References

- [1] A. D. Alexandrov, Additive set-functions in abstract spaces, Matematicheskii Sbornik (Recueil Math.) 8 (1940), p. 307-342; 9 (1941), p. 563-621; 13 (1943), p. 169-243.
- [2] J. Czipszer and L. Geher, Extension of functions satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar. 6 (1955), p. 213-220.
- [3] R. M. Dudley, Lorentz-invariant Markov processes in relativistic phase space, Arkiv for Matematik (to appear).
- [4] Weak convergence of probabilities on non-separable metric spaces and empirical measures on Euclidean spaces, Illinois Journal of Mathematics 10 (1966), p. 109-126.
- [5] L. Kantorovitch and G. Rubinstein, On a space of completely additive functions (in Russian), Vestnik Leningrad Univ. 13.7 (Ser. Mat. Astr. 2) (1958), p. 52-59.
 - [6] J. L. Kelley, General topology, New York 1955.
- [7] E. Marczewski and R. Sikorski, Measures in non-separable metric spaces, Coll. Math. 1 (1948), p. 133-139.
- [8] Yu. V. Prokhorov, Convergence of random processes and limit theorems in probability, Theory of Probability and its Applications 1 (1956).
- [9] R. Ranga Rao, Some theorems on weak convergence of measures and applications, Annals of Mathematical Statistics 33 (1962), p. 659-680.
- [10] J. C. Shepherdson, Inner models for set theory (II), Jour. Symb. Logic 17 (1952), p. 225-237.
- [11] S. Ulam, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math. 16 (1930), p. 140-150.
- [12] and J. C. Oxtoby, On the existence of a measure invariant under a transformation. Annals of Math. 40 (1939), p. 560.
- [13] V. S. Varadarajan, Weak convergence of measures on separable metric spaces, Sankhya 19 (1958), p. 15-22.
- [14] Measures on topological spaces (in Russian), Matematicheskii Sbornik 55 (97) (1961), p. 35-100.
- [15] Donald S. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), p. 240-272.

Recu par la Rédaction le 22. 10. 1965

STUDIA MATHEMATICA, T. XXVII. (1966).

Interpolation of additive functionals

bу

ROBERT KAUFMAN (Urbana, III.)

In this note a generalization of the theorem of Mazur and Orlicz ([1], p. 147) is presented; the proof of the latter was simplified by Sikorski [3] and Pták [2]. We state first our extension and its proof and then explain how the previous statement may be obtained as a special case.

We consider a semi-group S, composition in S being denoted by x+y, provided with a real functional ω subject to two conditions:

(1)
$$\infty > \omega(s) \geqslant -\infty$$
 for $s \in S$,

(2)
$$\omega(s) + \omega(t) \geqslant \omega(s+t)$$
 for $s, t \in S$.

In addition to ω there is given a real functional L on S, restricted as follows:

(3)
$$\infty > L(s) \geqslant -\infty, \quad s \in S, L \not\equiv -\infty.$$

(4) If $\{s_1, \ldots, s_n\}$ is a finite sequence in S,

$$\omega(s_1+\ldots+s_n)\geqslant \sum_{i=1}^n L(s_i).$$

This condition is abbreviated: $\omega \gg L$.

Theorem. There exists an additive functional ξ on S such that $\omega \geqslant \xi \geqslant L$.

Proof. We begin with the observation that if $\omega = L$ in S, then ω is already additive. Let us exclude this and choose an element $a_0 \in S$ and a number r such that $\omega(a_0) > r > L(a_0)$.

We claim now that either A or B holds, among the next two statements:

A. $\omega(ma_0+u_1+\ldots+u_n)\geqslant mr+\sum_{i=1}^nL(u_i)$, for any $m\geqslant 1$ and elements u_1,\ldots,u_n in S.

B. $\omega(s)+m'r\geqslant\sum\limits_{j=1}^{n'}L(t_j),$ whenever $m'a_0+s=t_1+...+t_{n'},$ $m'\geqslant 1;$ $s\in S;$ $t_1,\ldots,t_{n'}\in S.$

In fact. if both A and B fail to be true for the instances given, multiplying the first by $m' \ge 1$ and the second by $m \ge 1$ we have, as $r > -\infty$.

$$m' \sum_{i=1}^{n} L(u_i) + m \sum_{j=1}^{n'} L(t_j)$$

 $> m'\omega(ma_0 + u_1 + \ldots + u_n) + m\omega(s) \geqslant \omega(m'ma_0 + m'u_1 + \ldots + m'u_n + ms)$

(by (2))
$$= \omega(mt_1 + ... + mt_{n'} + m'u_1 + ... + m'u_n).$$

This is in contradiction to (4): $\omega \gg L$, so that either A or B must always hold.

