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Interpolation of additive functionals
by
ROBERT KAUFMAN (Urbana, IIL)

"In this note a generalization of the theorem of Mazur and Orlicz ([1],
p. 147) is presented; the proof of the latter was simplified by Sikorski [3]
and Ptak [2]. We state first our extension and its proof and then explain
how the previous statement may be obtained as a special case.

‘We consider a semi-group S, composition in § being denoted by
@y, provided with a real functional o subject to two conditions:

(1) 00 > w(s) = — oo
(2) o(s)+ow(t) > o(s+1) for

for seS,
s,1e8.

Tn addition to  there is given a real functional L on 8, restricted
ag follows:

(3) oo > L(s) >
@) If {sy,...

— o0, 8e8,L % — oo.

y 8z} 18 a finite sequence in S,
n
(8t .o +8,) = ZlL(s,).

This condition iz abbreviated: o> L.

TerorREM. There exists an additive fumctional & on 8 such that

=2é=L.

Proof. We begin with the observation that if w = L in §, then o
is already additive. Let us exclude this and choose an element gye§ and
a number 7 such that w(ae) > > L(a).

We claim now that either A or B holds, among the next two sta-
tements:

A o(magtu,+ ... Fu) = 1 and elem-

mr—l—ZL w;), for any m >

ents %,...,u, in 8.
w
B. w(s)+m'r = Y L), wheneyer m'a,+8 =t,+...+tw, m' =1;8¢8;
=1

By eeey twelS.
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In fact, if both A and B fail to be frue for the instances given, mul-
tiplying the first by m’ > 1 and the second by m > 1 we have, asr > — oo,

m’;L(ui)—{— mé‘L(tﬁ

> m' o(mag+ U+ oo %) FMme(s) = w(m'mag+mui 4 ... 4 m u,+ms),
(by (2)) -t Uy ).

This is in contradiction to (4): w > L, so that either A or B must
always hold.

Let us suppose first that A holds. Define L'(s) = L(s) if s¢8, s = ay,
and L'(@) = r. Then o >L' > L. For, in (4), if s; 5 a, for 1 <4 < n,
then I(s;) = L'(8:), 1 <2 <. If s, = q, for only 1 <i<m < n,

mr - 2 (s:) :Zn:L’(si).

i=m+1

The only remaining inequality to be proved is that w(ma,) > mr
for any m > 1. For.any b such that L(d) > — co, and n > 1, no(may) -+
+w(b) = w(mnay+b) = nmr+L(b). As n - oco we obtain in the limit
w(may) = rm. The conclusion we emphasize is that if A holds, L is not
a maximal element in the class {L'’} of functionals I'' such that o > L.

If B holds a similar conclusion can be obtained for w. In what follows
the convention is adopted that 0-s--% = ¢. The method for constructing
a functioral o' < o, 0'(a,) <, subject to (1) and (2) is to consider at
once all the restraints o’ must satisfy. These are the equations:

(E) nay+s = mt, >1,s,tel.
Define

(mt,+

(mao+3m+1+ 8 =

=0,m

1
o’ () = inf— (nr 4 w(s),
m
the infimum over all equations (E) involving t.
for every n, (n41)w'(ay) < nr+ o(ay).
hypothesis (2) suppose
(E)

Clearly o' (£) < o(1);
To show that o' satisfies the
n ay+ 8% = m'¢*.
Thén

(nm'4-mn’) ag+[ms* + m's] = mm’ (t-+1*);

n’ 1
—~) r+—— w(ms*+m's)
mm

m’

o' (L+1%) < (1 +
m

n 1 n' 1
STty ettt P w(s%).
Thus (2) holds.
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Condition (4), o'> L, is verified as follows. If na,+s = m(8 ...+
4+ 8,), and B holds,

m’

=m ZL

8)+nr

L]

i(m (8)+nr) =

m

L(s;)

=1

and finally

m'

> ' Lis).

