (s"2) & ... 5" 164 (1)}

n

n i g ¢

L — 6"‘(6‘%) 5J‘ .S"Lt
e 52.(9)“) 148 Yogr1 S Tsi <s§" T(G)( +48 Vasm! y—T.(;;-)—y
=0 =0

where 84 is the coneave triangular function defined by (20) corresponding
to &%. Since &#(st)/s is a decreasing function of s, the sum on the right
can be estimated by an integral in the usual way:

g (s™1) < (g)(t)‘i"*m/és‘ﬂ“lf‘STL (s°)[s"daz,
o

which since 8F < 264, and through the substitution u = s"™* yields
1
) 4sf
S (s™1) < 5™ 0y (0 oz 1js o7 (18" [u) du
W:
962
! o (ts™u
"o (0 + slog 1/fT fu)

This in turn, setting ¢t = p and replacing s” by s becomes

9612

(29) 8o l0)s -!-Wfé%(gs/u)du, 0<s<1.

6&'(9)(93)

Now take a fixed s, with 0 < 8, < 1, and for any s in the interval
0 < s<s, let » be the positive integer such that s¥™ < s, < /09,

that is, set
< 1o ! 1o 1]
n = — —1.
&% gso
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With this choice s >s&'""" >4 and s""logl/s"™ > silog 1/s?,
which ingerted in (29) leads to

60 Sholes) < Bholeds+ ot s f o (0s/u)

96 V2

< oot g s @9+ f oh(esfu)dn], 0 <s<s,.

Since Cs is weaker than any non-vanighing triangular funection, (30)
implies that as a function of s, &l (es) is weaker than the triangular
funection constructed by the —operation (ef. (22)) out of &7 (gs). As these
are respectively equivalent to 61,@) and (6f)* the Lemma is proved.

The remark that (23), (27) and the relation 6, (1) < 8he (1) o ()
transfer continuity from &7 to 8, leads to the important corollary:

TeeorREM 1. Uniform cross-continuity over d dense set 2 of an open
convew set implies uniform continuity over 99 = {z< P, d(z, bdry ) > o},
for any ¢ > 0.

Next we shall exhibit a special class of mappings closely associated
with triangular functions among which we shall find the examples and
counterexamples that our theory requires.

LemmA 8. For amy triangular function & the modulus of continuity
and the cross-modulus of continuity of the mapping

(31) Ty = ” ” *(lell)  (6* defined by (22)),

over any open ball about the origin are equivalent to 6™ and & respectively.

Proof. It is sufficient to carry the demonstration for the unit ball
only. By definition
op(t) = sup [T, —Tw.
llz;—Zgli<t

= S‘gl {8%(leall)® + 6* (llmzll)2 — 208 66* (lwall) 8* (ffall)} 2,

where we have sebt cos 0 = Re(w,/llz,]|, s/|lxs]]) -
Through simple manipulations one may write

b2(t) = sup _ (8% (al)— 0" (oD} -+ 2025 () 5" sl

//\_..

D {6* (liesll —llll) 42 50 /21V % [l ) 6% (el }
SCMURS sup {21sin /2] V8% (Jlml}) 8* ()} -

(»xz§r~um;||) -+
+4sin®0 )yl gl <t?

For fixed [lz,| and [z, the maximum,value of |sin6/2| is either 1,
I flonll+lowalt <2y or {a— (lmall —liwsll) /4 [, llzafl}2 otherwise. Hence
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(32)  8p(t) <8* )+ sup 2V () 0" (lwal) +

1zl lieali<t

t D) V N LY G

<t<lizyll+Hizl -

12— (|l i
<sr@+ mp U e,
il e ] g} lfo]]

<t<hTall+Hizgll
To fix ideas we shall assume |lz,]] < [z,] and shall treat the cases
llzy]] < t/2 and |jz,]| > /2 separately. In the first cage, |ja,]— |zl < T <
sl 4[|zl imply /2 < il < 38/2 and i—|iz,]| < |||, which give

— el — ll2alD)® (o [foal] — el (6 — flwgll + flall) 2020 42
el flavall facell Tl llwall el
Therefore,
(33) dr(t) < 36*(t)+V 86*(/2) 0" (3t/2) < 86*(1).

On the other hand, [jz,|| > ¢/2 implies |lz,|| > /2 and since §*(f)/¢ is
a decreasing function of ¢,
8% (t/2)
/2
Thus, in either case dp(f) < 84*(t) and dp is weaker than 6% But,
as 6* and 6 coincide along any ray out of the origin, 87 is also stronger

than &% and in consequence is equivalent to it, as the Lemma asserts.
Now we pass to the caleulation of é7. We have

(34) Op(t) < 36%()+1 < 56*(1).

(34) o7(t) = sup [(Tw,—Tmy)"|

iy —zall<t

_ M. (8 Ul _6*<nm2n)) S (k) T
oot [‘”( X T AT ]
_ Ll 8 Ul 8 ()

“mf_‘iﬁd{”m‘ Uy leal }

where 21 denotes the component of x, perpendicular to z,—,. Assuming
a8 before [z,]] < |z.|| and majorating the right hand member of (34) with
help of (24),

()< sup { (lzal) nmlu( r_ 1 )}
TS et ol Tl
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and as |, — ]| <t implies [lz.f| —llz.]| < ¢, and [zt < [l

lleal| — 4l
o (1) < sup {5(] og))) T
gl <t e
. 8 (llesl]) . Lo
Now if [l > t, t—m— <256(t)" by (18), and the expression in
braces does not exceed 26({), whereas if [|Jz,| < ¢ it is smaller than §(t) so
(35) 85 (t) < 26().