Let us suppose first that A holds. Define L'(s) = L(s) if $s \in S$, $s \neq a_s$. and $L'(a_0) = r$. Then $\omega \gg L' \gg L$. For, in (4), if $s_i \neq a_0$ for $1 \leqslant i \leqslant n$. then $L(s_i) = L'(s_i), 1 \le i \le n$. If $s_i = a_0$ for only $1 \le i \le m < n$.

$$\omega(ma_0+s_{m+1}+\ldots+s_n) \geqslant mr+\sum_{i=m+1}^n L(s_i) = \sum_{i=1}^n L'(s_i).$$

The only remaining inequality to be proved is that $\omega(ma_0) \ge mr$ for any $m \ge 1$. For any b such that $L(b) > -\infty$, and $n \ge 1$, $n\omega(ma_n) +$ $+\omega(b) \geqslant \omega(mna_n+b) \geqslant nmr+L(b)$. As $n\to\infty$ we obtain in the limit $\omega(ma_n) \geqslant rm$. The conclusion we emphasize is that if A holds, L is not a maximal element in the class $\{L''\}$ of functionals L'' such that $\omega \gg L''$.

If B holds a similar conclusion can be obtained for ω . In what follows the convention is adopted that $0 \cdot s + t \equiv t$. The method for constructing a functional $\omega' \leq \omega$, $\omega'(a_0) \leq r$, subject to (1) and (2) is to consider at once all the restraints ω' must satisfy. These are the equations:

(E)
$$na_0 + s = mt, \quad n \geqslant 0, m \geqslant 1, s, t \in S.$$

Define

$$\omega'(t) = \inf \frac{1}{m} (nr + \omega(s)),$$

the infimum over all equations (E) involving t. Clearly $\omega'(t) \leq \omega(t)$; for every n, $(n+1)\omega'(a_0) \leq nr + \omega(a_0)$. To show that ω' satisfies the hypothesis (2) suppose

$$(\mathbf{E}') \qquad \qquad n' \, a_0 + s^* = m' \, t^*.$$

Then

$$(nm'+mn') a_0 + [ms^*+m's] = mm'(t+t^*);$$
 $\omega'(t+t^*) \le \left(\frac{n}{m} + \frac{n'}{m'}\right)r + \frac{1}{mm'}\omega(ms^*+m's)$
 $\le \frac{n}{m}r + \frac{1}{m}\omega(s) + \frac{n'}{m'}r + \frac{1}{m'}\omega(s^*).$

Thus (2) holds.

Condition (4), $\omega' \gg L$, is verified as follows. If $na_0 + s = m(s_1 + \ldots +$ $+s_{m'}$), and B holds,

$$\omega(s) + nr \geqslant m \sum_{j=1}^{m'} L(s_j), \quad \frac{1}{m} (\omega(s) + nr) \geqslant \sum_{j=1}^{m'} L(s_j)$$

and finally

$$\omega'(s_1+\ldots+s_{m'})\geqslant \sum_{j=1}^{m'}L(s_j).$$

Conclusion: if B holds, ω is not a minimal element in the family $\{\omega''\}$ of functions ω'' such that $\omega'' \gg L$.

Let us now apply Hausdorff's principle to the pairs of functionals (ω', L') such that $\omega \geqslant \omega' \gg L' \geqslant L$, the partial order being (ω', L') $\leqslant (\omega'', L'')$ if $\omega'' \leqslant \omega'$ and $L'' \geqslant L'$. We readily obtain a maximal element (ω_0, L_0) ; by what has gone before we must have $\omega_0 = L_0$ so that $\xi = \omega_0$ is additive. This completes the proof.