Conclusion: if B holds,  is not & minimal element in the family
{w"'} of functions o’ such that o' > L.

Let us now apply Hausdorff’s principle to the pairs of functionals
(w'y I') such that o > o' > 1’ > L, the partial order being (o', L')
< (", L") if 0" < o and L" > I’. We readily obtain a maximal ele-
ment (w,, Ly); by what has gone before we must have w, = I, so that
& = o, is additive. This completes the proof.

The theorem of Mazur and Orlicz may be derived from the present
one as follows. We are given an abstract set Z, a real function ¢ on Z,
and a mapping f of Z into § such that

o' (8, ...

+ $mr)

n

Hfle) = el

i=

(3) w(f(2,) +f(z:)+

et

for any finite sequence {z,,...,2,} in Z. Define

(6) L(s) = sup{e(z = s},

if sef(Z), and L(s) = — oo if s¢f(Z). Then conditions (1) and (5) yield
conditions (3) and (4) for the functionals w and L on §. Thus there is an
additive functional £ on § such that o > & > L, whence o(f(2)) = £(f(2))
> L(f(2)) = ¢(z), for 2 in Z.

If, in addition, § is a real vector space and w satisfies the condition

) w(as) = an(s),

it is required that & be homogeneous. If s is fixed and F(a) = £(as), a
real, then ¥ is an additive transformation of the real numbers which is
bounded in a neighborhood of a = 0. As is well known F must then be
homogeneous, so that &(as) = F(a) = aF (1) = af(s).

To deduce the well-known Hahn-Banach Theorem, we suppose that
Z is a linear subspace of §, that f is the identity mapping of Z into S,
and that ¢ is a linear functional on Z. We find then a linear functional £
on § such that w > & and £ > ¢ on Z: But then — &> —c and £ =c.

The Hahn-Banach Theorem itself may be generalized to semi-groups;
we hope to announce this elsewhere.

V:zeZ, f(2)

seS,a =0,
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Cross-continuity vs. continuity
by

F. GRUNBAUM and E. H. ZARANTONELLO (Cérdoba)

A mapping T of the Hilbert space # (real or complex but not neces-
sarily separable) into itself is said to be §-continuous or s-cross-continuous
if there are constants ¢ and ' such that for any couple of distinet points
z, and , in its domain
® T, — Tl < CO(flmy— )

2 (T2, — To) | < O+ 8(flwy— )

respectively, where 4 (f) is a non-decreasing, non-negative, sub-additive func-
tion defined on the open positive half line (“triangular function”), and where
(Ty—Tws, 2, — )

[lapy — 5|

For 6(t) =1, 0 <» <1, é-continuity coincides with the usual Holder
condition of exponent », also called Lipschitz condition if v =1, and
d-crogs-continuity yields the notion of cross-Holder condition of expo-
nent » (or cross-Lipschitz condition if » = 1) introduced by one of the
guthors in a recent study of non-linear operators in Hilbert space [3],
where the idea was immediately put to use without any further in-
quiry into its meaning. Clearly, since (Tw,—Tw,)* is the component of
Tz, —Tx, orthogonal to =, — x,, a Holder condition implies a cross-Holder
condition of the same exponent. At the beginning the apparent absence
of counter-examples led to the conjecture that perhaps the converse of
this was also true and the new notion altogether superfluous. Counter-
examples such as zlog(1/||z]]) — which is cross Lipschitzian but not Lip-
gehitzian — arrived to later showed the conjecture false but were insuffi-
cient to establish for which »’s any »-cross-Holder mapping is y-Holder,
or more generally still, for which &’s é-cross-continuity and §-continuity
are equivalent, if ever. This broader question is our main coneern in this
article, to which we give the following somewhat unexpected answer
(boundary behaviour being ignored): There is equivalence if and only if

(Tw, —Txy)t = To,—Tas— (2, — ) .

1
1
ltﬂ?mjé(t/u)du< co.
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