Moreover, again by (24),

1
36 or(t) > sup {5(”90 Dl ll( —)}
) G T s R ™Y
Choosing for %, and ®», vectors of the form =z, = tu, x, = tu-1isv,
with « and » unitary and orthogonal, and s a positive real number smaller
than 1, eondition |z, — .| < ¢ is satisfied, and (36) yields
, 1 1 1
(37) SE = St — ———— | = [1— ——=—|6(%).
o Y1452 V142
Estimates (35) and (37) establish the equivalence of 87 and 6, com-
pleting the proof of the Lemma.
We are finally in a position to state our main result:
THEOREM 2. Any d-cross-continuous mapping (6 = 0) over a dense
subset D of a convex open set is O-continuous over PP for any p >0
if and only if

(38) a(t) fé (Hu)du < + oco.
Proof. Condition (38) is equivalent to & ~ 6* by (23). It is clear
then that sufficiency follows from Lemma 7 and that Lemma 8 estab-
lishes necessity.

The functions ¢, 0 <» <1 — sort of “eigenfunctions” of the oper-
ator 8 — §* — play a special role in this theory. The following lemma
partially reflects this fact:

LevmwmA 8. If 6(1) is a triangular functimi,

(39) 1) I

for any couple of real numbers u and M such that
.0 —— 4}

40 0<p<lim—r—g < M<L1.

(40) S H = 5 (1) o 0%(0) &

icm
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Proof. If (40) is fulfilled there is a positive » such that ud*(f) < 5()
< Mo*(t) for 0 <t < #. Recalling that 6*(i) satisfies the differential
equation d8*(t)/dt = (8¥(¢)— é(¢))/t one obtains for 0 < ¢ < 7,

5* (1) da*() 6*(t)
1—3M <
( ) s SUea
whence
d 74
7 —(s*®)/t ) <0 <E(a*( ) ).
Therefore
6*
10 o g < S8 g
and
' &* Ms*
”171_(,’3) [N 6(t)<——771 (Q’) M o<igy,

proving the Lemma’s assertion.

A consequence useful to verify if a particular ¢ satisfies (38) or not
can be derived at once from Lemma 8. Noticing that § ~ 6% amounts to
lim 8(1)/8%(1) # O

) >0

one sees that in order that § ~ 6* it is necessary that é > ¢’ for some »
in the interval 0 <<» << 1, and hence that 6 <t for a », 0 <v<C1,
is sufficient for 6 ~ 6*. It is now easy to produce examples at either
side of condition (38). A simple computation shows that if 6(t) =1,
0 <» <1, then

1 —t

1—v’

() =

and hence that (38) is met by these functions. On the other hand, the
above remark indicates that (38) is not satisfied by function of the type

1 81 1 82 1 Sn
t(log—t—) (loglog?) (10g10g...10g 7)

for any choice of the integer n and the non-negative reals 8;,8;, ..., $x.

Particularizing this to the functions ¢, 0 < » < 1, we may state:
COROLLARY 1. If v <1 any cross-Hilder condition of exponent »

over @ implies a Holder condition of the same exponent over 2@, o> 0.
COROLLARY 2. The mapping

Te = mlog il
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is cross-Lipschitzian but not Lipschitzian over amy open ball about the
ortgin.
For linear mappings our result may be phrased so as to say:
COROLLARY 3. For any densely defined linear mapping T:H# —#,

(41) Kint||T—AI|| < ||7|1* < intT— A1,
2 A
where

ITI1+ = sup {|Ta|*— |(Te, z)|*}*,
llefl <1

and K is a positive constant independent of T.

The best value of K is not known to the authors, they can only say
that it is not smaller than 5-%%. It may be shown that the value iz
one if the dimension of the space is 2 or if the mapping is normal. Is it
always so?
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Properties of the orthonormal Franklin system, IT
by

7. CIESIELSKI (Poznah)

1. Introduction. This is to continue the investigations undertaken
in the paper [1]. Most of the results were announced without proofs
in [2].

In Sections 3 and 4 sharp estimates from above and from below for
the single Franklin functions and for the Dirichlet kernel of the Franklin
gystem are obtained. Actually, we work out an explicite formula for
the Dirichlet kernel. )

Theorem 4 ghows that the Fourier-Franklin series of an integrable
function converges at each weak Lebesgue point. Using Theorem 3 and
Lemma 8 one could deduce this result from the general criterion for sin-
gular integrals of Krein and Levin [10]. However, with the help of gener-
alized Natanson Lemma, proved by Taberski in [15], the straightfor-
ward proof of the Theorem 4 becomes very simple and therefore it is
presented here.

The next part of this paper deals with the best approximation and
with the approximation by the partial sums of the Fourier-Franklin
expansions in the L,<0,1)> spaces. Most of the corresponding results
for the space €0, 1> were discussed in [1]. Theorem 9 shows that there
is a non-trivial difference in the order of approximation of smooth fune-
tions by the partial sums of the Fourier-Franklin and Haar-Fourier ex-
pansions. ]

Theorem 12 extends the results obtained in [3] for the case p = oo
to the Lipschitz classes in L,¢0,1>. It shows that there is a constructive
linear isomorphism between any two L, Lipschitz classes with the expo-
nents a,0 < a < 1. Again, the limit case o =1, like for p = oo [31,
is singnlar. We do not know whether the isomorphism exists for1 < p << o©
and o = 1. If » = co and a = 1 then it exists but the known proof is
not constructive [12].

Theorem 6 is a generalization of the main inequality proved in [1].
It plays an important role in the proofs of the absolute convergence
theorems of Section 7.
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