The theorem of Mazur and Orlicz may be derived from the present one as follows. We are given an abstract set Z, a real function c on Z, and a mapping f of Z into S such that

(5)
$$\omega(f(z_1)+f(z_2)+\ldots+f(z_n)) \geqslant \sum_{i=1}^n c(z_i),$$

for any finite sequence $\{z_1, \ldots, z_n\}$ in Z. Define

(6)
$$L(s) = \sup\{c(z) : z \in \mathbb{Z}, f(z) = s\},$$

if $s \in f(Z)$, and $L(s) = -\infty$ if $s \notin f(Z)$. Then conditions (1) and (5) yield conditions (3) and (4) for the functionals ω and L on S. Thus there is an additive functional ξ on S such that $\omega \geqslant \xi \geqslant L$, whence $\omega(f(z)) \geqslant \xi(f(z))$ $\geqslant L(f(z)) \geqslant c(z)$, for z in Z.

If, in addition, S is a real vector space and ω satisfies the condition

(7)
$$\omega(\alpha s) = \alpha \omega(s), \quad s \in S, \alpha \geqslant 0,$$

it is required that ξ be homogeneous. If s is fixed and $F(\alpha) = \xi(\alpha s)$, α real, then F is an additive transformation of the real numbers which is bounded in a neighborhood of a=0. As is well known F must then be homogeneous, so that $\xi(as) = F(a) = aF(1) = a\xi(s)$.

To deduce the well-known Hahn-Banach Theorem, we suppose that Z is a linear subspace of S, that f is the identity mapping of Z into S, and that c is a linear functional on Z. We find then a linear functional ξ on S such that $\omega \geqslant \xi$ and $\xi \geqslant c$ on Z. But then $-\xi \geqslant -c$ and $\xi = c$.

The Hahn-Banach Theorem itself may be generalized to semi-groups; we hope to announce this elsewhere.

STUDIA MATHEMATICA, T. XXVII. (1966)

References

- [1] S. Mazur and W. Orlicz, Sur les espaces métriques linéaires (II), Studia Math. 13 (1953), p. 137-179.
 - [2] V. Pták, On a theorem of Mazur and Orlicz, ibidem 15 (1956), p. 365-366.
 - [3] R. Sikorski, On a theorem of Mazur and Orlicz, ibidem 13 (1953), p. 180-182.

Reçu par la Rédaction le 4. 11. 1965

Cross-continuity vs. continuity

bу

F. GRUNBAUM and E. H. ZARANTONELLO (Córdoba)

A mapping T of the Hilbert space $\mathscr H$ (real or complex but not necessarily separable) into itself is said to be δ -continuous or δ -cross-continuous if there are constants C and C^\perp such that for any couple of distinct points x_1 and x_2 in its domain

$$||Tx_1 - Tx_2|| \leqslant C\delta(||x_1 - x_2||),$$

(2)
$$||(Tx_1 - Tx_2)^{\perp}|| \leqslant C^{\perp} \delta(||x_1 - x_2||)$$

respectively, where $\delta(t)$ is a non-decreasing, non-negative, sub-additive function defined on the open positive half line ("triangular function"), and where

$$(Tx_1 - Tx_2)^{\perp} = Tx_1 - Tx_2 - \frac{(Tx_1 - Tx_2, x_1 - x_2)}{||x_1 - x_2||^2} (x_1 - x_2).$$

For $\delta(t) = t^{\nu}$, $0 \le \nu \le 1$, δ -continuity coincides with the usual Hölder condition of exponent ν , also called Lipschitz condition if $\nu = 1$, and δ-cross-continuity yields the notion of cross-Hölder condition of exponent ν (or cross-Lipschitz condition if $\nu = 1$) introduced by one of the authors in a recent study of non-linear operators in Hilbert space [3], where the idea was immediately put to use without any further inquiry into its meaning. Clearly, since $(Tx_1-Tx_2)^{\perp}$ is the component of $Tx_1 - Tx_2$ orthogonal to $x_1 - x_2$, a Hölder condition implies a cross-Hölder condition of the same exponent. At the beginning the apparent absence of counter-examples led to the conjecture that perhaps the converse of this was also true and the new notion altogether superfluous. Counterexamples such as $x\log(1/||x||)$ — which is cross Lipschitzian but not Lipschitzian — arrived to later showed the conjecture false but were insufficient to establish for which v's any v-cross-Hölder mapping is v-Hölder, or more generally still, for which δ 's δ -cross-continuity and δ -continuity are equivalent, if ever. This broader question is our main concern in this article, to which we give the following somewhat unexpected answer (boundary behaviour being ignored): There is equivalence if and only if

$$\overline{\lim_{t\to 0}}\frac{1}{\delta(t)}\int\limits_t^1\delta(t/u)du<\infty.$$